DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (e9d6d0965bc6)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
/*
 *  Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/congestion_controller/delay_based_bwe.h"
#include "modules/congestion_controller/delay_based_bwe_unittest_helper.h"
#include "modules/pacing/paced_sender.h"
#include "rtc_base/constructormagic.h"
#include "system_wrappers/include/clock.h"
#include "test/field_trial.h"
#include "test/gtest.h"

namespace webrtc {

namespace {
constexpr int kNumProbesCluster0 = 5;
constexpr int kNumProbesCluster1 = 8;
const PacedPacketInfo kPacingInfo0(0, kNumProbesCluster0, 2000);
const PacedPacketInfo kPacingInfo1(1, kNumProbesCluster1, 4000);
constexpr float kTargetUtilizationFraction = 0.95f;
}  // namespace

TEST_F(DelayBasedBweTest, NoCrashEmptyFeedback) {
  std::vector<PacketFeedback> packet_feedback_vector;
  bitrate_estimator_->IncomingPacketFeedbackVector(packet_feedback_vector,
                                                   rtc::nullopt);
}

TEST_F(DelayBasedBweTest, NoCrashOnlyLostFeedback) {
  std::vector<PacketFeedback> packet_feedback_vector;
  packet_feedback_vector.push_back(
      PacketFeedback(-1, -1, 0, 1500, PacedPacketInfo()));
  packet_feedback_vector.push_back(
      PacketFeedback(-1, -1, 1, 1500, PacedPacketInfo()));
  bitrate_estimator_->IncomingPacketFeedbackVector(packet_feedback_vector,
                                                   rtc::nullopt);
}

TEST_F(DelayBasedBweTest, ProbeDetection) {
  int64_t now_ms = clock_.TimeInMilliseconds();
  uint16_t seq_num = 0;

  // First burst sent at 8 * 1000 / 10 = 800 kbps.
  for (int i = 0; i < kNumProbesCluster0; ++i) {
    clock_.AdvanceTimeMilliseconds(10);
    now_ms = clock_.TimeInMilliseconds();
    IncomingFeedback(now_ms, now_ms, seq_num++, 1000, kPacingInfo0);
  }
  EXPECT_TRUE(bitrate_observer_.updated());

  // Second burst sent at 8 * 1000 / 5 = 1600 kbps.
  for (int i = 0; i < kNumProbesCluster1; ++i) {
    clock_.AdvanceTimeMilliseconds(5);
    now_ms = clock_.TimeInMilliseconds();
    IncomingFeedback(now_ms, now_ms, seq_num++, 1000, kPacingInfo1);
  }

  EXPECT_TRUE(bitrate_observer_.updated());
  EXPECT_GT(bitrate_observer_.latest_bitrate(), 1500000u);
}

TEST_F(DelayBasedBweTest, ProbeDetectionNonPacedPackets) {
  int64_t now_ms = clock_.TimeInMilliseconds();
  uint16_t seq_num = 0;
  // First burst sent at 8 * 1000 / 10 = 800 kbps, but with every other packet
  // not being paced which could mess things up.
  for (int i = 0; i < kNumProbesCluster0; ++i) {
    clock_.AdvanceTimeMilliseconds(5);
    now_ms = clock_.TimeInMilliseconds();
    IncomingFeedback(now_ms, now_ms, seq_num++, 1000, kPacingInfo0);
    // Non-paced packet, arriving 5 ms after.
    clock_.AdvanceTimeMilliseconds(5);
    IncomingFeedback(now_ms, now_ms, seq_num++, 100, PacedPacketInfo());
  }

  EXPECT_TRUE(bitrate_observer_.updated());
  EXPECT_GT(bitrate_observer_.latest_bitrate(), 800000u);
}

TEST_F(DelayBasedBweTest, ProbeDetectionFasterArrival) {
  int64_t now_ms = clock_.TimeInMilliseconds();
  uint16_t seq_num = 0;
  // First burst sent at 8 * 1000 / 10 = 800 kbps.
  // Arriving at 8 * 1000 / 5 = 1600 kbps.
  int64_t send_time_ms = 0;
  for (int i = 0; i < kNumProbesCluster0; ++i) {
    clock_.AdvanceTimeMilliseconds(1);
    send_time_ms += 10;
    now_ms = clock_.TimeInMilliseconds();
    IncomingFeedback(now_ms, send_time_ms, seq_num++, 1000, kPacingInfo0);
  }

  EXPECT_FALSE(bitrate_observer_.updated());
}

TEST_F(DelayBasedBweTest, ProbeDetectionSlowerArrival) {
  int64_t now_ms = clock_.TimeInMilliseconds();
  uint16_t seq_num = 0;
  // First burst sent at 8 * 1000 / 5 = 1600 kbps.
  // Arriving at 8 * 1000 / 7 = 1142 kbps.
  // Since the receive rate is significantly below the send rate, we expect to
  // use 95% of the estimated capacity.
  int64_t send_time_ms = 0;
  for (int i = 0; i < kNumProbesCluster1; ++i) {
    clock_.AdvanceTimeMilliseconds(7);
    send_time_ms += 5;
    now_ms = clock_.TimeInMilliseconds();
    IncomingFeedback(now_ms, send_time_ms, seq_num++, 1000, kPacingInfo1);
  }

  EXPECT_TRUE(bitrate_observer_.updated());
  EXPECT_NEAR(bitrate_observer_.latest_bitrate(),
              kTargetUtilizationFraction * 1140000u, 10000u);
}

TEST_F(DelayBasedBweTest, ProbeDetectionSlowerArrivalHighBitrate) {
  int64_t now_ms = clock_.TimeInMilliseconds();
  uint16_t seq_num = 0;
  // Burst sent at 8 * 1000 / 1 = 8000 kbps.
  // Arriving at 8 * 1000 / 2 = 4000 kbps.
  // Since the receive rate is significantly below the send rate, we expect to
  // use 95% of the estimated capacity.
  int64_t send_time_ms = 0;
  for (int i = 0; i < kNumProbesCluster1; ++i) {
    clock_.AdvanceTimeMilliseconds(2);
    send_time_ms += 1;
    now_ms = clock_.TimeInMilliseconds();
    IncomingFeedback(now_ms, send_time_ms, seq_num++, 1000, kPacingInfo1);
  }

  EXPECT_TRUE(bitrate_observer_.updated());
  EXPECT_NEAR(bitrate_observer_.latest_bitrate(),
              kTargetUtilizationFraction * 4000000u, 10000u);
}

TEST_F(DelayBasedBweTest, GetExpectedBwePeriodMs) {
  int64_t default_interval_ms = bitrate_estimator_->GetExpectedBwePeriodMs();
  EXPECT_GT(default_interval_ms, 0);
  CapacityDropTestHelper(1, true, 333, 0);
  int64_t interval_ms = bitrate_estimator_->GetExpectedBwePeriodMs();
  EXPECT_GT(interval_ms, 0);
  EXPECT_NE(interval_ms, default_interval_ms);
}

TEST_F(DelayBasedBweTest, InitialBehavior) {
  InitialBehaviorTestHelper(730000);
}

TEST_F(DelayBasedBweTest, RateIncreaseReordering) {
  RateIncreaseReorderingTestHelper(730000);
}
TEST_F(DelayBasedBweTest, RateIncreaseRtpTimestamps) {
  RateIncreaseRtpTimestampsTestHelper(627);
}

TEST_F(DelayBasedBweTest, CapacityDropOneStream) {
  CapacityDropTestHelper(1, false, 300, 0);
}

TEST_F(DelayBasedBweTest, CapacityDropPosOffsetChange) {
  CapacityDropTestHelper(1, false, 867, 30000);
}

TEST_F(DelayBasedBweTest, CapacityDropNegOffsetChange) {
  CapacityDropTestHelper(1, false, 933, -30000);
}

TEST_F(DelayBasedBweTest, CapacityDropOneStreamWrap) {
  CapacityDropTestHelper(1, true, 333, 0);
}

TEST_F(DelayBasedBweTest, TestTimestampGrouping) {
  TestTimestampGroupingTestHelper();
}

TEST_F(DelayBasedBweTest, TestShortTimeoutAndWrap) {
  // Simulate a client leaving and rejoining the call after 35 seconds. This
  // will make abs send time wrap, so if streams aren't timed out properly
  // the next 30 seconds of packets will be out of order.
  TestWrappingHelper(35);
}

TEST_F(DelayBasedBweTest, TestLongTimeoutAndWrap) {
  // Simulate a client leaving and rejoining the call after some multiple of
  // 64 seconds later. This will cause a zero difference in abs send times due
  // to the wrap, but a big difference in arrival time, if streams aren't
  // properly timed out.
  TestWrappingHelper(10 * 64);
}

TEST_F(DelayBasedBweTest, TestInitialOveruse) {
  const uint32_t kStartBitrate = 300e3;
  const uint32_t kInitialCapacityBps = 200e3;
  const uint32_t kDummySsrc = 0;
  // High FPS to ensure that we send a lot of packets in a short time.
  const int kFps = 90;

  stream_generator_->AddStream(new test::RtpStream(kFps, kStartBitrate));
  stream_generator_->set_capacity_bps(kInitialCapacityBps);

  // Needed to initialize the AimdRateControl.
  bitrate_estimator_->SetStartBitrate(kStartBitrate);

  // Produce 30 frames (in 1/3 second) and give them to the estimator.
  uint32_t bitrate_bps = kStartBitrate;
  bool seen_overuse = false;
  for (int i = 0; i < 30; ++i) {
    bool overuse = GenerateAndProcessFrame(kDummySsrc, bitrate_bps);
    // The purpose of this test is to ensure that we back down even if we don't
    // have any acknowledged bitrate estimate yet. Hence, if the test works
    // as expected, we should not have a measured bitrate yet.
    EXPECT_FALSE(acknowledged_bitrate_estimator_->bitrate_bps().has_value());
    if (overuse) {
      EXPECT_TRUE(bitrate_observer_.updated());
      EXPECT_NEAR(bitrate_observer_.latest_bitrate(), kStartBitrate / 2, 15000);
      bitrate_bps = bitrate_observer_.latest_bitrate();
      seen_overuse = true;
      break;
    } else if (bitrate_observer_.updated()) {
      bitrate_bps = bitrate_observer_.latest_bitrate();
      bitrate_observer_.Reset();
    }
  }
  EXPECT_TRUE(seen_overuse);
  EXPECT_NEAR(bitrate_observer_.latest_bitrate(), kStartBitrate / 2, 15000);
}

}  // namespace webrtc