DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (50bba836b642)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this file,
 * You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef Utils_h
#define Utils_h

#include <pthread.h>
#include <stdint.h>
#include <stddef.h>
#include <sys/mman.h>
#include <unistd.h>
#include "mozilla/Assertions.h"
#include "mozilla/Atomics.h"
#include "mozilla/Scoped.h"

/**
 * On architectures that are little endian and that support unaligned reads,
 * we can use direct type, but on others, we want to have a special class
 * to handle conversion and alignment issues.
 */
#if !defined(DEBUG) && (defined(__i386__) || defined(__x86_64__))
typedef uint16_t le_uint16;
typedef uint32_t le_uint32;
#else

/**
 * Template that allows to find an unsigned int type from a (computed) bit size
 */
template <int s>
struct UInt {};
template <>
struct UInt<16> {
  typedef uint16_t Type;
};
template <>
struct UInt<32> {
  typedef uint32_t Type;
};

/**
 * Template to access 2 n-bit sized words as a 2*n-bit sized word, doing
 * conversion from little endian and avoiding alignment issues.
 */
template <typename T>
class le_to_cpu {
 public:
  typedef typename UInt<16 * sizeof(T)>::Type Type;

  operator Type() const { return (b << (sizeof(T) * 8)) | a; }

  const le_to_cpu& operator=(const Type& v) {
    a = v & ((1 << (sizeof(T) * 8)) - 1);
    b = v >> (sizeof(T) * 8);
    return *this;
  }

  le_to_cpu() {}
  explicit le_to_cpu(const Type& v) { operator=(v); }

  const le_to_cpu& operator+=(const Type& v) {
    return operator=(operator Type() + v);
  }

  const le_to_cpu& operator++(int) { return operator=(operator Type() + 1); }

 private:
  T a, b;
};

/**
 * Type definitions
 */
typedef le_to_cpu<unsigned char> le_uint16;
typedef le_to_cpu<le_uint16> le_uint32;
#endif

/**
 * AutoCloseFD is a RAII wrapper for POSIX file descriptors
 */
struct AutoCloseFDTraits {
  typedef int type;
  static int empty() { return -1; }
  static void release(int fd) {
    if (fd != -1) close(fd);
  }
};
typedef mozilla::Scoped<AutoCloseFDTraits> AutoCloseFD;

/**
 * AutoCloseFILE is a RAII wrapper for POSIX streams
 */
struct AutoCloseFILETraits {
  typedef FILE* type;
  static FILE* empty() { return nullptr; }
  static void release(FILE* f) {
    if (f) fclose(f);
  }
};
typedef mozilla::Scoped<AutoCloseFILETraits> AutoCloseFILE;

extern mozilla::Atomic<size_t, mozilla::ReleaseAcquire> gPageSize;

/**
 * Page alignment helpers
 */
static size_t PageSize() {
  if (!gPageSize) {
    gPageSize = sysconf(_SC_PAGESIZE);
  }

  return gPageSize;
}

static inline uintptr_t AlignedPtr(uintptr_t ptr, size_t alignment) {
  return ptr & ~(alignment - 1);
}

template <typename T>
static inline T* AlignedPtr(T* ptr, size_t alignment) {
  return reinterpret_cast<T*>(
      AlignedPtr(reinterpret_cast<uintptr_t>(ptr), alignment));
}

template <typename T>
static inline T PageAlignedPtr(T ptr) {
  return AlignedPtr(ptr, PageSize());
}

static inline uintptr_t AlignedEndPtr(uintptr_t ptr, size_t alignment) {
  return AlignedPtr(ptr + alignment - 1, alignment);
}

template <typename T>
static inline T* AlignedEndPtr(T* ptr, size_t alignment) {
  return reinterpret_cast<T*>(
      AlignedEndPtr(reinterpret_cast<uintptr_t>(ptr), alignment));
}

template <typename T>
static inline T PageAlignedEndPtr(T ptr) {
  return AlignedEndPtr(ptr, PageSize());
}

static inline size_t AlignedSize(size_t size, size_t alignment) {
  return (size + alignment - 1) & ~(alignment - 1);
}

static inline size_t PageAlignedSize(size_t size) {
  return AlignedSize(size, PageSize());
}

static inline bool IsAlignedPtr(uintptr_t ptr, size_t alignment) {
  return ptr % alignment == 0;
}

template <typename T>
static inline bool IsAlignedPtr(T* ptr, size_t alignment) {
  return IsAlignedPtr(reinterpret_cast<uintptr_t>(ptr), alignment);
}

template <typename T>
static inline bool IsPageAlignedPtr(T ptr) {
  return IsAlignedPtr(ptr, PageSize());
}

static inline bool IsAlignedSize(size_t size, size_t alignment) {
  return size % alignment == 0;
}

static inline bool IsPageAlignedSize(size_t size) {
  return IsAlignedSize(size, PageSize());
}

static inline size_t PageNumber(size_t size) {
  return (size + PageSize() - 1) / PageSize();
}

/**
 * MemoryRange stores a pointer, size pair.
 */
class MemoryRange {
 public:
  MemoryRange(void* buf, size_t length) : buf(buf), length(length) {}

  void Assign(void* b, size_t len) {
    buf = b;
    length = len;
  }

  void Assign(const MemoryRange& other) {
    buf = other.buf;
    length = other.length;
  }

  void* get() const { return buf; }

  operator void*() const { return buf; }

  operator unsigned char*() const {
    return reinterpret_cast<unsigned char*>(buf);
  }

  bool operator==(void* ptr) const { return buf == ptr; }

  bool operator==(unsigned char* ptr) const { return buf == ptr; }

  void* operator+(off_t offset) const {
    return reinterpret_cast<char*>(buf) + offset;
  }

  /**
   * Returns whether the given address is within the mapped range
   */
  bool Contains(void* ptr) const {
    return (ptr >= buf) && (ptr < reinterpret_cast<char*>(buf) + length);
  }

  /**
   * Returns the length of the mapped range
   */
  size_t GetLength() const { return length; }

  static MemoryRange mmap(void* addr, size_t length, int prot, int flags,
                          int fd, off_t offset) {
    return MemoryRange(::mmap(addr, length, prot, flags, fd, offset), length);
  }

 private:
  void* buf;
  size_t length;
};

/**
 * MappedPtr is a RAII wrapper for mmap()ed memory. It can be used as
 * a simple void * or unsigned char *.
 *
 * It is defined as a derivative of a template that allows to use a
 * different unmapping strategy.
 */
template <typename T>
class GenericMappedPtr : public MemoryRange {
 public:
  GenericMappedPtr(void* buf, size_t length) : MemoryRange(buf, length) {}
  explicit GenericMappedPtr(const MemoryRange& other) : MemoryRange(other) {}
  GenericMappedPtr() : MemoryRange(MAP_FAILED, 0) {}

  void Assign(void* b, size_t len) {
    if (get() != MAP_FAILED) static_cast<T*>(this)->munmap(get(), GetLength());
    MemoryRange::Assign(b, len);
  }

  void Assign(const MemoryRange& other) {
    Assign(other.get(), other.GetLength());
  }

  ~GenericMappedPtr() {
    if (get() != MAP_FAILED) static_cast<T*>(this)->munmap(get(), GetLength());
  }

  void release() { MemoryRange::Assign(MAP_FAILED, 0); }
};

struct MappedPtr : public GenericMappedPtr<MappedPtr> {
  MappedPtr(void* buf, size_t length)
      : GenericMappedPtr<MappedPtr>(buf, length) {}
  MOZ_IMPLICIT MappedPtr(const MemoryRange& other)
      : GenericMappedPtr<MappedPtr>(other) {}
  MappedPtr() : GenericMappedPtr<MappedPtr>() {}

 private:
  friend class GenericMappedPtr<MappedPtr>;
  void munmap(void* buf, size_t length) { ::munmap(buf, length); }
};

/**
 * UnsizedArray is a way to access raw arrays of data in memory.
 *
 *   struct S { ... };
 *   UnsizedArray<S> a(buf);
 *   UnsizedArray<S> b; b.Init(buf);
 *
 * This is roughly equivalent to
 *   const S *a = reinterpret_cast<const S *>(buf);
 *   const S *b = nullptr; b = reinterpret_cast<const S *>(buf);
 *
 * An UnsizedArray has no known length, and it's up to the caller to make
 * sure the accessed memory is mapped and makes sense.
 */
template <typename T>
class UnsizedArray {
 public:
  typedef size_t idx_t;

  /**
   * Constructors and Initializers
   */
  UnsizedArray() : contents(nullptr) {}
  explicit UnsizedArray(const void* buf)
      : contents(reinterpret_cast<const T*>(buf)) {}

  void Init(const void* buf) {
    MOZ_ASSERT(contents == nullptr);
    contents = reinterpret_cast<const T*>(buf);
  }

  /**
   * Returns the nth element of the array
   */
  const T& operator[](const idx_t index) const {
    MOZ_ASSERT(contents);
    return contents[index];
  }

  operator const T*() const { return contents; }
  /**
   * Returns whether the array points somewhere
   */
  explicit operator bool() const { return contents != nullptr; }

 private:
  const T* contents;
};

/**
 * Array, like UnsizedArray, is a way to access raw arrays of data in memory.
 * Unlike UnsizedArray, it has a known length, and is enumerable with an
 * iterator.
 *
 *   struct S { ... };
 *   Array<S> a(buf, len);
 *   UnsizedArray<S> b; b.Init(buf, len);
 *
 * In the above examples, len is the number of elements in the array. It is
 * also possible to initialize an Array with the buffer size:
 *
 *   Array<S> c; c.InitSize(buf, size);
 *
 * It is also possible to initialize an Array in two steps, only providing
 * one data at a time:
 *
 *   Array<S> d;
 *   d.Init(buf);
 *   d.Init(len); // or d.InitSize(size);
 *
 */
template <typename T>
class Array : public UnsizedArray<T> {
 public:
  typedef typename UnsizedArray<T>::idx_t idx_t;

  /**
   * Constructors and Initializers
   */
  Array() : UnsizedArray<T>(), length(0) {}
  Array(const void* buf, const idx_t length)
      : UnsizedArray<T>(buf), length(length) {}

  void Init(const void* buf) { UnsizedArray<T>::Init(buf); }

  void Init(const idx_t len) {
    MOZ_ASSERT(length == 0);
    length = len;
  }

  void InitSize(const idx_t size) { Init(size / sizeof(T)); }

  void Init(const void* buf, const idx_t len) {
    UnsizedArray<T>::Init(buf);
    Init(len);
  }

  void InitSize(const void* buf, const idx_t size) {
    UnsizedArray<T>::Init(buf);
    InitSize(size);
  }

  /**
   * Returns the nth element of the array
   */
  const T& operator[](const idx_t index) const {
    MOZ_ASSERT(index < length);
    MOZ_ASSERT(operator bool());
    return UnsizedArray<T>::operator[](index);
  }

  /**
   * Returns the number of elements in the array
   */
  idx_t numElements() const { return length; }

  /**
   * Returns whether the array points somewhere and has at least one element.
   */
  explicit operator bool() const {
    return (length > 0) && UnsizedArray<T>::operator bool();
  }

  /**
   * Iterator for an Array. Use is similar to that of STL const_iterators:
   *
   *   struct S { ... };
   *   Array<S> a(buf, len);
   *   for (Array<S>::iterator it = a.begin(); it < a.end(); ++it) {
   *     // Do something with *it.
   *   }
   */
  class iterator {
   public:
    iterator() : item(nullptr) {}

    const T& operator*() const { return *item; }

    const T* operator->() const { return item; }

    iterator& operator++() {
      ++item;
      return *this;
    }

    bool operator<(const iterator& other) const { return item < other.item; }

   protected:
    friend class Array<T>;
    explicit iterator(const T& item) : item(&item) {}

   private:
    const T* item;
  };

  /**
   * Returns an iterator pointing at the beginning of the Array
   */
  iterator begin() const {
    if (length) return iterator(UnsizedArray<T>::operator[](0));
    return iterator();
  }

  /**
   * Returns an iterator pointing past the end of the Array
   */
  iterator end() const {
    if (length) return iterator(UnsizedArray<T>::operator[](length));
    return iterator();
  }

  /**
   * Reverse iterator for an Array. Use is similar to that of STL
   * const_reverse_iterators:
   *
   *   struct S { ... };
   *   Array<S> a(buf, len);
   *   for (Array<S>::reverse_iterator it = a.rbegin(); it < a.rend(); ++it) {
   *     // Do something with *it.
   *   }
   */
  class reverse_iterator {
   public:
    reverse_iterator() : item(nullptr) {}

    const T& operator*() const {
      const T* tmp = item;
      return *--tmp;
    }

    const T* operator->() const { return &operator*(); }

    reverse_iterator& operator++() {
      --item;
      return *this;
    }

    bool operator<(const reverse_iterator& other) const {
      return item > other.item;
    }

   protected:
    friend class Array<T>;
    explicit reverse_iterator(const T& item) : item(&item) {}

   private:
    const T* item;
  };

  /**
   * Returns a reverse iterator pointing at the end of the Array
   */
  reverse_iterator rbegin() const {
    if (length) return reverse_iterator(UnsizedArray<T>::operator[](length));
    return reverse_iterator();
  }

  /**
   * Returns a reverse iterator pointing past the beginning of the Array
   */
  reverse_iterator rend() const {
    if (length) return reverse_iterator(UnsizedArray<T>::operator[](0));
    return reverse_iterator();
  }

 private:
  idx_t length;
};

/**
 * Transforms a pointer-to-function to a pointer-to-object pointing at the
 * same address.
 */
template <typename T>
void* FunctionPtr(T func) {
  union {
    void* ptr;
    T func;
  } f;
  f.func = func;
  return f.ptr;
}

class AutoLock {
 public:
  explicit AutoLock(pthread_mutex_t* mutex) : mutex(mutex) {
    if (pthread_mutex_lock(mutex)) MOZ_CRASH("pthread_mutex_lock failed");
  }
  ~AutoLock() {
    if (pthread_mutex_unlock(mutex)) MOZ_CRASH("pthread_mutex_unlock failed");
  }

 private:
  pthread_mutex_t* mutex;
};

#endif /* Utils_h */