DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (34f0ef06edfe)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "CTSerialization.h"
#include "CTUtils.h"

#include <stdint.h>
#include <type_traits>

namespace mozilla {
namespace ct {

using namespace mozilla::pkix;

typedef mozilla::pkix::Result Result;

// Note: length is always specified in bytes.
// Signed Certificate Timestamp (SCT) Version length
static const size_t kVersionLength = 1;

// Members of a V1 SCT
static const size_t kLogIdLength = 32;
static const size_t kTimestampLength = 8;
static const size_t kExtensionsLengthBytes = 2;
static const size_t kHashAlgorithmLength = 1;
static const size_t kSigAlgorithmLength = 1;
static const size_t kSignatureLengthBytes = 2;

// Members of the digitally-signed struct of a V1 SCT
static const size_t kSignatureTypeLength = 1;
static const size_t kLogEntryTypeLength = 2;
static const size_t kAsn1CertificateLengthBytes = 3;
static const size_t kTbsCertificateLengthBytes = 3;

static const size_t kSCTListLengthBytes = 2;
static const size_t kSerializedSCTLengthBytes = 2;

// Members of digitally-signed struct of a STH
static const size_t kTreeSizeLength = 8;

// Length of sha256RootHash buffer of SignedTreeHead
static const size_t kSthRootHashLength = 32;

enum class SignatureType {
  CertificateTimestamp = 0,
  TreeHash = 1,
};

// Reads a TLS-encoded variable length unsigned integer from |in|.
// The integer is expected to be in big-endian order, which is used by TLS.
// Note: does not check if the output parameter overflows while reading.
// |length| indicates the size (in bytes) of the serialized integer.
static Result UncheckedReadUint(size_t length, Reader& in, uint64_t& out) {
  uint64_t result = 0;
  for (size_t i = 0; i < length; ++i) {
    uint8_t value;
    Result rv = in.Read(value);
    if (rv != Success) {
      return rv;
    }
    result = (result << 8) | value;
  }
  out = result;
  return Success;
}

// Performs overflow sanity checks and calls UncheckedReadUint.
template <size_t length, typename T>
Result ReadUint(Reader& in, T& out) {
  uint64_t value;
  static_assert(std::is_unsigned<T>::value, "T must be unsigned");
  static_assert(length <= 8, "At most 8 byte integers can be read");
  static_assert(sizeof(T) >= length, "T must be able to hold <length> bytes");
  Result rv = UncheckedReadUint(length, in, value);
  if (rv != Success) {
    return rv;
  }
  out = static_cast<T>(value);
  return Success;
}

// Reads |length| bytes from |in|.
static Result ReadFixedBytes(size_t length, Reader& in, Input& out) {
  return in.Skip(length, out);
}

// Reads a length-prefixed variable amount of bytes from |in|, updating |out|
// on success. |prefixLength| indicates the number of bytes needed to represent
// the length.
template <size_t prefixLength>
Result ReadVariableBytes(Reader& in, Input& out) {
  size_t length;
  Result rv = ReadUint<prefixLength>(in, length);
  if (rv != Success) {
    return rv;
  }
  return ReadFixedBytes(length, in, out);
}

// Reads a serialized hash algorithm.
static Result ReadHashAlgorithm(Reader& in,
                                DigitallySigned::HashAlgorithm& out) {
  unsigned int value;
  Result rv = ReadUint<kHashAlgorithmLength>(in, value);
  if (rv != Success) {
    return rv;
  }
  DigitallySigned::HashAlgorithm algo =
      static_cast<DigitallySigned::HashAlgorithm>(value);
  switch (algo) {
    case DigitallySigned::HashAlgorithm::None:
    case DigitallySigned::HashAlgorithm::MD5:
    case DigitallySigned::HashAlgorithm::SHA1:
    case DigitallySigned::HashAlgorithm::SHA224:
    case DigitallySigned::HashAlgorithm::SHA256:
    case DigitallySigned::HashAlgorithm::SHA384:
    case DigitallySigned::HashAlgorithm::SHA512:
      out = algo;
      return Success;
  }
  return Result::ERROR_BAD_DER;
}

// Reads a serialized signature algorithm.
static Result ReadSignatureAlgorithm(Reader& in,
                                     DigitallySigned::SignatureAlgorithm& out) {
  unsigned int value;
  Result rv = ReadUint<kSigAlgorithmLength>(in, value);
  if (rv != Success) {
    return rv;
  }
  DigitallySigned::SignatureAlgorithm algo =
      static_cast<DigitallySigned::SignatureAlgorithm>(value);
  switch (algo) {
    case DigitallySigned::SignatureAlgorithm::Anonymous:
    case DigitallySigned::SignatureAlgorithm::RSA:
    case DigitallySigned::SignatureAlgorithm::DSA:
    case DigitallySigned::SignatureAlgorithm::ECDSA:
      out = algo;
      return Success;
  }
  return Result::ERROR_BAD_DER;
}

// Reads a serialized version enum.
static Result ReadVersion(Reader& in,
                          SignedCertificateTimestamp::Version& out) {
  unsigned int value;
  Result rv = ReadUint<kVersionLength>(in, value);
  if (rv != Success) {
    return rv;
  }
  SignedCertificateTimestamp::Version version =
      static_cast<SignedCertificateTimestamp::Version>(value);
  switch (version) {
    case SignedCertificateTimestamp::Version::V1:
      out = version;
      return Success;
  }
  return Result::ERROR_BAD_DER;
}

// Writes a TLS-encoded variable length unsigned integer to |output|.
// Note: range/overflow checks are not performed on the input parameters.
// |length| indicates the size (in bytes) of the integer to be written.
// |value| the value itself to be written.
static Result UncheckedWriteUint(size_t length, uint64_t value,
                                 Buffer& output) {
  output.reserve(length + output.size());
  for (; length > 0; --length) {
    uint8_t nextByte = (value >> ((length - 1) * 8)) & 0xFF;
    output.push_back(nextByte);
  }
  return Success;
}

// Performs sanity checks on T and calls UncheckedWriteUint.
template <size_t length, typename T>
static inline Result WriteUint(T value, Buffer& output) {
  static_assert(length <= 8, "At most 8 byte integers can be written");
  static_assert(sizeof(T) >= length, "T must be able to hold <length> bytes");
  if (std::is_signed<T>::value) {
    // We accept signed integer types assuming the actual value is non-negative.
    if (value < 0) {
      return Result::FATAL_ERROR_INVALID_ARGS;
    }
  }
  if (sizeof(T) > length) {
    // We allow the value variable to take more bytes than is written,
    // but the unwritten bytes must be zero.
    // Note: when "sizeof(T) == length" holds, "value >> (length * 8)" is
    // undefined since the shift is too big. On some compilers, this would
    // produce a warning even though the actual code is unreachable.
    if (value >> (length * 8 - 1) > 1) {
      return Result::FATAL_ERROR_INVALID_ARGS;
    }
  }
  return UncheckedWriteUint(length, static_cast<uint64_t>(value), output);
}

// Writes an array to |output| from |input|.
// Should be used in one of two cases:
// * The length of |input| has already been encoded into the |output| stream.
// * The length of |input| is fixed and the reader is expected to specify that
// length when reading.
// If the length of |input| is dynamic and data is expected to follow it,
// WriteVariableBytes must be used.
static void WriteEncodedBytes(Input input, Buffer& output) {
  output.insert(output.end(), input.UnsafeGetData(),
                input.UnsafeGetData() + input.GetLength());
}

// Same as above, but the source data is in a Buffer.
static void WriteEncodedBytes(const Buffer& source, Buffer& output) {
  output.insert(output.end(), source.begin(), source.end());
}

// A variable-length byte array is prefixed by its length when serialized.
// This writes the length prefix.
// |prefixLength| indicates the number of bytes needed to represent the length.
// |dataLength| is the length of the byte array following the prefix.
// Fails if |dataLength| is more than 2^|prefixLength| - 1.
template <size_t prefixLength>
static Result WriteVariableBytesPrefix(size_t dataLength, Buffer& output) {
  const size_t maxAllowedInputSize =
      static_cast<size_t>(((1 << (prefixLength * 8)) - 1));
  if (dataLength > maxAllowedInputSize) {
    return Result::FATAL_ERROR_INVALID_ARGS;
  }

  return WriteUint<prefixLength>(dataLength, output);
}

// Writes a variable-length array to |output|.
// |prefixLength| indicates the number of bytes needed to represent the length.
// |input| is the array itself.
// Fails if the size of |input| is more than 2^|prefixLength| - 1.
template <size_t prefixLength>
static Result WriteVariableBytes(Input input, Buffer& output) {
  Result rv = WriteVariableBytesPrefix<prefixLength>(input.GetLength(), output);
  if (rv != Success) {
    return rv;
  }
  WriteEncodedBytes(input, output);
  return Success;
}

// Same as above, but the source data is in a Buffer.
template <size_t prefixLength>
static Result WriteVariableBytes(const Buffer& source, Buffer& output) {
  Input input;
  Result rv = BufferToInput(source, input);
  if (rv != Success) {
    return rv;
  }
  return WriteVariableBytes<prefixLength>(input, output);
}

// Writes a LogEntry of type X.509 cert to |output|.
// |input| is the LogEntry containing the certificate.
static Result EncodeAsn1CertLogEntry(const LogEntry& entry, Buffer& output) {
  return WriteVariableBytes<kAsn1CertificateLengthBytes>(entry.leafCertificate,
                                                         output);
}

// Writes a LogEntry of type PreCertificate to |output|.
// |input| is the LogEntry containing the TBSCertificate and issuer key hash.
static Result EncodePrecertLogEntry(const LogEntry& entry, Buffer& output) {
  if (entry.issuerKeyHash.size() != kLogIdLength) {
    return Result::FATAL_ERROR_INVALID_ARGS;
  }
  WriteEncodedBytes(entry.issuerKeyHash, output);
  return WriteVariableBytes<kTbsCertificateLengthBytes>(entry.tbsCertificate,
                                                        output);
}

Result EncodeDigitallySigned(const DigitallySigned& data, Buffer& output) {
  Result rv = WriteUint<kHashAlgorithmLength>(
      static_cast<unsigned int>(data.hashAlgorithm), output);
  if (rv != Success) {
    return rv;
  }
  rv = WriteUint<kSigAlgorithmLength>(
      static_cast<unsigned int>(data.signatureAlgorithm), output);
  if (rv != Success) {
    return rv;
  }
  return WriteVariableBytes<kSignatureLengthBytes>(data.signatureData, output);
}

Result DecodeDigitallySigned(Reader& reader, DigitallySigned& output) {
  DigitallySigned result;

  Result rv = ReadHashAlgorithm(reader, result.hashAlgorithm);
  if (rv != Success) {
    return rv;
  }
  rv = ReadSignatureAlgorithm(reader, result.signatureAlgorithm);
  if (rv != Success) {
    return rv;
  }

  Input signatureData;
  rv = ReadVariableBytes<kSignatureLengthBytes>(reader, signatureData);
  if (rv != Success) {
    return rv;
  }
  InputToBuffer(signatureData, result.signatureData);

  output = std::move(result);
  return Success;
}

Result EncodeLogEntry(const LogEntry& entry, Buffer& output) {
  Result rv = WriteUint<kLogEntryTypeLength>(
      static_cast<unsigned int>(entry.type), output);
  if (rv != Success) {
    return rv;
  }
  switch (entry.type) {
    case LogEntry::Type::X509:
      return EncodeAsn1CertLogEntry(entry, output);
    case LogEntry::Type::Precert:
      return EncodePrecertLogEntry(entry, output);
    default:
      assert(false);
  }
  return Result::ERROR_BAD_DER;
}

static Result WriteTimeSinceEpoch(uint64_t timestamp, Buffer& output) {
  return WriteUint<kTimestampLength>(timestamp, output);
}

Result EncodeV1SCTSignedData(uint64_t timestamp, Input serializedLogEntry,
                             Input extensions, Buffer& output) {
  Result rv = WriteUint<kVersionLength>(
      static_cast<unsigned int>(SignedCertificateTimestamp::Version::V1),
      output);
  if (rv != Success) {
    return rv;
  }
  rv = WriteUint<kSignatureTypeLength>(
      static_cast<unsigned int>(SignatureType::CertificateTimestamp), output);
  if (rv != Success) {
    return rv;
  }
  rv = WriteTimeSinceEpoch(timestamp, output);
  if (rv != Success) {
    return rv;
  }
  // NOTE: serializedLogEntry must already be serialized and contain the
  // length as the prefix.
  WriteEncodedBytes(serializedLogEntry, output);
  return WriteVariableBytes<kExtensionsLengthBytes>(extensions, output);
}

Result DecodeSCTList(Input input, Reader& listReader) {
  Reader inputReader(input);
  Input listData;
  Result rv = ReadVariableBytes<kSCTListLengthBytes>(inputReader, listData);
  if (rv != Success) {
    return rv;
  }
  return listReader.Init(listData);
}

Result ReadSCTListItem(Reader& listReader, Input& output) {
  if (listReader.AtEnd()) {
    return Result::FATAL_ERROR_INVALID_ARGS;
  }

  Result rv = ReadVariableBytes<kSerializedSCTLengthBytes>(listReader, output);
  if (rv != Success) {
    return rv;
  }
  if (output.GetLength() == 0) {
    return Result::ERROR_BAD_DER;
  }
  return Success;
}

Result DecodeSignedCertificateTimestamp(Reader& reader,
                                        SignedCertificateTimestamp& output) {
  SignedCertificateTimestamp result;

  Result rv = ReadVersion(reader, result.version);
  if (rv != Success) {
    return rv;
  }

  uint64_t timestamp;
  Input logId;
  Input extensions;

  rv = ReadFixedBytes(kLogIdLength, reader, logId);
  if (rv != Success) {
    return rv;
  }
  rv = ReadUint<kTimestampLength>(reader, timestamp);
  if (rv != Success) {
    return rv;
  }
  rv = ReadVariableBytes<kExtensionsLengthBytes>(reader, extensions);
  if (rv != Success) {
    return rv;
  }
  rv = DecodeDigitallySigned(reader, result.signature);
  if (rv != Success) {
    return rv;
  }

  InputToBuffer(logId, result.logId);
  InputToBuffer(extensions, result.extensions);
  result.timestamp = timestamp;

  output = std::move(result);
  return Success;
}

Result EncodeSCTList(const std::vector<pkix::Input>& scts, Buffer& output) {
  // Find out the total size of the SCT list to be written so we can
  // write the prefix for the list before writing its contents.
  size_t sctListLength = 0;
  for (auto& sct : scts) {
    sctListLength +=
        /* data size */ sct.GetLength() +
        /* length prefix size */ kSerializedSCTLengthBytes;
  }

  output.reserve(kSCTListLengthBytes + sctListLength);

  // Write the prefix for the SCT list.
  Result rv =
      WriteVariableBytesPrefix<kSCTListLengthBytes>(sctListLength, output);
  if (rv != Success) {
    return rv;
  }
  // Now write each SCT from the list.
  for (auto& sct : scts) {
    rv = WriteVariableBytes<kSerializedSCTLengthBytes>(sct, output);
    if (rv != Success) {
      return rv;
    }
  }
  return Success;
}

}  // namespace ct
}  // namespace mozilla