DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (03b97487f359)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: sw=2 ts=2 et lcs=trail\:.,tab\:>~ :
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "mozilla/ArrayUtils.h"

#include "mozStorageSQLFunctions.h"
#include "nsTArray.h"
#include "nsUnicharUtils.h"
#include <algorithm>

namespace mozilla {
namespace storage {

////////////////////////////////////////////////////////////////////////////////
//// Local Helper Functions

namespace {

/**
 * Performs the LIKE comparison of a string against a pattern.  For more detail
 * see http://www.sqlite.org/lang_expr.html#like.
 *
 * @param aPatternItr
 *        An iterator at the start of the pattern to check for.
 * @param aPatternEnd
 *        An iterator at the end of the pattern to check for.
 * @param aStringItr
 *        An iterator at the start of the string to check for the pattern.
 * @param aStringEnd
 *        An iterator at the end of the string to check for the pattern.
 * @param aEscapeChar
 *        The character to use for escaping symbols in the pattern.
 * @return 1 if the pattern is found, 0 otherwise.
 */
int likeCompare(nsAString::const_iterator aPatternItr,
                nsAString::const_iterator aPatternEnd,
                nsAString::const_iterator aStringItr,
                nsAString::const_iterator aStringEnd, char16_t aEscapeChar) {
  const char16_t MATCH_ALL('%');
  const char16_t MATCH_ONE('_');

  bool lastWasEscape = false;
  while (aPatternItr != aPatternEnd) {
    /**
     * What we do in here is take a look at each character from the input
     * pattern, and do something with it.  There are 4 possibilities:
     * 1) character is an un-escaped match-all character
     * 2) character is an un-escaped match-one character
     * 3) character is an un-escaped escape character
     * 4) character is not any of the above
     */
    if (!lastWasEscape && *aPatternItr == MATCH_ALL) {
      // CASE 1
      /**
       * Now we need to skip any MATCH_ALL or MATCH_ONE characters that follow a
       * MATCH_ALL character.  For each MATCH_ONE character, skip one character
       * in the pattern string.
       */
      while (*aPatternItr == MATCH_ALL || *aPatternItr == MATCH_ONE) {
        if (*aPatternItr == MATCH_ONE) {
          // If we've hit the end of the string we are testing, no match
          if (aStringItr == aStringEnd) return 0;
          aStringItr++;
        }
        aPatternItr++;
      }

      // If we've hit the end of the pattern string, match
      if (aPatternItr == aPatternEnd) return 1;

      while (aStringItr != aStringEnd) {
        if (likeCompare(aPatternItr, aPatternEnd, aStringItr, aStringEnd,
                        aEscapeChar)) {
          // we've hit a match, so indicate this
          return 1;
        }
        aStringItr++;
      }

      // No match
      return 0;
    } else if (!lastWasEscape && *aPatternItr == MATCH_ONE) {
      // CASE 2
      if (aStringItr == aStringEnd) {
        // If we've hit the end of the string we are testing, no match
        return 0;
      }
      aStringItr++;
      lastWasEscape = false;
    } else if (!lastWasEscape && *aPatternItr == aEscapeChar) {
      // CASE 3
      lastWasEscape = true;
    } else {
      // CASE 4
      if (::ToUpperCase(*aStringItr) != ::ToUpperCase(*aPatternItr)) {
        // If we've hit a point where the strings don't match, there is no match
        return 0;
      }
      aStringItr++;
      lastWasEscape = false;
    }

    aPatternItr++;
  }

  return aStringItr == aStringEnd;
}

/**
 * Compute the Levenshtein Edit Distance between two strings.
 *
 * @param aStringS
 *        a string
 * @param aStringT
 *        another string
 * @param _result
 *        an outparam that will receive the edit distance between the arguments
 * @return a Sqlite result code, e.g. SQLITE_OK, SQLITE_NOMEM, etc.
 */
int levenshteinDistance(const nsAString& aStringS, const nsAString& aStringT,
                        int* _result) {
  // Set the result to a non-sensical value in case we encounter an error.
  *_result = -1;

  const uint32_t sLen = aStringS.Length();
  const uint32_t tLen = aStringT.Length();

  if (sLen == 0) {
    *_result = tLen;
    return SQLITE_OK;
  }
  if (tLen == 0) {
    *_result = sLen;
    return SQLITE_OK;
  }

  // Notionally, Levenshtein Distance is computed in a matrix.  If we
  // assume s = "span" and t = "spam", the matrix would look like this:
  //    s -->
  //  t          s   p   a   n
  //  |      0   1   2   3   4
  //  V  s   1   *   *   *   *
  //     p   2   *   *   *   *
  //     a   3   *   *   *   *
  //     m   4   *   *   *   *
  //
  // Note that the row width is sLen + 1 and the column height is tLen + 1,
  // where sLen is the length of the string "s" and tLen is the length of "t".
  // The first row and the first column are initialized as shown, and
  // the algorithm computes the remaining cells row-by-row, and
  // left-to-right within each row.  The computation only requires that
  // we be able to see the current row and the previous one.

  // Allocate memory for two rows.
  AutoTArray<int, nsAutoString::kStorageSize> row1;
  AutoTArray<int, nsAutoString::kStorageSize> row2;

  // Declare the raw pointers that will actually be used to access the memory.
  int* prevRow = row1.AppendElements(sLen + 1);
  int* currRow = row2.AppendElements(sLen + 1);

  // Initialize the first row.
  for (uint32_t i = 0; i <= sLen; i++) prevRow[i] = i;

  const char16_t* s = aStringS.BeginReading();
  const char16_t* t = aStringT.BeginReading();

  // Compute the empty cells in the "matrix" row-by-row, starting with
  // the second row.
  for (uint32_t ti = 1; ti <= tLen; ti++) {
    // Initialize the first cell in this row.
    currRow[0] = ti;

    // Get the character from "t" that corresponds to this row.
    const char16_t tch = t[ti - 1];

    // Compute the remaining cells in this row, left-to-right,
    // starting at the second column (and first character of "s").
    for (uint32_t si = 1; si <= sLen; si++) {
      // Get the character from "s" that corresponds to this column,
      // compare it to the t-character, and compute the "cost".
      const char16_t sch = s[si - 1];
      int cost = (sch == tch) ? 0 : 1;

      // ............ We want to calculate the value of cell "d" from
      // ...ab....... the previously calculated (or initialized) cells
      // ...cd....... "a", "b", and "c", where d = min(a', b', c').
      // ............
      int aPrime = prevRow[si - 1] + cost;
      int bPrime = prevRow[si] + 1;
      int cPrime = currRow[si - 1] + 1;
      currRow[si] = std::min(aPrime, std::min(bPrime, cPrime));
    }

    // Advance to the next row.  The current row becomes the previous
    // row and we recycle the old previous row as the new current row.
    // We don't need to re-initialize the new current row since we will
    // rewrite all of its cells anyway.
    int* oldPrevRow = prevRow;
    prevRow = currRow;
    currRow = oldPrevRow;
  }

  // The final result is the value of the last cell in the last row.
  // Note that that's now in the "previous" row, since we just swapped them.
  *_result = prevRow[sLen];
  return SQLITE_OK;
}

// This struct is used only by registerFunctions below, but ISO C++98 forbids
// instantiating a template dependent on a locally-defined type.  Boo-urns!
struct Functions {
  const char* zName;
  int nArg;
  int enc;
  void* pContext;
  void (*xFunc)(::sqlite3_context*, int, sqlite3_value**);
};

}  // namespace

////////////////////////////////////////////////////////////////////////////////
//// Exposed Functions

int registerFunctions(sqlite3* aDB) {
  Functions functions[] = {
      {"lower", 1, SQLITE_UTF16, 0, caseFunction},
      {"lower", 1, SQLITE_UTF8, 0, caseFunction},
      {"upper", 1, SQLITE_UTF16, (void*)1, caseFunction},
      {"upper", 1, SQLITE_UTF8, (void*)1, caseFunction},

      {"like", 2, SQLITE_UTF16, 0, likeFunction},
      {"like", 2, SQLITE_UTF8, 0, likeFunction},
      {"like", 3, SQLITE_UTF16, 0, likeFunction},
      {"like", 3, SQLITE_UTF8, 0, likeFunction},

      {"levenshteinDistance", 2, SQLITE_UTF16, 0, levenshteinDistanceFunction},
      {"levenshteinDistance", 2, SQLITE_UTF8, 0, levenshteinDistanceFunction},

      {"utf16Length", 1, SQLITE_UTF16, 0, utf16LengthFunction},
      {"utf16Length", 1, SQLITE_UTF8, 0, utf16LengthFunction},
  };

  int rv = SQLITE_OK;
  for (size_t i = 0; SQLITE_OK == rv && i < ArrayLength(functions); ++i) {
    struct Functions* p = &functions[i];
    rv = ::sqlite3_create_function(aDB, p->zName, p->nArg, p->enc, p->pContext,
                                   p->xFunc, nullptr, nullptr);
  }

  return rv;
}

////////////////////////////////////////////////////////////////////////////////
//// SQL Functions

void caseFunction(sqlite3_context* aCtx, int aArgc, sqlite3_value** aArgv) {
  NS_ASSERTION(1 == aArgc, "Invalid number of arguments!");

  const char16_t* value =
      static_cast<const char16_t*>(::sqlite3_value_text16(aArgv[0]));
  nsAutoString data(value,
                    ::sqlite3_value_bytes16(aArgv[0]) / sizeof(char16_t));
  bool toUpper = ::sqlite3_user_data(aCtx) ? true : false;

  if (toUpper)
    ::ToUpperCase(data);
  else
    ::ToLowerCase(data);

  // Set the result.
  ::sqlite3_result_text16(aCtx, data.get(), data.Length() * sizeof(char16_t),
                          SQLITE_TRANSIENT);
}

/**
 * This implements the like() SQL function.  This is used by the LIKE operator.
 * The SQL statement 'A LIKE B' is implemented as 'like(B, A)', and if there is
 * an escape character, say E, it is implemented as 'like(B, A, E)'.
 */
void likeFunction(sqlite3_context* aCtx, int aArgc, sqlite3_value** aArgv) {
  NS_ASSERTION(2 == aArgc || 3 == aArgc, "Invalid number of arguments!");

  if (::sqlite3_value_bytes(aArgv[0]) > SQLITE_MAX_LIKE_PATTERN_LENGTH) {
    ::sqlite3_result_error(aCtx, "LIKE or GLOB pattern too complex",
                           SQLITE_TOOBIG);
    return;
  }

  if (!::sqlite3_value_text16(aArgv[0]) || !::sqlite3_value_text16(aArgv[1]))
    return;

  const char16_t* a =
      static_cast<const char16_t*>(::sqlite3_value_text16(aArgv[1]));
  int aLen = ::sqlite3_value_bytes16(aArgv[1]) / sizeof(char16_t);
  nsDependentString A(a, aLen);

  const char16_t* b =
      static_cast<const char16_t*>(::sqlite3_value_text16(aArgv[0]));
  int bLen = ::sqlite3_value_bytes16(aArgv[0]) / sizeof(char16_t);
  nsDependentString B(b, bLen);
  NS_ASSERTION(!B.IsEmpty(), "LIKE string must not be null!");

  char16_t E = 0;
  if (3 == aArgc)
    E = static_cast<const char16_t*>(::sqlite3_value_text16(aArgv[2]))[0];

  nsAString::const_iterator itrString, endString;
  A.BeginReading(itrString);
  A.EndReading(endString);
  nsAString::const_iterator itrPattern, endPattern;
  B.BeginReading(itrPattern);
  B.EndReading(endPattern);
  ::sqlite3_result_int(
      aCtx, likeCompare(itrPattern, endPattern, itrString, endString, E));
}

void levenshteinDistanceFunction(sqlite3_context* aCtx, int aArgc,
                                 sqlite3_value** aArgv) {
  NS_ASSERTION(2 == aArgc, "Invalid number of arguments!");

  // If either argument is a SQL NULL, then return SQL NULL.
  if (::sqlite3_value_type(aArgv[0]) == SQLITE_NULL ||
      ::sqlite3_value_type(aArgv[1]) == SQLITE_NULL) {
    ::sqlite3_result_null(aCtx);
    return;
  }

  const char16_t* a =
      static_cast<const char16_t*>(::sqlite3_value_text16(aArgv[0]));
  int aLen = ::sqlite3_value_bytes16(aArgv[0]) / sizeof(char16_t);

  const char16_t* b =
      static_cast<const char16_t*>(::sqlite3_value_text16(aArgv[1]));
  int bLen = ::sqlite3_value_bytes16(aArgv[1]) / sizeof(char16_t);

  // Compute the Levenshtein Distance, and return the result (or error).
  int distance = -1;
  const nsDependentString A(a, aLen);
  const nsDependentString B(b, bLen);
  int status = levenshteinDistance(A, B, &distance);
  if (status == SQLITE_OK) {
    ::sqlite3_result_int(aCtx, distance);
  } else if (status == SQLITE_NOMEM) {
    ::sqlite3_result_error_nomem(aCtx);
  } else {
    ::sqlite3_result_error(aCtx, "User function returned error code", -1);
  }
}

void utf16LengthFunction(sqlite3_context* aCtx, int aArgc,
                         sqlite3_value** aArgv) {
  NS_ASSERTION(1 == aArgc, "Invalid number of arguments!");

  int len = ::sqlite3_value_bytes16(aArgv[0]) / sizeof(char16_t);

  // Set the result.
  ::sqlite3_result_int(aCtx, len);
}

}  // namespace storage
}  // namespace mozilla