DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (cdf352f02ac4)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
//! Compound types (unions and structs) in our intermediate representation.

use super::analysis::Sizedness;
use super::annotations::Annotations;
use super::context::{BindgenContext, FunctionId, ItemId, TypeId, VarId};
use super::dot::DotAttributes;
use super::item::{IsOpaque, Item};
use super::layout::Layout;
use super::template::TemplateParameters;
use super::traversal::{EdgeKind, Trace, Tracer};
use super::ty::RUST_DERIVE_IN_ARRAY_LIMIT;
use clang;
use codegen::struct_layout::{align_to, bytes_from_bits_pow2};
use ir::derive::CanDeriveCopy;
use parse::{ClangItemParser, ParseError};
use peeking_take_while::PeekableExt;
use std::cmp;
use std::io;
use std::mem;
use HashMap;

/// The kind of compound type.
#[derive(Debug, Copy, Clone, PartialEq)]
pub enum CompKind {
    /// A struct.
    Struct,
    /// A union.
    Union,
}

/// The kind of C++ method.
#[derive(Debug, Copy, Clone, PartialEq)]
pub enum MethodKind {
    /// A constructor. We represent it as method for convenience, to avoid code
    /// duplication.
    Constructor,
    /// A destructor.
    Destructor,
    /// A virtual destructor.
    VirtualDestructor {
        /// Whether it's pure virtual.
        pure_virtual: bool,
    },
    /// A static method.
    Static,
    /// A normal method.
    Normal,
    /// A virtual method.
    Virtual {
        /// Whether it's pure virtual.
        pure_virtual: bool,
    },
}

impl MethodKind {
    /// Is this a destructor method?
    pub fn is_destructor(&self) -> bool {
        match *self {
            MethodKind::Destructor | MethodKind::VirtualDestructor { .. } => {
                true
            }
            _ => false,
        }
    }

    /// Is this a pure virtual method?
    pub fn is_pure_virtual(&self) -> bool {
        match *self {
            MethodKind::Virtual { pure_virtual } |
            MethodKind::VirtualDestructor { pure_virtual } => pure_virtual,
            _ => false,
        }
    }
}

/// A struct representing a C++ method, either static, normal, or virtual.
#[derive(Debug)]
pub struct Method {
    kind: MethodKind,
    /// The signature of the method. Take into account this is not a `Type`
    /// item, but a `Function` one.
    ///
    /// This is tricky and probably this field should be renamed.
    signature: FunctionId,
    is_const: bool,
}

impl Method {
    /// Construct a new `Method`.
    pub fn new(
        kind: MethodKind,
        signature: FunctionId,
        is_const: bool,
    ) -> Self {
        Method {
            kind,
            signature,
            is_const,
        }
    }

    /// What kind of method is this?
    pub fn kind(&self) -> MethodKind {
        self.kind
    }

    /// Is this a constructor?
    pub fn is_constructor(&self) -> bool {
        self.kind == MethodKind::Constructor
    }

    /// Is this a virtual method?
    pub fn is_virtual(&self) -> bool {
        match self.kind {
            MethodKind::Virtual { .. } |
            MethodKind::VirtualDestructor { .. } => true,
            _ => false,
        }
    }

    /// Is this a static method?
    pub fn is_static(&self) -> bool {
        self.kind == MethodKind::Static
    }

    /// Get the id for the `Function` signature for this method.
    pub fn signature(&self) -> FunctionId {
        self.signature
    }

    /// Is this a const qualified method?
    pub fn is_const(&self) -> bool {
        self.is_const
    }
}

/// Methods common to the various field types.
pub trait FieldMethods {
    /// Get the name of this field.
    fn name(&self) -> Option<&str>;

    /// Get the type of this field.
    fn ty(&self) -> TypeId;

    /// Get the comment for this field.
    fn comment(&self) -> Option<&str>;

    /// If this is a bitfield, how many bits does it need?
    fn bitfield_width(&self) -> Option<u32>;

    /// Is this field marked as `mutable`?
    fn is_mutable(&self) -> bool;

    /// Get the annotations for this field.
    fn annotations(&self) -> &Annotations;

    /// The offset of the field (in bits)
    fn offset(&self) -> Option<usize>;
}

/// A contiguous set of logical bitfields that live within the same physical
/// allocation unit. See 9.2.4 [class.bit] in the C++ standard and [section
/// 2.4.II.1 in the Itanium C++
/// ABI](http://itanium-cxx-abi.github.io/cxx-abi/abi.html#class-types).
#[derive(Debug)]
pub struct BitfieldUnit {
    nth: usize,
    layout: Layout,
    bitfields: Vec<Bitfield>,
}

impl BitfieldUnit {
    /// Get the 1-based index of this bitfield unit within its containing
    /// struct. Useful for generating a Rust struct's field name for this unit
    /// of bitfields.
    pub fn nth(&self) -> usize {
        self.nth
    }

    /// Get the layout within which these bitfields reside.
    pub fn layout(&self) -> Layout {
        self.layout
    }

    /// Get the bitfields within this unit.
    pub fn bitfields(&self) -> &[Bitfield] {
        &self.bitfields
    }
}

/// A struct representing a C++ field.
#[derive(Debug)]
pub enum Field {
    /// A normal data member.
    DataMember(FieldData),

    /// A physical allocation unit containing many logical bitfields.
    Bitfields(BitfieldUnit),
}

impl Field {
    /// Get this field's layout.
    pub fn layout(&self, ctx: &BindgenContext) -> Option<Layout> {
        match *self {
            Field::Bitfields(BitfieldUnit { layout, .. }) => Some(layout),
            Field::DataMember(ref data) => {
                ctx.resolve_type(data.ty).layout(ctx)
            }
        }
    }
}

impl Trace for Field {
    type Extra = ();

    fn trace<T>(&self, _: &BindgenContext, tracer: &mut T, _: &())
    where
        T: Tracer,
    {
        match *self {
            Field::DataMember(ref data) => {
                tracer.visit_kind(data.ty.into(), EdgeKind::Field);
            }
            Field::Bitfields(BitfieldUnit { ref bitfields, .. }) => {
                for bf in bitfields {
                    tracer.visit_kind(bf.ty().into(), EdgeKind::Field);
                }
            }
        }
    }
}

impl DotAttributes for Field {
    fn dot_attributes<W>(
        &self,
        ctx: &BindgenContext,
        out: &mut W,
    ) -> io::Result<()>
    where
        W: io::Write,
    {
        match *self {
            Field::DataMember(ref data) => data.dot_attributes(ctx, out),
            Field::Bitfields(BitfieldUnit {
                layout,
                ref bitfields,
                ..
            }) => {
                writeln!(
                    out,
                    r#"<tr>
                              <td>bitfield unit</td>
                              <td>
                                <table border="0">
                                  <tr>
                                    <td>unit.size</td><td>{}</td>
                                  </tr>
                                  <tr>
                                    <td>unit.align</td><td>{}</td>
                                  </tr>
                         "#,
                    layout.size, layout.align
                )?;
                for bf in bitfields {
                    bf.dot_attributes(ctx, out)?;
                }
                writeln!(out, "</table></td></tr>")
            }
        }
    }
}

impl DotAttributes for FieldData {
    fn dot_attributes<W>(
        &self,
        _ctx: &BindgenContext,
        out: &mut W,
    ) -> io::Result<()>
    where
        W: io::Write,
    {
        writeln!(
            out,
            "<tr><td>{}</td><td>{:?}</td></tr>",
            self.name().unwrap_or("(anonymous)"),
            self.ty()
        )
    }
}

impl DotAttributes for Bitfield {
    fn dot_attributes<W>(
        &self,
        _ctx: &BindgenContext,
        out: &mut W,
    ) -> io::Result<()>
    where
        W: io::Write,
    {
        writeln!(
            out,
            "<tr><td>{} : {}</td><td>{:?}</td></tr>",
            self.name().unwrap_or("(anonymous)"),
            self.width(),
            self.ty()
        )
    }
}

/// A logical bitfield within some physical bitfield allocation unit.
#[derive(Debug)]
pub struct Bitfield {
    /// Index of the bit within this bitfield's allocation unit where this
    /// bitfield's bits begin.
    offset_into_unit: usize,

    /// The field data for this bitfield.
    data: FieldData,

    /// Name of the generated Rust getter for this bitfield.
    ///
    /// Should be assigned before codegen.
    getter_name: Option<String>,

    /// Name of the generated Rust setter for this bitfield.
    ///
    /// Should be assigned before codegen.
    setter_name: Option<String>,
}

impl Bitfield {
    /// Construct a new bitfield.
    fn new(offset_into_unit: usize, raw: RawField) -> Bitfield {
        assert!(raw.bitfield_width().is_some());

        Bitfield {
            offset_into_unit,
            data: raw.0,
            getter_name: None,
            setter_name: None,
        }
    }

    /// Get the index of the bit within this bitfield's allocation unit where
    /// this bitfield begins.
    pub fn offset_into_unit(&self) -> usize {
        self.offset_into_unit
    }

    /// Get the mask value that when &'ed with this bitfield's allocation unit
    /// produces this bitfield's value.
    pub fn mask(&self) -> u64 {
        use std::u64;

        let unoffseted_mask =
            if self.width() as u64 == mem::size_of::<u64>() as u64 * 8 {
                u64::MAX
            } else {
                (1u64 << self.width()) - 1u64
            };

        unoffseted_mask << self.offset_into_unit()
    }

    /// Get the bit width of this bitfield.
    pub fn width(&self) -> u32 {
        self.data.bitfield_width().unwrap()
    }

    /// Name of the generated Rust getter for this bitfield.
    ///
    /// Panics if called before assigning bitfield accessor names or if
    /// this bitfield have no name.
    pub fn getter_name(&self) -> &str {
        assert!(
            self.name().is_some(),
            "`Bitfield::getter_name` called on anonymous field"
        );
        self.getter_name.as_ref().expect(
            "`Bitfield::getter_name` should only be called after\
             assigning bitfield accessor names",
        )
    }

    /// Name of the generated Rust setter for this bitfield.
    ///
    /// Panics if called before assigning bitfield accessor names or if
    /// this bitfield have no name.
    pub fn setter_name(&self) -> &str {
        assert!(
            self.name().is_some(),
            "`Bitfield::setter_name` called on anonymous field"
        );
        self.setter_name.as_ref().expect(
            "`Bitfield::setter_name` should only be called\
             after assigning bitfield accessor names",
        )
    }
}

impl FieldMethods for Bitfield {
    fn name(&self) -> Option<&str> {
        self.data.name()
    }

    fn ty(&self) -> TypeId {
        self.data.ty()
    }

    fn comment(&self) -> Option<&str> {
        self.data.comment()
    }

    fn bitfield_width(&self) -> Option<u32> {
        self.data.bitfield_width()
    }

    fn is_mutable(&self) -> bool {
        self.data.is_mutable()
    }

    fn annotations(&self) -> &Annotations {
        self.data.annotations()
    }

    fn offset(&self) -> Option<usize> {
        self.data.offset()
    }
}

/// A raw field might be either of a plain data member or a bitfield within a
/// bitfield allocation unit, but we haven't processed it and determined which
/// yet (which would involve allocating it into a bitfield unit if it is a
/// bitfield).
#[derive(Debug)]
struct RawField(FieldData);

impl RawField {
    /// Construct a new `RawField`.
    fn new(
        name: Option<String>,
        ty: TypeId,
        comment: Option<String>,
        annotations: Option<Annotations>,
        bitfield_width: Option<u32>,
        mutable: bool,
        offset: Option<usize>,
    ) -> RawField {
        RawField(FieldData {
            name,
            ty,
            comment,
            annotations: annotations.unwrap_or_default(),
            bitfield_width,
            mutable,
            offset,
        })
    }
}

impl FieldMethods for RawField {
    fn name(&self) -> Option<&str> {
        self.0.name()
    }

    fn ty(&self) -> TypeId {
        self.0.ty()
    }

    fn comment(&self) -> Option<&str> {
        self.0.comment()
    }

    fn bitfield_width(&self) -> Option<u32> {
        self.0.bitfield_width()
    }

    fn is_mutable(&self) -> bool {
        self.0.is_mutable()
    }

    fn annotations(&self) -> &Annotations {
        self.0.annotations()
    }

    fn offset(&self) -> Option<usize> {
        self.0.offset()
    }
}

/// Convert the given ordered set of raw fields into a list of either plain data
/// members, and/or bitfield units containing multiple bitfields.
///
/// If we do not have the layout for a bitfield's type, then we can't reliably
/// compute its allocation unit. In such cases, we return an error.
fn raw_fields_to_fields_and_bitfield_units<I>(
    ctx: &BindgenContext,
    raw_fields: I,
    packed: bool,
) -> Result<(Vec<Field>, bool), ()>
where
    I: IntoIterator<Item = RawField>,
{
    let mut raw_fields = raw_fields.into_iter().fuse().peekable();
    let mut fields = vec![];
    let mut bitfield_unit_count = 0;

    loop {
        // While we have plain old data members, just keep adding them to our
        // resulting fields. We introduce a scope here so that we can use
        // `raw_fields` again after the `by_ref` iterator adaptor is dropped.
        {
            let non_bitfields = raw_fields
                .by_ref()
                .peeking_take_while(|f| f.bitfield_width().is_none())
                .map(|f| Field::DataMember(f.0));
            fields.extend(non_bitfields);
        }

        // Now gather all the consecutive bitfields. Only consecutive bitfields
        // may potentially share a bitfield allocation unit with each other in
        // the Itanium C++ ABI.
        let mut bitfields = raw_fields
            .by_ref()
            .peeking_take_while(|f| f.bitfield_width().is_some())
            .peekable();

        if bitfields.peek().is_none() {
            break;
        }

        bitfields_to_allocation_units(
            ctx,
            &mut bitfield_unit_count,
            &mut fields,
            bitfields,
            packed,
        )?;
    }

    assert!(
        raw_fields.next().is_none(),
        "The above loop should consume all items in `raw_fields`"
    );

    Ok((fields, bitfield_unit_count != 0))
}

/// Given a set of contiguous raw bitfields, group and allocate them into
/// (potentially multiple) bitfield units.
fn bitfields_to_allocation_units<E, I>(
    ctx: &BindgenContext,
    bitfield_unit_count: &mut usize,
    fields: &mut E,
    raw_bitfields: I,
    packed: bool,
) -> Result<(), ()>
where
    E: Extend<Field>,
    I: IntoIterator<Item = RawField>,
{
    assert!(ctx.collected_typerefs());

    // NOTE: What follows is reverse-engineered from LLVM's
    // lib/AST/RecordLayoutBuilder.cpp
    //
    // FIXME(emilio): There are some differences between Microsoft and the
    // Itanium ABI, but we'll ignore those and stick to Itanium for now.
    //
    // Also, we need to handle packed bitfields and stuff.
    //
    // TODO(emilio): Take into account C++'s wide bitfields, and
    // packing, sigh.

    fn flush_allocation_unit<E>(
        fields: &mut E,
        bitfield_unit_count: &mut usize,
        unit_size_in_bits: usize,
        unit_align_in_bits: usize,
        bitfields: Vec<Bitfield>,
        packed: bool,
    ) where
        E: Extend<Field>,
    {
        *bitfield_unit_count += 1;
        let align = if packed {
            1
        } else {
            bytes_from_bits_pow2(unit_align_in_bits)
        };
        let size = align_to(unit_size_in_bits, align * 8) / 8;
        let layout = Layout::new(size, align);
        fields.extend(Some(Field::Bitfields(BitfieldUnit {
            nth: *bitfield_unit_count,
            layout,
            bitfields,
        })));
    }

    let mut max_align = 0;
    let mut unfilled_bits_in_unit = 0;
    let mut unit_size_in_bits = 0;
    let mut unit_align = 0;
    let mut bitfields_in_unit = vec![];

    // TODO(emilio): Determine this from attributes or pragma ms_struct
    // directives. Also, perhaps we should check if the target is MSVC?
    const is_ms_struct: bool = false;

    for bitfield in raw_bitfields {
        let bitfield_width = bitfield.bitfield_width().unwrap() as usize;
        let bitfield_layout =
            ctx.resolve_type(bitfield.ty()).layout(ctx).ok_or(())?;
        let bitfield_size = bitfield_layout.size;
        let bitfield_align = bitfield_layout.align;

        let mut offset = unit_size_in_bits;
        if !packed {
            if is_ms_struct {
                if unit_size_in_bits != 0 &&
                    (bitfield_width == 0 ||
                        bitfield_width > unfilled_bits_in_unit)
                {
                    // We've reached the end of this allocation unit, so flush it
                    // and its bitfields.
                    unit_size_in_bits =
                        align_to(unit_size_in_bits, unit_align * 8);
                    flush_allocation_unit(
                        fields,
                        bitfield_unit_count,
                        unit_size_in_bits,
                        unit_align,
                        mem::replace(&mut bitfields_in_unit, vec![]),
                        packed,
                    );

                    // Now we're working on a fresh bitfield allocation unit, so reset
                    // the current unit size and alignment.
                    offset = 0;
                    unit_align = 0;
                }
            } else {
                if offset != 0 &&
                    (bitfield_width == 0 ||
                        (offset & (bitfield_align * 8 - 1)) +
                            bitfield_width >
                            bitfield_size * 8)
                {
                    offset = align_to(offset, bitfield_align * 8);
                }
            }
        }

        // According to the x86[-64] ABI spec: "Unnamed bit-fields’ types do not
        // affect the alignment of a structure or union". This makes sense: such
        // bit-fields are only used for padding, and we can't perform an
        // un-aligned read of something we can't read because we can't even name
        // it.
        if bitfield.name().is_some() {
            max_align = cmp::max(max_align, bitfield_align);

            // NB: The `bitfield_width` here is completely, absolutely
            // intentional.  Alignment of the allocation unit is based on the
            // maximum bitfield width, not (directly) on the bitfields' types'
            // alignment.
            unit_align = cmp::max(unit_align, bitfield_width);
        }

        // Always keep all bitfields around. While unnamed bitifields are used
        // for padding (and usually not needed hereafter), large unnamed
        // bitfields over their types size cause weird allocation size behavior from clang.
        // Therefore, all bitfields needed to be kept around in order to check for this
        // and make the struct opaque in this case
        bitfields_in_unit.push(Bitfield::new(offset, bitfield));

        unit_size_in_bits = offset + bitfield_width;

        // Compute what the physical unit's final size would be given what we
        // have seen so far, and use that to compute how many bits are still
        // available in the unit.
        let data_size = align_to(unit_size_in_bits, bitfield_align * 8);
        unfilled_bits_in_unit = data_size - unit_size_in_bits;
    }

    if unit_size_in_bits != 0 {
        // Flush the last allocation unit and its bitfields.
        flush_allocation_unit(
            fields,
            bitfield_unit_count,
            unit_size_in_bits,
            unit_align,
            bitfields_in_unit,
            packed,
        );
    }

    Ok(())
}

/// A compound structure's fields are initially raw, and have bitfields that
/// have not been grouped into allocation units. During this time, the fields
/// are mutable and we build them up during parsing.
///
/// Then, once resolving typerefs is completed, we compute all structs' fields'
/// bitfield allocation units, and they remain frozen and immutable forever
/// after.
#[derive(Debug)]
enum CompFields {
    BeforeComputingBitfieldUnits(Vec<RawField>),
    AfterComputingBitfieldUnits {
        fields: Vec<Field>,
        has_bitfield_units: bool,
    },
    ErrorComputingBitfieldUnits,
}

impl Default for CompFields {
    fn default() -> CompFields {
        CompFields::BeforeComputingBitfieldUnits(vec![])
    }
}

impl CompFields {
    fn append_raw_field(&mut self, raw: RawField) {
        match *self {
            CompFields::BeforeComputingBitfieldUnits(ref mut raws) => {
                raws.push(raw);
            }
            _ => {
                panic!(
                    "Must not append new fields after computing bitfield allocation units"
                );
            }
        }
    }

    fn compute_bitfield_units(&mut self, ctx: &BindgenContext, packed: bool) {
        let raws = match *self {
            CompFields::BeforeComputingBitfieldUnits(ref mut raws) => {
                mem::replace(raws, vec![])
            }
            _ => {
                panic!("Already computed bitfield units");
            }
        };

        let result = raw_fields_to_fields_and_bitfield_units(ctx, raws, packed);

        match result {
            Ok((fields, has_bitfield_units)) => {
                mem::replace(
                    self,
                    CompFields::AfterComputingBitfieldUnits {
                        fields,
                        has_bitfield_units,
                    },
                );
            }
            Err(()) => {
                mem::replace(self, CompFields::ErrorComputingBitfieldUnits);
            }
        }
    }

    fn deanonymize_fields(&mut self, ctx: &BindgenContext, methods: &[Method]) {
        let fields = match *self {
            CompFields::AfterComputingBitfieldUnits {
                ref mut fields, ..
            } => fields,
            // Nothing to do here.
            CompFields::ErrorComputingBitfieldUnits => return,
            CompFields::BeforeComputingBitfieldUnits(_) => {
                panic!("Not yet computed bitfield units.");
            }
        };

        fn has_method(
            methods: &[Method],
            ctx: &BindgenContext,
            name: &str,
        ) -> bool {
            methods.iter().any(|method| {
                let method_name = ctx.resolve_func(method.signature()).name();
                method_name == name || ctx.rust_mangle(&method_name) == name
            })
        }

        struct AccessorNamesPair {
            getter: String,
            setter: String,
        }

        let mut accessor_names: HashMap<String, AccessorNamesPair> = fields
            .iter()
            .flat_map(|field| match *field {
                Field::Bitfields(ref bu) => &*bu.bitfields,
                Field::DataMember(_) => &[],
            })
            .filter_map(|bitfield| bitfield.name())
            .map(|bitfield_name| {
                let bitfield_name = bitfield_name.to_string();
                let getter = {
                    let mut getter =
                        ctx.rust_mangle(&bitfield_name).to_string();
                    if has_method(methods, ctx, &getter) {
                        getter.push_str("_bindgen_bitfield");
                    }
                    getter
                };
                let setter = {
                    let setter = format!("set_{}", bitfield_name);
                    let mut setter = ctx.rust_mangle(&setter).to_string();
                    if has_method(methods, ctx, &setter) {
                        setter.push_str("_bindgen_bitfield");
                    }
                    setter
                };
                (bitfield_name, AccessorNamesPair { getter, setter })
            })
            .collect();

        let mut anon_field_counter = 0;
        for field in fields.iter_mut() {
            match *field {
                Field::DataMember(FieldData { ref mut name, .. }) => {
                    if let Some(_) = *name {
                        continue;
                    }

                    anon_field_counter += 1;
                    let generated_name =
                        format!("__bindgen_anon_{}", anon_field_counter);
                    *name = Some(generated_name);
                }
                Field::Bitfields(ref mut bu) => {
                    for bitfield in &mut bu.bitfields {
                        if bitfield.name().is_none() {
                            continue;
                        }

                        if let Some(AccessorNamesPair { getter, setter }) =
                            accessor_names.remove(bitfield.name().unwrap())
                        {
                            bitfield.getter_name = Some(getter);
                            bitfield.setter_name = Some(setter);
                        }
                    }
                }
            }
        }
    }
}

impl Trace for CompFields {
    type Extra = ();

    fn trace<T>(&self, context: &BindgenContext, tracer: &mut T, _: &())
    where
        T: Tracer,
    {
        match *self {
            CompFields::ErrorComputingBitfieldUnits => {}
            CompFields::BeforeComputingBitfieldUnits(ref fields) => {
                for f in fields {
                    tracer.visit_kind(f.ty().into(), EdgeKind::Field);
                }
            }
            CompFields::AfterComputingBitfieldUnits { ref fields, .. } => {
                for f in fields {
                    f.trace(context, tracer, &());
                }
            }
        }
    }
}

/// Common data shared across different field types.
#[derive(Clone, Debug)]
pub struct FieldData {
    /// The name of the field, empty if it's an unnamed bitfield width.
    name: Option<String>,

    /// The inner type.
    ty: TypeId,

    /// The doc comment on the field if any.
    comment: Option<String>,

    /// Annotations for this field, or the default.
    annotations: Annotations,

    /// If this field is a bitfield, and how many bits does it contain if it is.
    bitfield_width: Option<u32>,

    /// If the C++ field is marked as `mutable`
    mutable: bool,

    /// The offset of the field (in bits)
    offset: Option<usize>,
}

impl FieldMethods for FieldData {
    fn name(&self) -> Option<&str> {
        self.name.as_ref().map(|n| &**n)
    }

    fn ty(&self) -> TypeId {
        self.ty
    }

    fn comment(&self) -> Option<&str> {
        self.comment.as_ref().map(|c| &**c)
    }

    fn bitfield_width(&self) -> Option<u32> {
        self.bitfield_width
    }

    fn is_mutable(&self) -> bool {
        self.mutable
    }

    fn annotations(&self) -> &Annotations {
        &self.annotations
    }

    fn offset(&self) -> Option<usize> {
        self.offset
    }
}

/// The kind of inheritance a base class is using.
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum BaseKind {
    /// Normal inheritance, like:
    ///
    /// ```cpp
    /// class A : public B {};
    /// ```
    Normal,
    /// Virtual inheritance, like:
    ///
    /// ```cpp
    /// class A: public virtual B {};
    /// ```
    Virtual,
}

/// A base class.
#[derive(Clone, Debug)]
pub struct Base {
    /// The type of this base class.
    pub ty: TypeId,
    /// The kind of inheritance we're doing.
    pub kind: BaseKind,
    /// Name of the field in which this base should be stored.
    pub field_name: String,
}

impl Base {
    /// Whether this base class is inheriting virtually.
    pub fn is_virtual(&self) -> bool {
        self.kind == BaseKind::Virtual
    }

    /// Whether this base class should have it's own field for storage.
    pub fn requires_storage(&self, ctx: &BindgenContext) -> bool {
        // Virtual bases are already taken into account by the vtable
        // pointer.
        //
        // FIXME(emilio): Is this always right?
        if self.is_virtual() {
            return false;
        }

        // NB: We won't include zero-sized types in our base chain because they
        // would contribute to our size given the dummy field we insert for
        // zero-sized types.
        if self.ty.is_zero_sized(ctx) {
            return false;
        }

        true
    }
}

/// A compound type.
///
/// Either a struct or union, a compound type is built up from the combination
/// of fields which also are associated with their own (potentially compound)
/// type.
#[derive(Debug)]
pub struct CompInfo {
    /// Whether this is a struct or a union.
    kind: CompKind,

    /// The members of this struct or union.
    fields: CompFields,

    /// The abstract template parameters of this class. Note that these are NOT
    /// concrete template arguments, and should always be a
    /// `Type(TypeKind::TypeParam(name))`. For concrete template arguments, see
    /// `TypeKind::TemplateInstantiation`.
    template_params: Vec<TypeId>,

    /// The method declarations inside this class, if in C++ mode.
    methods: Vec<Method>,

    /// The different constructors this struct or class contains.
    constructors: Vec<FunctionId>,

    /// The destructor of this type. The bool represents whether this destructor
    /// is virtual.
    destructor: Option<(MethodKind, FunctionId)>,

    /// Vector of classes this one inherits from.
    base_members: Vec<Base>,

    /// The inner types that were declared inside this class, in something like:
    ///
    /// class Foo {
    ///     typedef int FooTy;
    ///     struct Bar {
    ///         int baz;
    ///     };
    /// }
    ///
    /// static Foo::Bar const = {3};
    inner_types: Vec<TypeId>,

    /// Set of static constants declared inside this class.
    inner_vars: Vec<VarId>,

    /// Whether this type should generate an vtable (TODO: Should be able to
    /// look at the virtual methods and ditch this field).
    has_own_virtual_method: bool,

    /// Whether this type has destructor.
    has_destructor: bool,

    /// Whether this type has a base type with more than one member.
    ///
    /// TODO: We should be able to compute this.
    has_nonempty_base: bool,

    /// If this type has a template parameter which is not a type (e.g.: a
    /// size_t)
    has_non_type_template_params: bool,

    /// Whether we saw `__attribute__((packed))` on or within this type.
    packed_attr: bool,

    /// Used to know if we've found an opaque attribute that could cause us to
    /// generate a type with invalid layout. This is explicitly used to avoid us
    /// generating bad alignments when parsing types like max_align_t.
    ///
    /// It's not clear what the behavior should be here, if generating the item
    /// and pray, or behave as an opaque type.
    found_unknown_attr: bool,

    /// Used to indicate when a struct has been forward declared. Usually used
    /// in headers so that APIs can't modify them directly.
    is_forward_declaration: bool,
}

impl CompInfo {
    /// Construct a new compound type.
    pub fn new(kind: CompKind) -> Self {
        CompInfo {
            kind,
            fields: CompFields::default(),
            template_params: vec![],
            methods: vec![],
            constructors: vec![],
            destructor: None,
            base_members: vec![],
            inner_types: vec![],
            inner_vars: vec![],
            has_own_virtual_method: false,
            has_destructor: false,
            has_nonempty_base: false,
            has_non_type_template_params: false,
            packed_attr: false,
            found_unknown_attr: false,
            is_forward_declaration: false,
        }
    }

    /// Compute the layout of this type.
    ///
    /// This is called as a fallback under some circumstances where LLVM doesn't
    /// give us the correct layout.
    ///
    /// If we're a union without known layout, we try to compute it from our
    /// members. This is not ideal, but clang fails to report the size for these
    /// kind of unions, see test/headers/template_union.hpp
    pub fn layout(&self, ctx: &BindgenContext) -> Option<Layout> {
        // We can't do better than clang here, sorry.
        if self.kind == CompKind::Struct {
            return None;
        }

        // By definition, we don't have the right layout information here if
        // we're a forward declaration.
        if self.is_forward_declaration() {
            return None;
        }

        // empty union case
        if self.fields().is_empty() {
            return None;
        }

        let mut max_size = 0;
        // Don't allow align(0)
        let mut max_align = 1;
        for field in self.fields() {
            let field_layout = field.layout(ctx);

            if let Some(layout) = field_layout {
                max_size = cmp::max(max_size, layout.size);
                max_align = cmp::max(max_align, layout.align);
            }
        }

        Some(Layout::new(max_size, max_align))
    }

    /// Get this type's set of fields.
    pub fn fields(&self) -> &[Field] {
        match self.fields {
            CompFields::ErrorComputingBitfieldUnits => &[],
            CompFields::AfterComputingBitfieldUnits { ref fields, .. } => {
                fields
            }
            CompFields::BeforeComputingBitfieldUnits(_) => {
                panic!("Should always have computed bitfield units first");
            }
        }
    }

    fn has_bitfields(&self) -> bool {
        match self.fields {
            CompFields::ErrorComputingBitfieldUnits => false,
            CompFields::AfterComputingBitfieldUnits {
                has_bitfield_units,
                ..
            } => has_bitfield_units,
            CompFields::BeforeComputingBitfieldUnits(_) => {
                panic!("Should always have computed bitfield units first");
            }
        }
    }

    /// Returns whether we have a too large bitfield unit, in which case we may
    /// not be able to derive some of the things we should be able to normally
    /// derive.
    pub fn has_too_large_bitfield_unit(&self) -> bool {
        if !self.has_bitfields() {
            return false;
        }
        self.fields().iter().any(|field| match *field {
            Field::DataMember(..) => false,
            Field::Bitfields(ref unit) => {
                unit.layout.size > RUST_DERIVE_IN_ARRAY_LIMIT
            }
        })
    }

    /// Does this type have any template parameters that aren't types
    /// (e.g. int)?
    pub fn has_non_type_template_params(&self) -> bool {
        self.has_non_type_template_params
    }

    /// Do we see a virtual function during parsing?
    /// Get the has_own_virtual_method boolean.
    pub fn has_own_virtual_method(&self) -> bool {
        self.has_own_virtual_method
    }

    /// Did we see a destructor when parsing this type?
    pub fn has_own_destructor(&self) -> bool {
        self.has_destructor
    }

    /// Get this type's set of methods.
    pub fn methods(&self) -> &[Method] {
        &self.methods
    }

    /// Get this type's set of constructors.
    pub fn constructors(&self) -> &[FunctionId] {
        &self.constructors
    }

    /// Get this type's destructor.
    pub fn destructor(&self) -> Option<(MethodKind, FunctionId)> {
        self.destructor
    }

    /// What kind of compound type is this?
    pub fn kind(&self) -> CompKind {
        self.kind
    }

    /// Is this a union?
    pub fn is_union(&self) -> bool {
        self.kind() == CompKind::Union
    }

    /// The set of types that this one inherits from.
    pub fn base_members(&self) -> &[Base] {
        &self.base_members
    }

    /// Construct a new compound type from a Clang type.
    pub fn from_ty(
        potential_id: ItemId,
        ty: &clang::Type,
        location: Option<clang::Cursor>,
        ctx: &mut BindgenContext,
    ) -> Result<Self, ParseError> {
        use clang_sys::*;
        assert!(
            ty.template_args().is_none(),
            "We handle template instantiations elsewhere"
        );

        let mut cursor = ty.declaration();
        let mut kind = Self::kind_from_cursor(&cursor);
        if kind.is_err() {
            if let Some(location) = location {
                kind = Self::kind_from_cursor(&location);
                cursor = location;
            }
        }

        let kind = kind?;

        debug!("CompInfo::from_ty({:?}, {:?})", kind, cursor);

        let mut ci = CompInfo::new(kind);
        ci.is_forward_declaration =
            location.map_or(true, |cur| match cur.kind() {
                CXCursor_StructDecl | CXCursor_UnionDecl |
                CXCursor_ClassDecl => !cur.is_definition(),
                _ => false,
            });

        let mut maybe_anonymous_struct_field = None;
        cursor.visit(|cur| {
            if cur.kind() != CXCursor_FieldDecl {
                if let Some((ty, clang_ty, offset)) =
                    maybe_anonymous_struct_field.take()
                {
                    if cur.kind() == CXCursor_TypedefDecl &&
                        cur.typedef_type().unwrap().canonical_type() ==
                            clang_ty
                    {
                        // Typedefs of anonymous structs appear later in the ast
                        // than the struct itself, that would otherwise be an
                        // anonymous field. Detect that case here, and do
                        // nothing.
                    } else {
                        let field = RawField::new(
                            None, ty, None, None, None, false, offset,
                        );
                        ci.fields.append_raw_field(field);
                    }
                }
            }

            match cur.kind() {
                CXCursor_FieldDecl => {
                    if let Some((ty, clang_ty, offset)) =
                        maybe_anonymous_struct_field.take()
                    {
                        let mut used = false;
                        cur.visit(|child| {
                            if child.cur_type() == clang_ty {
                                used = true;
                            }
                            CXChildVisit_Continue
                        });
                        if !used {
                            let field = RawField::new(
                                None, ty, None, None, None, false, offset,
                            );
                            ci.fields.append_raw_field(field);
                        }
                    }

                    let bit_width = cur.bit_width();
                    let field_type = Item::from_ty_or_ref(
                        cur.cur_type(),
                        cur,
                        Some(potential_id),
                        ctx,
                    );

                    let comment = cur.raw_comment();
                    let annotations = Annotations::new(&cur);
                    let name = cur.spelling();
                    let is_mutable = cursor.is_mutable_field();
                    let offset = cur.offset_of_field().ok();

                    // Name can be empty if there are bitfields, for example,
                    // see tests/headers/struct_with_bitfields.h
                    assert!(
                        !name.is_empty() || bit_width.is_some(),
                        "Empty field name?"
                    );

                    let name = if name.is_empty() { None } else { Some(name) };

                    let field = RawField::new(
                        name,
                        field_type,
                        comment,
                        annotations,
                        bit_width,
                        is_mutable,
                        offset,
                    );
                    ci.fields.append_raw_field(field);

                    // No we look for things like attributes and stuff.
                    cur.visit(|cur| {
                        if cur.kind() == CXCursor_UnexposedAttr {
                            ci.found_unknown_attr = true;
                        }
                        CXChildVisit_Continue
                    });
                }
                CXCursor_UnexposedAttr => {
                    ci.found_unknown_attr = true;
                }
                CXCursor_EnumDecl |
                CXCursor_TypeAliasDecl |
                CXCursor_TypeAliasTemplateDecl |
                CXCursor_TypedefDecl |
                CXCursor_StructDecl |
                CXCursor_UnionDecl |
                CXCursor_ClassTemplate |
                CXCursor_ClassDecl => {
                    // We can find non-semantic children here, clang uses a
                    // StructDecl to note incomplete structs that haven't been
                    // forward-declared before, see [1].
                    //
                    // Also, clang seems to scope struct definitions inside
                    // unions, and other named struct definitions inside other
                    // structs to the whole translation unit.
                    //
                    // Let's just assume that if the cursor we've found is a
                    // definition, it's a valid inner type.
                    //
                    // [1]: https://github.com/rust-lang/rust-bindgen/issues/482
                    let is_inner_struct =
                        cur.semantic_parent() == cursor || cur.is_definition();
                    if !is_inner_struct {
                        return CXChildVisit_Continue;
                    }

                    // Even if this is a definition, we may not be the semantic
                    // parent, see #1281.
                    let inner = Item::parse(cur, Some(potential_id), ctx)
                        .expect("Inner ClassDecl");

                    let inner = inner.expect_type_id(ctx);

                    ci.inner_types.push(inner);

                    // A declaration of an union or a struct without name could
                    // also be an unnamed field, unfortunately.
                    if cur.spelling().is_empty() &&
                        cur.kind() != CXCursor_EnumDecl
                    {
                        let ty = cur.cur_type();
                        let offset = cur.offset_of_field().ok();
                        maybe_anonymous_struct_field =
                            Some((inner, ty, offset));
                    }
                }
                CXCursor_PackedAttr => {
                    ci.packed_attr = true;
                }
                CXCursor_TemplateTypeParameter => {
                    let param = Item::type_param(None, cur, ctx).expect(
                        "Item::type_param should't fail when pointing \
                         at a TemplateTypeParameter",
                    );
                    ci.template_params.push(param);
                }
                CXCursor_CXXBaseSpecifier => {
                    let is_virtual_base = cur.is_virtual_base();
                    ci.has_own_virtual_method |= is_virtual_base;

                    let kind = if is_virtual_base {
                        BaseKind::Virtual
                    } else {
                        BaseKind::Normal
                    };

                    let field_name = match ci.base_members.len() {
                        0 => "_base".into(),
                        n => format!("_base_{}", n),
                    };
                    let type_id =
                        Item::from_ty_or_ref(cur.cur_type(), cur, None, ctx);
                    ci.base_members.push(Base {
                        ty: type_id,
                        kind: kind,
                        field_name: field_name,
                    });
                }
                CXCursor_Constructor | CXCursor_Destructor |
                CXCursor_CXXMethod => {
                    let is_virtual = cur.method_is_virtual();
                    let is_static = cur.method_is_static();
                    debug_assert!(!(is_static && is_virtual), "How?");

                    ci.has_destructor |= cur.kind() == CXCursor_Destructor;
                    ci.has_own_virtual_method |= is_virtual;

                    // This used to not be here, but then I tried generating
                    // stylo bindings with this (without path filters), and
                    // cried a lot with a method in gfx/Point.h
                    // (ToUnknownPoint), that somehow was causing the same type
                    // to be inserted in the map two times.
                    //
                    // I couldn't make a reduced test case, but anyway...
                    // Methods of template functions not only used to be inlined,
                    // but also instantiated, and we wouldn't be able to call
                    // them, so just bail out.
                    if !ci.template_params.is_empty() {
                        return CXChildVisit_Continue;
                    }

                    // NB: This gets us an owned `Function`, not a
                    // `FunctionSig`.
                    let signature =
                        match Item::parse(cur, Some(potential_id), ctx) {
                            Ok(item)
                                if ctx
                                    .resolve_item(item)
                                    .kind()
                                    .is_function() =>
                            {
                                item
                            }
                            _ => return CXChildVisit_Continue,
                        };

                    let signature = signature.expect_function_id(ctx);

                    match cur.kind() {
                        CXCursor_Constructor => {
                            ci.constructors.push(signature);
                        }
                        CXCursor_Destructor => {
                            let kind = if is_virtual {
                                MethodKind::VirtualDestructor {
                                    pure_virtual: cur.method_is_pure_virtual(),
                                }
                            } else {
                                MethodKind::Destructor
                            };
                            ci.destructor = Some((kind, signature));
                        }
                        CXCursor_CXXMethod => {
                            let is_const = cur.method_is_const();
                            let method_kind = if is_static {
                                MethodKind::Static
                            } else if is_virtual {
                                MethodKind::Virtual {
                                    pure_virtual: cur.method_is_pure_virtual(),
                                }
                            } else {
                                MethodKind::Normal
                            };

                            let method =
                                Method::new(method_kind, signature, is_const);

                            ci.methods.push(method);
                        }
                        _ => unreachable!("How can we see this here?"),
                    }
                }
                CXCursor_NonTypeTemplateParameter => {
                    ci.has_non_type_template_params = true;
                }
                CXCursor_VarDecl => {
                    let linkage = cur.linkage();
                    if linkage != CXLinkage_External &&
                        linkage != CXLinkage_UniqueExternal
                    {
                        return CXChildVisit_Continue;
                    }

                    let visibility = cur.visibility();
                    if visibility != CXVisibility_Default {
                        return CXChildVisit_Continue;
                    }

                    if let Ok(item) = Item::parse(cur, Some(potential_id), ctx)
                    {
                        ci.inner_vars.push(item.as_var_id_unchecked());
                    }
                }
                // Intentionally not handled
                CXCursor_CXXAccessSpecifier |
                CXCursor_CXXFinalAttr |
                CXCursor_FunctionTemplate |
                CXCursor_ConversionFunction => {}
                _ => {
                    warn!(
                        "unhandled comp member `{}` (kind {:?}) in `{}` ({})",
                        cur.spelling(),
                        clang::kind_to_str(cur.kind()),
                        cursor.spelling(),
                        cur.location()
                    );
                }
            }
            CXChildVisit_Continue
        });

        if let Some((ty, _, offset)) = maybe_anonymous_struct_field {
            let field =
                RawField::new(None, ty, None, None, None, false, offset);
            ci.fields.append_raw_field(field);
        }

        Ok(ci)
    }

    fn kind_from_cursor(
        cursor: &clang::Cursor,
    ) -> Result<CompKind, ParseError> {
        use clang_sys::*;
        Ok(match cursor.kind() {
            CXCursor_UnionDecl => CompKind::Union,
            CXCursor_ClassDecl | CXCursor_StructDecl => CompKind::Struct,
            CXCursor_CXXBaseSpecifier |
            CXCursor_ClassTemplatePartialSpecialization |
            CXCursor_ClassTemplate => match cursor.template_kind() {
                CXCursor_UnionDecl => CompKind::Union,
                _ => CompKind::Struct,
            },
            _ => {
                warn!("Unknown kind for comp type: {:?}", cursor);
                return Err(ParseError::Continue);
            }
        })
    }

    /// Get the set of types that were declared within this compound type
    /// (e.g. nested class definitions).
    pub fn inner_types(&self) -> &[TypeId] {
        &self.inner_types
    }

    /// Get the set of static variables declared within this compound type.
    pub fn inner_vars(&self) -> &[VarId] {
        &self.inner_vars
    }

    /// Have we found a field with an opaque type that could potentially mess up
    /// the layout of this compound type?
    pub fn found_unknown_attr(&self) -> bool {
        self.found_unknown_attr
    }

    /// Is this compound type packed?
    pub fn is_packed(
        &self,
        ctx: &BindgenContext,
        layout: &Option<Layout>,
    ) -> bool {
        if self.packed_attr {
            return true;
        }

        // Even though `libclang` doesn't expose `#pragma packed(...)`, we can
        // detect it through its effects.
        if let Some(ref parent_layout) = *layout {
            if self.fields().iter().any(|f| match *f {
                Field::Bitfields(ref unit) => {
                    unit.layout().align > parent_layout.align
                }
                Field::DataMember(ref data) => {
                    let field_ty = ctx.resolve_type(data.ty());
                    field_ty.layout(ctx).map_or(false, |field_ty_layout| {
                        field_ty_layout.align > parent_layout.align
                    })
                }
            }) {
                info!("Found a struct that was defined within `#pragma packed(...)`");
                return true;
            } else if self.has_own_virtual_method {
                if parent_layout.align == 1 {
                    return true;
                }
            }
        }

        false
    }

    /// Returns true if compound type has been forward declared
    pub fn is_forward_declaration(&self) -> bool {
        self.is_forward_declaration
    }

    /// Compute this compound structure's bitfield allocation units.
    pub fn compute_bitfield_units(&mut self, ctx: &BindgenContext) {
        // TODO(emilio): If we could detect #pragma packed here we'd fix layout
        // tests in divide-by-zero-in-struct-layout.rs
        self.fields.compute_bitfield_units(ctx, self.packed_attr)
    }

    /// Assign for each anonymous field a generated name.
    pub fn deanonymize_fields(&mut self, ctx: &BindgenContext) {
        self.fields.deanonymize_fields(ctx, &self.methods);
    }

    /// Returns whether the current union can be represented as a Rust `union`
    ///
    /// Requirements:
    ///     1. Current RustTarget allows for `untagged_union`
    ///     2. Each field can derive `Copy`
    pub fn can_be_rust_union(&self, ctx: &BindgenContext) -> bool {
        if !ctx.options().rust_features().untagged_union {
            return false;
        }

        if self.is_forward_declaration() {
            return false;
        }

        self.fields().iter().all(|f| match *f {
            Field::DataMember(ref field_data) => {
                field_data.ty().can_derive_copy(ctx)
            }
            Field::Bitfields(_) => true,
        })
    }
}

impl DotAttributes for CompInfo {
    fn dot_attributes<W>(
        &self,
        ctx: &BindgenContext,
        out: &mut W,
    ) -> io::Result<()>
    where
        W: io::Write,
    {
        writeln!(out, "<tr><td>CompKind</td><td>{:?}</td></tr>", self.kind)?;

        if self.has_own_virtual_method {
            writeln!(out, "<tr><td>has_vtable</td><td>true</td></tr>")?;
        }

        if self.has_destructor {
            writeln!(out, "<tr><td>has_destructor</td><td>true</td></tr>")?;
        }

        if self.has_nonempty_base {
            writeln!(out, "<tr><td>has_nonempty_base</td><td>true</td></tr>")?;
        }

        if self.has_non_type_template_params {
            writeln!(
                out,
                "<tr><td>has_non_type_template_params</td><td>true</td></tr>"
            )?;
        }

        if self.packed_attr {
            writeln!(out, "<tr><td>packed_attr</td><td>true</td></tr>")?;
        }

        if self.is_forward_declaration {
            writeln!(
                out,
                "<tr><td>is_forward_declaration</td><td>true</td></tr>"
            )?;
        }

        if !self.fields().is_empty() {
            writeln!(out, r#"<tr><td>fields</td><td><table border="0">"#)?;
            for field in self.fields() {
                field.dot_attributes(ctx, out)?;
            }
            writeln!(out, "</table></td></tr>")?;
        }

        Ok(())
    }
}

impl IsOpaque for CompInfo {
    type Extra = Option<Layout>;

    fn is_opaque(&self, ctx: &BindgenContext, layout: &Option<Layout>) -> bool {
        if self.has_non_type_template_params {
            return true;
        }

        // When we do not have the layout for a bitfield's type (for example, it
        // is a type parameter), then we can't compute bitfield units. We are
        // left with no choice but to make the whole struct opaque, or else we
        // might generate structs with incorrect sizes and alignments.
        if let CompFields::ErrorComputingBitfieldUnits = self.fields {
            return true;
        }

        // Bitfields with a width that is larger than their unit's width have
        // some strange things going on, and the best we can do is make the
        // whole struct opaque.
        if self.fields().iter().any(|f| match *f {
            Field::DataMember(_) => false,
            Field::Bitfields(ref unit) => unit.bitfields().iter().any(|bf| {
                let bitfield_layout = ctx
                    .resolve_type(bf.ty())
                    .layout(ctx)
                    .expect("Bitfield without layout? Gah!");
                bf.width() / 8 > bitfield_layout.size as u32
            }),
        }) {
            return true;
        }

        if !ctx.options().rust_features().repr_packed_n {
            // If we don't have `#[repr(packed(N)]`, the best we can
            // do is make this struct opaque.
            //
            // See https://github.com/rust-lang/rust-bindgen/issues/537 and
            // https://github.com/rust-lang/rust/issues/33158
            if self.is_packed(ctx, layout) &&
                layout.map_or(false, |l| l.align > 1)
            {
                warn!("Found a type that is both packed and aligned to greater than \
                       1; Rust before version 1.33 doesn't have `#[repr(packed(N))]`, so we \
                       are treating it as opaque. You may wish to set bindgen's rust target \
                       version to 1.33 or later to enable `#[repr(packed(N))]` support.");
                return true;
            }
        }

        false
    }
}

impl TemplateParameters for CompInfo {
    fn self_template_params(&self, _ctx: &BindgenContext) -> Vec<TypeId> {
        self.template_params.clone()
    }
}

impl Trace for CompInfo {
    type Extra = Item;

    fn trace<T>(&self, context: &BindgenContext, tracer: &mut T, item: &Item)
    where
        T: Tracer,
    {
        for p in item.all_template_params(context) {
            tracer.visit_kind(p.into(), EdgeKind::TemplateParameterDefinition);
        }

        for ty in self.inner_types() {
            tracer.visit_kind(ty.into(), EdgeKind::InnerType);
        }

        for &var in self.inner_vars() {
            tracer.visit_kind(var.into(), EdgeKind::InnerVar);
        }

        for method in self.methods() {
            tracer.visit_kind(method.signature.into(), EdgeKind::Method);
        }

        if let Some((_kind, signature)) = self.destructor() {
            tracer.visit_kind(signature.into(), EdgeKind::Destructor);
        }

        for ctor in self.constructors() {
            tracer.visit_kind(ctor.into(), EdgeKind::Constructor);
        }

        // Base members and fields are not generated for opaque types (but all
        // of the above things are) so stop here.
        if item.is_opaque(context, &()) {
            return;
        }

        for base in self.base_members() {
            tracer.visit_kind(base.ty.into(), EdgeKind::BaseMember);
        }

        self.fields.trace(context, tracer, &());
    }
}