DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (cdf352f02ac4)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
/*
 *  Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/video_coding/frame_buffer2.h"

#include <algorithm>
#include <cstring>
#include <queue>

#include "modules/video_coding/include/video_coding_defines.h"
#include "modules/video_coding/jitter_estimator.h"
#include "modules/video_coding/timing.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/trace_event.h"
#include "system_wrappers/include/clock.h"
#include "system_wrappers/include/field_trial.h"
#include "system_wrappers/include/metrics.h"

namespace webrtc {
namespace video_coding {

namespace {
// Max number of frames the buffer will hold.
constexpr int kMaxFramesBuffered = 600;

// Max number of decoded frame info that will be saved.
constexpr int kMaxFramesHistory = 50;

constexpr int64_t kLogNonDecodedIntervalMs = 5000;
}  // namespace

FrameBuffer::FrameBuffer(Clock* clock,
                         VCMJitterEstimator* jitter_estimator,
                         VCMTiming* timing,
                         VCMReceiveStatisticsCallback* stats_callback)
    : clock_(clock),
      new_continuous_frame_event_(false, false),
      jitter_estimator_(jitter_estimator),
      timing_(timing),
      inter_frame_delay_(clock_->TimeInMilliseconds()),
      last_decoded_frame_timestamp_(0),
      last_decoded_frame_it_(frames_.end()),
      last_continuous_frame_it_(frames_.end()),
      num_frames_history_(0),
      num_frames_buffered_(0),
      stopped_(false),
      protection_mode_(kProtectionNack),
      stats_callback_(stats_callback),
      last_log_non_decoded_ms_(-kLogNonDecodedIntervalMs) {}

FrameBuffer::~FrameBuffer() {}

FrameBuffer::ReturnReason FrameBuffer::NextFrame(
    int64_t max_wait_time_ms,
    std::unique_ptr<FrameObject>* frame_out,
    bool keyframe_required) {
  TRACE_EVENT0("webrtc", "FrameBuffer::NextFrame");
  int64_t latest_return_time_ms =
      clock_->TimeInMilliseconds() + max_wait_time_ms;
  int64_t wait_ms = max_wait_time_ms;
  int64_t now_ms = 0;

  do {
    now_ms = clock_->TimeInMilliseconds();
    {
      rtc::CritScope lock(&crit_);
      new_continuous_frame_event_.Reset();
      if (stopped_)
        return kStopped;

      wait_ms = max_wait_time_ms;

      // Need to hold |crit_| in order to use |frames_|, therefore we
      // set it here in the loop instead of outside the loop in order to not
      // acquire the lock unnecesserily.
      next_frame_it_ = frames_.end();

      // |frame_it| points to the first frame after the
      // |last_decoded_frame_it_|.
      auto frame_it = frames_.end();
      if (last_decoded_frame_it_ == frames_.end()) {
        frame_it = frames_.begin();
      } else {
        frame_it = last_decoded_frame_it_;
        ++frame_it;
      }

      // |continuous_end_it| points to the first frame after the
      // |last_continuous_frame_it_|.
      auto continuous_end_it = last_continuous_frame_it_;
      if (continuous_end_it != frames_.end())
        ++continuous_end_it;

      for (; frame_it != continuous_end_it && frame_it != frames_.end();
           ++frame_it) {
        if (!frame_it->second.continuous ||
            frame_it->second.num_missing_decodable > 0) {
          continue;
        }

        FrameObject* frame = frame_it->second.frame.get();

        if (keyframe_required && !frame->is_keyframe())
          continue;

        next_frame_it_ = frame_it;
        if (frame->RenderTime() == -1)
          frame->SetRenderTime(timing_->RenderTimeMs(frame->timestamp, now_ms));
        wait_ms = timing_->MaxWaitingTime(frame->RenderTime(), now_ms);

        // This will cause the frame buffer to prefer high framerate rather
        // than high resolution in the case of the decoder not decoding fast
        // enough and the stream has multiple spatial and temporal layers.
        if (wait_ms == 0)
          continue;

        break;
      }
    }  // rtc::Critscope lock(&crit_);

    wait_ms = std::min<int64_t>(wait_ms, latest_return_time_ms - now_ms);
    wait_ms = std::max<int64_t>(wait_ms, 0);
  } while (new_continuous_frame_event_.Wait(wait_ms));

  {
    rtc::CritScope lock(&crit_);
    now_ms = clock_->TimeInMilliseconds();
    if (next_frame_it_ != frames_.end()) {
      std::unique_ptr<FrameObject> frame =
          std::move(next_frame_it_->second.frame);

      if (!frame->delayed_by_retransmission()) {
        int64_t frame_delay;

        if (inter_frame_delay_.CalculateDelay(frame->timestamp, &frame_delay,
                                              frame->ReceivedTime())) {
          jitter_estimator_->UpdateEstimate(frame_delay, frame->size());
        }

        float rtt_mult = protection_mode_ == kProtectionNackFEC ? 0.0 : 1.0;
        timing_->SetJitterDelay(jitter_estimator_->GetJitterEstimate(rtt_mult));
        timing_->UpdateCurrentDelay(frame->RenderTime(), now_ms);
      } else {
        if (webrtc::field_trial::IsEnabled("WebRTC-AddRttToPlayoutDelay"))
          jitter_estimator_->FrameNacked();
      }

      // Gracefully handle bad RTP timestamps and render time issues.
      if (HasBadRenderTiming(*frame, now_ms)) {
        jitter_estimator_->Reset();
        timing_->Reset();
        frame->SetRenderTime(timing_->RenderTimeMs(frame->timestamp, now_ms));
      }

      UpdateJitterDelay();
      UpdateTimingFrameInfo();
      PropagateDecodability(next_frame_it_->second);

      // Sanity check for RTP timestamp monotonicity.
      if (last_decoded_frame_it_ != frames_.end()) {
        const FrameKey& last_decoded_frame_key = last_decoded_frame_it_->first;
        const FrameKey& frame_key = next_frame_it_->first;

        const bool frame_is_higher_spatial_layer_of_last_decoded_frame =
            last_decoded_frame_timestamp_ == frame->timestamp &&
            last_decoded_frame_key.picture_id == frame_key.picture_id &&
            last_decoded_frame_key.spatial_layer < frame_key.spatial_layer;

        if (AheadOrAt(last_decoded_frame_timestamp_, frame->timestamp) &&
            !frame_is_higher_spatial_layer_of_last_decoded_frame) {
          // TODO(brandtr): Consider clearing the entire buffer when we hit
          // these conditions.
          RTC_LOG(LS_WARNING)
              << "Frame with (timestamp:picture_id:spatial_id) ("
              << frame->timestamp << ":" << frame->picture_id << ":"
              << static_cast<int>(frame->spatial_layer) << ")"
              << " sent to decoder after frame with"
              << " (timestamp:picture_id:spatial_id) ("
              << last_decoded_frame_timestamp_ << ":"
              << last_decoded_frame_key.picture_id << ":"
              << static_cast<int>(last_decoded_frame_key.spatial_layer) << ").";
        }
      }

      AdvanceLastDecodedFrame(next_frame_it_);
      last_decoded_frame_timestamp_ = frame->timestamp;
      *frame_out = std::move(frame);
      return kFrameFound;
    }
  }

  if (latest_return_time_ms - now_ms > 0) {
    // If |next_frame_it_ == frames_.end()| and there is still time left, it
    // means that the frame buffer was cleared as the thread in this function
    // was waiting to acquire |crit_| in order to return. Wait for the
    // remaining time and then return.
    return NextFrame(latest_return_time_ms - now_ms, frame_out);
  }

  return kTimeout;
}

bool FrameBuffer::HasBadRenderTiming(const FrameObject& frame, int64_t now_ms) {
  // Assume that render timing errors are due to changes in the video stream.
  int64_t render_time_ms = frame.RenderTimeMs();
  const int64_t kMaxVideoDelayMs = 10000;
  if (render_time_ms < 0) {
    return true;
  }
  if (std::abs(render_time_ms - now_ms) > kMaxVideoDelayMs) {
    int frame_delay = static_cast<int>(std::abs(render_time_ms - now_ms));
    RTC_LOG(LS_WARNING)
        << "A frame about to be decoded is out of the configured "
        << "delay bounds (" << frame_delay << " > " << kMaxVideoDelayMs
        << "). Resetting the video jitter buffer.";
    return true;
  }
  if (static_cast<int>(timing_->TargetVideoDelay()) > kMaxVideoDelayMs) {
    RTC_LOG(LS_WARNING) << "The video target delay has grown larger than "
                        << kMaxVideoDelayMs << " ms.";
    return true;
  }
  return false;
}

void FrameBuffer::SetProtectionMode(VCMVideoProtection mode) {
  TRACE_EVENT0("webrtc", "FrameBuffer::SetProtectionMode");
  rtc::CritScope lock(&crit_);
  protection_mode_ = mode;
}

void FrameBuffer::Start() {
  TRACE_EVENT0("webrtc", "FrameBuffer::Start");
  rtc::CritScope lock(&crit_);
  stopped_ = false;
}

void FrameBuffer::Stop() {
  TRACE_EVENT0("webrtc", "FrameBuffer::Stop");
  rtc::CritScope lock(&crit_);
  stopped_ = true;
  new_continuous_frame_event_.Set();
}

void FrameBuffer::UpdateRtt(int64_t rtt_ms) {
  rtc::CritScope lock(&crit_);
  jitter_estimator_->UpdateRtt(rtt_ms);
}

bool FrameBuffer::ValidReferences(const FrameObject& frame) const {
  if (frame.picture_id < 0)
    return false;

  for (size_t i = 0; i < frame.num_references; ++i) {
    if (frame.references[i] < 0 || frame.references[i] >= frame.picture_id)
      return false;

    for (size_t j = i + 1; j < frame.num_references; ++j) {
      if (frame.references[i] == frame.references[j])
        return false;
    }
  }

  if (frame.inter_layer_predicted && frame.spatial_layer == 0)
    return false;

  return true;
}

void FrameBuffer::UpdatePlayoutDelays(const FrameObject& frame) {
  TRACE_EVENT0("webrtc", "FrameBuffer::UpdatePlayoutDelays");
  PlayoutDelay playout_delay = frame.EncodedImage().playout_delay_;
  if (playout_delay.min_ms >= 0)
    timing_->set_min_playout_delay(playout_delay.min_ms);

  if (playout_delay.max_ms >= 0)
    timing_->set_max_playout_delay(playout_delay.max_ms);
}

int FrameBuffer::InsertFrame(std::unique_ptr<FrameObject> frame) {
  TRACE_EVENT0("webrtc", "FrameBuffer::InsertFrame");
  RTC_DCHECK(frame);
  if (stats_callback_)
    stats_callback_->OnCompleteFrame(frame->is_keyframe(), frame->size(),
                                     frame->contentType());
  FrameKey key(frame->picture_id, frame->spatial_layer);

  rtc::CritScope lock(&crit_);

  int last_continuous_picture_id =
      last_continuous_frame_it_ == frames_.end()
          ? -1
          : last_continuous_frame_it_->first.picture_id;

  if (!ValidReferences(*frame)) {
    RTC_LOG(LS_WARNING) << "Frame with (picture_id:spatial_id) ("
                        << key.picture_id << ":"
                        << static_cast<int>(key.spatial_layer)
                        << ") has invalid frame references, dropping frame.";
    return last_continuous_picture_id;
  }

  if (num_frames_buffered_ >= kMaxFramesBuffered) {
    RTC_LOG(LS_WARNING) << "Frame with (picture_id:spatial_id) ("
                        << key.picture_id << ":"
                        << static_cast<int>(key.spatial_layer)
                        << ") could not be inserted due to the frame "
                        << "buffer being full, dropping frame.";
    return last_continuous_picture_id;
  }

  if (last_decoded_frame_it_ != frames_.end() &&
      key <= last_decoded_frame_it_->first) {
    if (AheadOf(frame->timestamp, last_decoded_frame_timestamp_) &&
        frame->is_keyframe()) {
      // If this frame has a newer timestamp but an earlier picture id then we
      // assume there has been a jump in the picture id due to some encoder
      // reconfiguration or some other reason. Even though this is not according
      // to spec we can still continue to decode from this frame if it is a
      // keyframe.
      RTC_LOG(LS_WARNING)
          << "A jump in picture id was detected, clearing buffer.";
      ClearFramesAndHistory();
      last_continuous_picture_id = -1;
    } else {
      RTC_LOG(LS_WARNING) << "Frame with (picture_id:spatial_id) ("
                          << key.picture_id << ":"
                          << static_cast<int>(key.spatial_layer)
                          << ") inserted after frame ("
                          << last_decoded_frame_it_->first.picture_id << ":"
                          << static_cast<int>(
                                 last_decoded_frame_it_->first.spatial_layer)
                          << ") was handed off for decoding, dropping frame.";
      return last_continuous_picture_id;
    }
  }

  // Test if inserting this frame would cause the order of the frames to become
  // ambiguous (covering more than half the interval of 2^16). This can happen
  // when the picture id make large jumps mid stream.
  if (!frames_.empty() &&
      key < frames_.begin()->first &&
      frames_.rbegin()->first < key) {
    RTC_LOG(LS_WARNING)
        << "A jump in picture id was detected, clearing buffer.";
    ClearFramesAndHistory();
    last_continuous_picture_id = -1;
  }

  auto info = frames_.insert(std::make_pair(key, FrameInfo())).first;

  if (info->second.frame) {
    RTC_LOG(LS_WARNING) << "Frame with (picture_id:spatial_id) ("
                        << key.picture_id << ":"
                        << static_cast<int>(key.spatial_layer)
                        << ") already inserted, dropping frame.";
    return last_continuous_picture_id;
  }

  if (!UpdateFrameInfoWithIncomingFrame(*frame, info))
    return last_continuous_picture_id;
  UpdatePlayoutDelays(*frame);
  info->second.frame = std::move(frame);
  ++num_frames_buffered_;

  if (info->second.num_missing_continuous == 0) {
    info->second.continuous = true;
    PropagateContinuity(info);
    last_continuous_picture_id = last_continuous_frame_it_->first.picture_id;

    // Since we now have new continuous frames there might be a better frame
    // to return from NextFrame. Signal that thread so that it again can choose
    // which frame to return.
    new_continuous_frame_event_.Set();
  }

  return last_continuous_picture_id;
}

void FrameBuffer::PropagateContinuity(FrameMap::iterator start) {
  TRACE_EVENT0("webrtc", "FrameBuffer::PropagateContinuity");
  RTC_DCHECK(start->second.continuous);
  if (last_continuous_frame_it_ == frames_.end())
    last_continuous_frame_it_ = start;

  std::queue<FrameMap::iterator> continuous_frames;
  continuous_frames.push(start);

  // A simple BFS to traverse continuous frames.
  while (!continuous_frames.empty()) {
    auto frame = continuous_frames.front();
    continuous_frames.pop();

    if (last_continuous_frame_it_->first < frame->first)
      last_continuous_frame_it_ = frame;

    // Loop through all dependent frames, and if that frame no longer has
    // any unfulfilled dependencies then that frame is continuous as well.
    for (size_t d = 0; d < frame->second.num_dependent_frames; ++d) {
      auto frame_ref = frames_.find(frame->second.dependent_frames[d]);
      RTC_DCHECK(frame_ref != frames_.end());

      // TODO(philipel): Look into why we've seen this happen.
      if (frame_ref != frames_.end()) {
        --frame_ref->second.num_missing_continuous;
        if (frame_ref->second.num_missing_continuous == 0) {
          frame_ref->second.continuous = true;
          continuous_frames.push(frame_ref);
        }
      }
    }
  }
}

void FrameBuffer::PropagateDecodability(const FrameInfo& info) {
  TRACE_EVENT0("webrtc", "FrameBuffer::PropagateDecodability");
  RTC_CHECK(info.num_dependent_frames < FrameInfo::kMaxNumDependentFrames);
  for (size_t d = 0; d < info.num_dependent_frames; ++d) {
    auto ref_info = frames_.find(info.dependent_frames[d]);
    RTC_DCHECK(ref_info != frames_.end());
    // TODO(philipel): Look into why we've seen this happen.
    if (ref_info != frames_.end()) {
      RTC_DCHECK_GT(ref_info->second.num_missing_decodable, 0U);
      --ref_info->second.num_missing_decodable;
    }
  }
}

void FrameBuffer::AdvanceLastDecodedFrame(FrameMap::iterator decoded) {
  TRACE_EVENT0("webrtc", "FrameBuffer::AdvanceLastDecodedFrame");
  if (last_decoded_frame_it_ == frames_.end()) {
    last_decoded_frame_it_ = frames_.begin();
  } else {
    RTC_DCHECK(last_decoded_frame_it_->first < decoded->first);
    ++last_decoded_frame_it_;
  }
  --num_frames_buffered_;
  ++num_frames_history_;

  // First, delete non-decoded frames from the history.
  while (last_decoded_frame_it_ != decoded) {
    if (last_decoded_frame_it_->second.frame)
      --num_frames_buffered_;
    last_decoded_frame_it_ = frames_.erase(last_decoded_frame_it_);
  }

  // Then remove old history if we have too much history saved.
  if (num_frames_history_ > kMaxFramesHistory) {
    frames_.erase(frames_.begin());
    --num_frames_history_;
  }
}

bool FrameBuffer::UpdateFrameInfoWithIncomingFrame(const FrameObject& frame,
                                                   FrameMap::iterator info) {
  TRACE_EVENT0("webrtc", "FrameBuffer::UpdateFrameInfoWithIncomingFrame");
  FrameKey key(frame.picture_id, frame.spatial_layer);
  info->second.num_missing_continuous = frame.num_references;
  info->second.num_missing_decodable = frame.num_references;

  RTC_DCHECK(last_decoded_frame_it_ == frames_.end() ||
             last_decoded_frame_it_->first < info->first);

  // Check how many dependencies that have already been fulfilled.
  for (size_t i = 0; i < frame.num_references; ++i) {
    FrameKey ref_key(frame.references[i], frame.spatial_layer);
    auto ref_info = frames_.find(ref_key);

    // Does |frame| depend on a frame earlier than the last decoded frame?
    if (last_decoded_frame_it_ != frames_.end() &&
        ref_key <= last_decoded_frame_it_->first) {
      if (ref_info == frames_.end()) {
        int64_t now_ms = clock_->TimeInMilliseconds();
        if (last_log_non_decoded_ms_ + kLogNonDecodedIntervalMs < now_ms) {
          RTC_LOG(LS_WARNING)
              << "Frame with (picture_id:spatial_id) (" << key.picture_id << ":"
              << static_cast<int>(key.spatial_layer)
              << ") depends on a non-decoded frame more previous than"
              << " the last decoded frame, dropping frame.";
          last_log_non_decoded_ms_ = now_ms;
        }
        return false;
      }

      --info->second.num_missing_continuous;
      --info->second.num_missing_decodable;
    } else {
      if (ref_info == frames_.end())
        ref_info = frames_.insert(std::make_pair(ref_key, FrameInfo())).first;

      if (ref_info->second.continuous)
        --info->second.num_missing_continuous;

      // Add backwards reference so |frame| can be updated when new
      // frames are inserted or decoded.
      ref_info->second.dependent_frames[ref_info->second.num_dependent_frames] =
          key;
      RTC_DCHECK_LT(ref_info->second.num_dependent_frames,
                    (FrameInfo::kMaxNumDependentFrames - 1));
      // TODO(philipel): Look into why this could happen and handle
      // appropriately.
      if (ref_info->second.num_dependent_frames <
          (FrameInfo::kMaxNumDependentFrames - 1)) {
        ++ref_info->second.num_dependent_frames;
      }
    }
    RTC_DCHECK_LE(ref_info->second.num_missing_continuous,
                  ref_info->second.num_missing_decodable);
  }

  // Check if we have the lower spatial layer frame.
  if (frame.inter_layer_predicted) {
    ++info->second.num_missing_continuous;
    ++info->second.num_missing_decodable;

    FrameKey ref_key(frame.picture_id, frame.spatial_layer - 1);
    // Gets or create the FrameInfo for the referenced frame.
    auto ref_info = frames_.insert(std::make_pair(ref_key, FrameInfo())).first;
    if (ref_info->second.continuous)
      --info->second.num_missing_continuous;

    if (ref_info == last_decoded_frame_it_) {
      --info->second.num_missing_decodable;
    } else {
      ref_info->second.dependent_frames[ref_info->second.num_dependent_frames] =
          key;
      ++ref_info->second.num_dependent_frames;
    }
    RTC_DCHECK_LE(ref_info->second.num_missing_continuous,
                  ref_info->second.num_missing_decodable);
  }

  RTC_DCHECK_LE(info->second.num_missing_continuous,
                info->second.num_missing_decodable);

  return true;
}

void FrameBuffer::UpdateJitterDelay() {
  TRACE_EVENT0("webrtc", "FrameBuffer::UpdateJitterDelay");
  if (!stats_callback_)
    return;

  int decode_ms;
  int max_decode_ms;
  int current_delay_ms;
  int target_delay_ms;
  int jitter_buffer_ms;
  int min_playout_delay_ms;
  int render_delay_ms;
  if (timing_->GetTimings(&decode_ms, &max_decode_ms, &current_delay_ms,
                          &target_delay_ms, &jitter_buffer_ms,
                          &min_playout_delay_ms, &render_delay_ms)) {
    stats_callback_->OnFrameBufferTimingsUpdated(
        decode_ms, max_decode_ms, current_delay_ms, target_delay_ms,
        jitter_buffer_ms, min_playout_delay_ms, render_delay_ms);
  }
}

void FrameBuffer::UpdateTimingFrameInfo() {
  TRACE_EVENT0("webrtc", "FrameBuffer::UpdateTimingFrameInfo");
  rtc::Optional<TimingFrameInfo> info = timing_->GetTimingFrameInfo();
  if (info)
    stats_callback_->OnTimingFrameInfoUpdated(*info);
}

void FrameBuffer::ClearFramesAndHistory() {
  TRACE_EVENT0("webrtc", "FrameBuffer::ClearFramesAndHistory");
  frames_.clear();
  last_decoded_frame_it_ = frames_.end();
  last_continuous_frame_it_ = frames_.end();
  next_frame_it_ = frames_.end();
  num_frames_history_ = 0;
  num_frames_buffered_ = 0;
}

}  // namespace video_coding
}  // namespace webrtc