DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (0c050b533d10)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "CTLogVerifier.h"

#include <stdint.h>

#include "CTSerialization.h"
#include "hasht.h"
#include "mozpkix/pkixnss.h"
#include "mozpkix/pkixutil.h"

namespace mozilla {
namespace ct {

using namespace mozilla::pkix;

// A TrustDomain used to extract the SCT log signature parameters
// given its subjectPublicKeyInfo.
// Only RSASSA-PKCS1v15 with SHA-256 and ECDSA (using the NIST P-256 curve)
// with SHA-256 are allowed.
// RSA keys must be at least 2048 bits.
// See See RFC 6962, Section 2.1.4.
class SignatureParamsTrustDomain final : public TrustDomain {
 public:
  SignatureParamsTrustDomain()
      : mSignatureAlgorithm(DigitallySigned::SignatureAlgorithm::Anonymous) {}

  Result GetCertTrust(EndEntityOrCA, const CertPolicyId&, Input,
                      TrustLevel&) override {
    return Result::FATAL_ERROR_LIBRARY_FAILURE;
  }

  Result FindIssuer(Input, IssuerChecker&, Time) override {
    return Result::FATAL_ERROR_LIBRARY_FAILURE;
  }

  Result CheckRevocation(EndEntityOrCA, const CertID&, Time, Duration,
                         const Input*, const Input*) override {
    return Result::FATAL_ERROR_LIBRARY_FAILURE;
  }

  Result IsChainValid(const DERArray&, Time, const CertPolicyId&) override {
    return Result::FATAL_ERROR_LIBRARY_FAILURE;
  }

  Result DigestBuf(Input, DigestAlgorithm, uint8_t*, size_t) override {
    return Result::FATAL_ERROR_LIBRARY_FAILURE;
  }

  Result CheckSignatureDigestAlgorithm(DigestAlgorithm, EndEntityOrCA,
                                       Time) override {
    return Result::FATAL_ERROR_LIBRARY_FAILURE;
  }

  Result CheckECDSACurveIsAcceptable(EndEntityOrCA, NamedCurve curve) override {
    assert(mSignatureAlgorithm ==
           DigitallySigned::SignatureAlgorithm::Anonymous);
    if (curve != NamedCurve::secp256r1) {
      return Result::ERROR_UNSUPPORTED_ELLIPTIC_CURVE;
    }
    mSignatureAlgorithm = DigitallySigned::SignatureAlgorithm::ECDSA;
    return Success;
  }

  Result VerifyECDSASignedDigest(const SignedDigest&, Input) override {
    return Result::FATAL_ERROR_LIBRARY_FAILURE;
  }

  Result CheckRSAPublicKeyModulusSizeInBits(
      EndEntityOrCA, unsigned int modulusSizeInBits) override {
    assert(mSignatureAlgorithm ==
           DigitallySigned::SignatureAlgorithm::Anonymous);
    // Require RSA keys of at least 2048 bits. See RFC 6962, Section 2.1.4.
    if (modulusSizeInBits < 2048) {
      return Result::ERROR_INADEQUATE_KEY_SIZE;
    }
    mSignatureAlgorithm = DigitallySigned::SignatureAlgorithm::RSA;
    return Success;
  }

  Result VerifyRSAPKCS1SignedDigest(const SignedDigest&, Input) override {
    return Result::FATAL_ERROR_LIBRARY_FAILURE;
  }

  Result CheckValidityIsAcceptable(Time, Time, EndEntityOrCA,
                                   KeyPurposeId) override {
    return Result::FATAL_ERROR_LIBRARY_FAILURE;
  }

  Result NetscapeStepUpMatchesServerAuth(Time, bool&) override {
    return Result::FATAL_ERROR_LIBRARY_FAILURE;
  }

  void NoteAuxiliaryExtension(AuxiliaryExtension, Input) override {}

  DigitallySigned::SignatureAlgorithm mSignatureAlgorithm;
};

CTLogVerifier::CTLogVerifier()
    : mSignatureAlgorithm(DigitallySigned::SignatureAlgorithm::Anonymous),
      mOperatorId(-1),
      mDisqualified(false),
      mDisqualificationTime(UINT64_MAX) {}

Result CTLogVerifier::Init(Input subjectPublicKeyInfo,
                           CTLogOperatorId operatorId, CTLogStatus logStatus,
                           uint64_t disqualificationTime) {
  switch (logStatus) {
    case CTLogStatus::Included:
      mDisqualified = false;
      mDisqualificationTime = UINT64_MAX;
      break;
    case CTLogStatus::Disqualified:
      mDisqualified = true;
      mDisqualificationTime = disqualificationTime;
      break;
    case CTLogStatus::Unknown:
    default:
      assert(false);
      return Result::FATAL_ERROR_INVALID_ARGS;
  }

  SignatureParamsTrustDomain trustDomain;
  Result rv = CheckSubjectPublicKeyInfo(subjectPublicKeyInfo, trustDomain,
                                        EndEntityOrCA::MustBeEndEntity);
  if (rv != Success) {
    return rv;
  }
  mSignatureAlgorithm = trustDomain.mSignatureAlgorithm;

  InputToBuffer(subjectPublicKeyInfo, mSubjectPublicKeyInfo);

  if (mSignatureAlgorithm == DigitallySigned::SignatureAlgorithm::ECDSA) {
    SECItem spkiSECItem = {
        siBuffer, mSubjectPublicKeyInfo.data(),
        static_cast<unsigned int>(mSubjectPublicKeyInfo.size())};
    UniqueCERTSubjectPublicKeyInfo spki(
        SECKEY_DecodeDERSubjectPublicKeyInfo(&spkiSECItem));
    if (!spki) {
      return MapPRErrorCodeToResult(PR_GetError());
    }
    mPublicECKey.reset(SECKEY_ExtractPublicKey(spki.get()));
    if (!mPublicECKey) {
      return MapPRErrorCodeToResult(PR_GetError());
    }
    UniquePK11SlotInfo slot(PK11_GetInternalSlot());
    if (!slot) {
      return MapPRErrorCodeToResult(PR_GetError());
    }
    CK_OBJECT_HANDLE handle =
        PK11_ImportPublicKey(slot.get(), mPublicECKey.get(), false);
    if (handle == CK_INVALID_HANDLE) {
      return MapPRErrorCodeToResult(PR_GetError());
    }
  } else {
    mPublicECKey.reset(nullptr);
  }

  mKeyId.resize(SHA256_LENGTH);
  rv = DigestBufNSS(subjectPublicKeyInfo, DigestAlgorithm::sha256,
                    mKeyId.data(), mKeyId.size());
  if (rv != Success) {
    return rv;
  }

  mOperatorId = operatorId;
  return Success;
}

Result CTLogVerifier::Verify(const LogEntry& entry,
                             const SignedCertificateTimestamp& sct) {
  if (mKeyId.empty() || sct.logId != mKeyId) {
    return Result::FATAL_ERROR_INVALID_ARGS;
  }
  if (!SignatureParametersMatch(sct.signature)) {
    return Result::FATAL_ERROR_INVALID_ARGS;
  }

  Buffer serializedLogEntry;
  Result rv = EncodeLogEntry(entry, serializedLogEntry);
  if (rv != Success) {
    return rv;
  }

  Input logEntryInput;
  rv = BufferToInput(serializedLogEntry, logEntryInput);
  if (rv != Success) {
    return rv;
  }

  // sct.extensions may be empty.  If it is, sctExtensionsInput will remain in
  // its default state, which is valid but of length 0.
  Input sctExtensionsInput;
  if (!sct.extensions.empty()) {
    rv = sctExtensionsInput.Init(sct.extensions.data(), sct.extensions.size());
    if (rv != Success) {
      return rv;
    }
  }

  Buffer serializedData;
  rv = EncodeV1SCTSignedData(sct.timestamp, logEntryInput, sctExtensionsInput,
                             serializedData);
  if (rv != Success) {
    return rv;
  }
  return VerifySignature(serializedData, sct.signature.signatureData);
}

bool CTLogVerifier::SignatureParametersMatch(const DigitallySigned& signature) {
  return signature.SignatureParametersMatch(
      DigitallySigned::HashAlgorithm::SHA256, mSignatureAlgorithm);
}

static Result FasterVerifyECDSASignedDigestNSS(const SignedDigest& sd,
                                               UniqueSECKEYPublicKey& pubkey) {
  assert(pubkey);
  if (!pubkey) {
    return Result::FATAL_ERROR_LIBRARY_FAILURE;
  }
  // The signature is encoded as a DER SEQUENCE of two INTEGERs. PK11_Verify
  // expects the signature as only the two integers r and s (so no encoding -
  // just two series of bytes each half as long as SECKEY_SignatureLen(pubkey)).
  // DSAU_DecodeDerSigToLen converts from the former format to the latter.
  SECItem derSignatureSECItem(UnsafeMapInputToSECItem(sd.signature));
  size_t signatureLen = SECKEY_SignatureLen(pubkey.get());
  if (signatureLen == 0) {
    return MapPRErrorCodeToResult(PR_GetError());
  }
  UniqueSECItem signatureSECItem(
      DSAU_DecodeDerSigToLen(&derSignatureSECItem, signatureLen));
  if (!signatureSECItem) {
    return MapPRErrorCodeToResult(PR_GetError());
  }
  SECItem digestSECItem(UnsafeMapInputToSECItem(sd.digest));
  SECStatus srv = PK11_Verify(pubkey.get(), signatureSECItem.get(),
                              &digestSECItem, nullptr);
  if (srv != SECSuccess) {
    return MapPRErrorCodeToResult(PR_GetError());
  }

  return Success;
}

Result CTLogVerifier::VerifySignature(Input data, Input signature) {
  uint8_t digest[SHA256_LENGTH];
  Result rv = DigestBufNSS(data, DigestAlgorithm::sha256, digest,
                           MOZILLA_CT_ARRAY_LENGTH(digest));
  if (rv != Success) {
    return rv;
  }

  SignedDigest signedDigest;
  signedDigest.digestAlgorithm = DigestAlgorithm::sha256;
  rv = signedDigest.digest.Init(digest, MOZILLA_CT_ARRAY_LENGTH(digest));
  if (rv != Success) {
    return rv;
  }
  rv = signedDigest.signature.Init(signature);
  if (rv != Success) {
    return rv;
  }

  Input spki;
  rv = BufferToInput(mSubjectPublicKeyInfo, spki);
  if (rv != Success) {
    return rv;
  }

  switch (mSignatureAlgorithm) {
    case DigitallySigned::SignatureAlgorithm::RSA:
      rv = VerifyRSAPKCS1SignedDigestNSS(signedDigest, spki, nullptr);
      break;
    case DigitallySigned::SignatureAlgorithm::ECDSA:
      rv = FasterVerifyECDSASignedDigestNSS(signedDigest, mPublicECKey);
      break;
    // We do not expect new values added to this enum any time soon,
    // so just listing all the available ones seems to be the easiest way
    // to suppress warning C4061 on MSVC (which expects all values of the
    // enum to be explicitly handled).
    case DigitallySigned::SignatureAlgorithm::Anonymous:
    case DigitallySigned::SignatureAlgorithm::DSA:
    default:
      assert(false);
      return Result::FATAL_ERROR_INVALID_ARGS;
  }
  if (rv != Success) {
    if (IsFatalError(rv)) {
      return rv;
    }
    // If the error is non-fatal, we assume the signature was invalid.
    return Result::ERROR_BAD_SIGNATURE;
  }
  return Success;
}

Result CTLogVerifier::VerifySignature(const Buffer& data,
                                      const Buffer& signature) {
  Input dataInput;
  Result rv = BufferToInput(data, dataInput);
  if (rv != Success) {
    return rv;
  }
  Input signatureInput;
  rv = BufferToInput(signature, signatureInput);
  if (rv != Success) {
    return rv;
  }
  return VerifySignature(dataInput, signatureInput);
}

}  // namespace ct
}  // namespace mozilla