DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (e5ef045527c6)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: sw=2 ts=4 et :
 */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef mozilla_ipc_ProtocolUtils_h
#define mozilla_ipc_ProtocolUtils_h 1

#include "base/id_map.h"
#include "base/process.h"
#include "base/process_util.h"
#include "chrome/common/ipc_message_utils.h"

#include "prenv.h"

#include "IPCMessageStart.h"
#include "mozilla/AlreadyAddRefed.h"
#include "mozilla/Attributes.h"
#include "mozilla/ipc/ByteBuf.h"
#include "mozilla/ipc/FileDescriptor.h"
#include "mozilla/ipc/MessageChannel.h"
#include "mozilla/ipc/Shmem.h"
#include "mozilla/ipc/Transport.h"
#include "mozilla/ipc/MessageLink.h"
#include "mozilla/recordreplay/ChildIPC.h"
#include "mozilla/LinkedList.h"
#include "mozilla/Maybe.h"
#include "mozilla/MozPromise.h"
#include "mozilla/Mutex.h"
#include "mozilla/NotNull.h"
#include "mozilla/Scoped.h"
#include "mozilla/UniquePtr.h"
#include "MainThreadUtils.h"
#include "nsICrashReporter.h"

#if defined(ANDROID) && defined(DEBUG)
#  include <android/log.h>
#endif

template <typename T>
class nsTHashtable;
template <typename T>
class nsPtrHashKey;

// WARNING: this takes into account the private, special-message-type
// enum in ipc_channel.h.  They need to be kept in sync.
namespace {
// XXX the max message ID is actually kuint32max now ... when this
// changed, the assumptions of the special message IDs changed in that
// they're not carving out messages from likely-unallocated space, but
// rather carving out messages from the end of space allocated to
// protocol 0.  Oops!  We can get away with this until protocol 0
// starts approaching its 65,536th message.
enum {
  BUILD_IDS_MATCH_MESSAGE_TYPE = kuint16max - 8,
  BUILD_ID_MESSAGE_TYPE = kuint16max - 7,  // unused
  CHANNEL_OPENED_MESSAGE_TYPE = kuint16max - 6,
  SHMEM_DESTROYED_MESSAGE_TYPE = kuint16max - 5,
  SHMEM_CREATED_MESSAGE_TYPE = kuint16max - 4,
  GOODBYE_MESSAGE_TYPE = kuint16max - 3,
  CANCEL_MESSAGE_TYPE = kuint16max - 2,

  // kuint16max - 1 is used by ipc_channel.h.
};

}  // namespace

class nsIEventTarget;

namespace mozilla {
class SchedulerGroup;

namespace dom {
class ContentParent;
}  // namespace dom

namespace net {
class NeckoParent;
}  // namespace net

namespace ipc {

#ifdef FUZZING
class ProtocolFuzzerHelper;
#endif

class MessageChannel;

#ifdef XP_WIN
const base::ProcessHandle kInvalidProcessHandle = INVALID_HANDLE_VALUE;

// In theory, on Windows, this is a valid process ID, but in practice they are
// currently divisible by four. Process IDs share the kernel handle allocation
// code and they are guaranteed to be divisible by four.
// As this could change for process IDs we shouldn't generally rely on this
// property, however even if that were to change, it seems safe to rely on this
// particular value never being used.
const base::ProcessId kInvalidProcessId = kuint32max;
#else
const base::ProcessHandle kInvalidProcessHandle = -1;
const base::ProcessId kInvalidProcessId = -1;
#endif

// Scoped base::ProcessHandle to ensure base::CloseProcessHandle is called.
struct ScopedProcessHandleTraits {
  typedef base::ProcessHandle type;

  static type empty() { return kInvalidProcessHandle; }

  static void release(type aProcessHandle) {
    if (aProcessHandle && aProcessHandle != kInvalidProcessHandle) {
      base::CloseProcessHandle(aProcessHandle);
    }
  }
};
typedef mozilla::Scoped<ScopedProcessHandleTraits> ScopedProcessHandle;

class ProtocolFdMapping;
class ProtocolCloneContext;

// Used to pass references to protocol actors across the wire.
// Actors created on the parent-side have a positive ID, and actors
// allocated on the child side have a negative ID.
struct ActorHandle {
  int mId;
};

// What happens if Interrupt calls race?
enum RacyInterruptPolicy { RIPError, RIPChildWins, RIPParentWins };

enum class LinkStatus : uint8_t {
  // The actor has not established a link yet, or the actor is no longer in use
  // by IPC, and its 'Dealloc' method has been called or is being called.
  //
  // NOTE: This state is used instead of an explicit `Freed` state when IPC no
  // longer holds references to the current actor as we currently re-open
  // existing actors. Once we fix these poorly behaved actors, this loopback
  // state can be split to have the final state not be the same as the initial
  // state.
  Inactive,

  // A live link is connected to the other side of this actor.
  Connected,

  // The link has begun being destroyed. Messages may still be received, but
  // cannot be sent. (exception: sync/intr replies may be sent while Doomed).
  Doomed,

  // The link has been destroyed, and messages will no longer be sent or
  // received.
  Destroyed,
};

typedef IPCMessageStart ProtocolId;

// Generated by IPDL compiler
const char* ProtocolIdToName(IPCMessageStart aId);

class IToplevelProtocol;
class ActorLifecycleProxy;

class IProtocol : public HasResultCodes {
 public:
  enum ActorDestroyReason {
    FailedConstructor,
    Deletion,
    AncestorDeletion,
    NormalShutdown,
    AbnormalShutdown
  };

  typedef base::ProcessId ProcessId;
  typedef IPC::Message Message;
  typedef IPC::MessageInfo MessageInfo;

  IProtocol(ProtocolId aProtoId, Side aSide)
      : mId(0),
        mProtocolId(aProtoId),
        mSide(aSide),
        mLinkStatus(LinkStatus::Inactive),
        mLifecycleProxy(nullptr),
        mManager(nullptr),
        mToplevel(nullptr) {}

  IToplevelProtocol* ToplevelProtocol() { return mToplevel; }

  // The following methods either directly forward to the toplevel protocol, or
  // almost directly do.
  int32_t Register(IProtocol* aRouted);
  int32_t RegisterID(IProtocol* aRouted, int32_t aId);
  IProtocol* Lookup(int32_t aId);
  void Unregister(int32_t aId);

  Shmem::SharedMemory* CreateSharedMemory(size_t aSize,
                                          SharedMemory::SharedMemoryType aType,
                                          bool aUnsafe, int32_t* aId);
  Shmem::SharedMemory* LookupSharedMemory(int32_t aId);
  bool IsTrackingSharedMemory(Shmem::SharedMemory* aSegment);
  bool DestroySharedMemory(Shmem& aShmem);

  MessageChannel* GetIPCChannel();
  const MessageChannel* GetIPCChannel() const;

  // Sets an event target to which all messages for aActor will be
  // dispatched. This method must be called before right before the SendPFoo
  // message for aActor is sent. And SendPFoo *must* be called if
  // SetEventTargetForActor is called. The receiver when calling
  // SetEventTargetForActor must be the actor that will be the manager for
  // aActor.
  void SetEventTargetForActor(IProtocol* aActor, nsIEventTarget* aEventTarget);

  // Replace the event target for the messages of aActor. There must not be
  // any messages of aActor in the task queue, or we might run into some
  // unexpected behavior.
  void ReplaceEventTargetForActor(IProtocol* aActor,
                                  nsIEventTarget* aEventTarget);

  void SetEventTargetForRoute(int32_t aRoute, nsIEventTarget* aEventTarget);

  nsIEventTarget* GetActorEventTarget();
  already_AddRefed<nsIEventTarget> GetActorEventTarget(IProtocol* aActor);

  ProcessId OtherPid() const;

  // Actor lifecycle and other properties.
  ProtocolId GetProtocolId() const { return mProtocolId; }
  const char* GetProtocolName() const { return ProtocolIdToName(mProtocolId); }

  int32_t Id() const { return mId; }
  IProtocol* Manager() const { return mManager; }

  ActorLifecycleProxy* GetLifecycleProxy() { return mLifecycleProxy; }

  Side GetSide() const { return mSide; }
  bool CanSend() const { return mLinkStatus == LinkStatus::Connected; }
  bool CanRecv() const {
    return mLinkStatus == LinkStatus::Connected ||
           mLinkStatus == LinkStatus::Doomed;
  }

  // Remove or deallocate a managee given its type.
  virtual void RemoveManagee(int32_t, IProtocol*) = 0;
  virtual void DeallocManagee(int32_t, IProtocol*) = 0;

  Maybe<IProtocol*> ReadActor(const IPC::Message* aMessage,
                              PickleIterator* aIter, bool aNullable,
                              const char* aActorDescription,
                              int32_t aProtocolTypeId);

  virtual Result OnMessageReceived(const Message& aMessage) = 0;
  virtual Result OnMessageReceived(const Message& aMessage,
                                   Message*& aReply) = 0;
  virtual Result OnCallReceived(const Message& aMessage, Message*& aReply) = 0;
  bool AllocShmem(size_t aSize, Shmem::SharedMemory::SharedMemoryType aType,
                  Shmem* aOutMem);
  bool AllocUnsafeShmem(size_t aSize,
                        Shmem::SharedMemory::SharedMemoryType aType,
                        Shmem* aOutMem);
  bool DeallocShmem(Shmem& aMem);

  void FatalError(const char* const aErrorMsg) const;
  virtual void HandleFatalError(const char* aErrorMsg) const;

 protected:
  virtual ~IProtocol();

  friend class IToplevelProtocol;
  friend class ActorLifecycleProxy;

  void SetId(int32_t aId);

  // We have separate functions because the accessibility code manually
  // calls SetManager.
  void SetManager(IProtocol* aManager);

  // Sets the manager for the protocol and registers the protocol with
  // its manager, setting up channels for the protocol as well.  Not
  // for use outside of IPDL.
  void SetManagerAndRegister(IProtocol* aManager);
  void SetManagerAndRegister(IProtocol* aManager, int32_t aId);

  // Helpers for calling `Send` on our underlying IPC channel.
  bool ChannelSend(IPC::Message* aMsg);
  bool ChannelSend(IPC::Message* aMsg, IPC::Message* aReply);
  bool ChannelCall(IPC::Message* aMsg, IPC::Message* aReply);
  template <typename Value>
  void ChannelSend(IPC::Message* aMsg, ResolveCallback<Value>&& aResolve,
                   RejectCallback&& aReject) {
    UniquePtr<IPC::Message> msg(aMsg);
    if (CanSend()) {
      GetIPCChannel()->Send(msg.release(), this, std::move(aResolve),
                            std::move(aReject));
    } else {
      NS_WARNING("IPC message discarded: actor cannot send");
      aReject(ResponseRejectReason::SendError);
    }
  }

  // Collect all actors managed by this object in an array. To make this safer
  // to iterate, `ActorLifecycleProxy` references are returned rather than raw
  // actor pointers.
  virtual void AllManagedActors(
      nsTArray<RefPtr<ActorLifecycleProxy>>& aActors) const = 0;

  // Internal method called when the actor becomes connected.
  void ActorConnected();

  // Called immediately before setting the actor state to doomed, and triggering
  // async actor destruction. Messages may be sent from this callback, but no
  // later.
  // FIXME(nika): This is currently unused!
  virtual void ActorDoom() {}
  void DoomSubtree();

  // Called when the actor has been destroyed due to an error, a __delete__
  // message, or a __doom__ reply.
  virtual void ActorDestroy(ActorDestroyReason aWhy) {}
  void DestroySubtree(ActorDestroyReason aWhy);

  // Called when IPC has released its final reference to the actor. It will call
  // the dealloc method, causing the actor to be actually freed.
  //
  // The actor has been freed after this method returns.
  virtual void ActorDealloc() {
    if (Manager()) {
      Manager()->DeallocManagee(mProtocolId, this);
    }
  }

  static const int32_t kNullActorId = 0;
  static const int32_t kFreedActorId = 1;

 private:
  int32_t mId;
  ProtocolId mProtocolId;
  Side mSide;
  LinkStatus mLinkStatus;
  ActorLifecycleProxy* mLifecycleProxy;
  IProtocol* mManager;
  IToplevelProtocol* mToplevel;
};

#define IPC_OK() mozilla::ipc::IPCResult::Ok()
#define IPC_FAIL(actor, why) \
  mozilla::ipc::IPCResult::Fail(WrapNotNull(actor), __func__, (why))
#define IPC_FAIL_NO_REASON(actor) \
  mozilla::ipc::IPCResult::Fail(WrapNotNull(actor), __func__)

/**
 * All message deserializer and message handler should return this
 * type via above macros. We use a less generic name here to avoid
 * conflict with mozilla::Result because we have quite a few using
 * namespace mozilla::ipc; in the code base.
 */
class IPCResult {
 public:
  static IPCResult Ok() { return IPCResult(true); }
  static IPCResult Fail(NotNull<IProtocol*> aActor, const char* aWhere,
                        const char* aWhy = "");
  MOZ_IMPLICIT operator bool() const { return mSuccess; }

 private:
  explicit IPCResult(bool aResult) : mSuccess(aResult) {}
  bool mSuccess;
};

template <class PFooSide>
class Endpoint;

/**
 * All top-level protocols should inherit this class.
 *
 * IToplevelProtocol tracks all top-level protocol actors created from
 * this protocol actor.
 */
class IToplevelProtocol : public IProtocol {
#ifdef FUZZING
  friend class mozilla::ipc::ProtocolFuzzerHelper;
#endif

  template <class PFooSide>
  friend class Endpoint;

 protected:
  explicit IToplevelProtocol(const char* aName, ProtocolId aProtoId,
                             Side aSide);
  ~IToplevelProtocol();

 public:
  // Shadow methods on IProtocol which are implemented directly on toplevel
  // actors.
  int32_t Register(IProtocol* aRouted);
  int32_t RegisterID(IProtocol* aRouted, int32_t aId);
  IProtocol* Lookup(int32_t aId);
  void Unregister(int32_t aId);

  Shmem::SharedMemory* CreateSharedMemory(size_t aSize,
                                          SharedMemory::SharedMemoryType aType,
                                          bool aUnsafe, int32_t* aId);
  Shmem::SharedMemory* LookupSharedMemory(int32_t aId);
  bool IsTrackingSharedMemory(Shmem::SharedMemory* aSegment);
  bool DestroySharedMemory(Shmem& aShmem);

  MessageChannel* GetIPCChannel() {
    if (mMiddlemanChannelOverride) {
      return mMiddlemanChannelOverride;
    }
    return &mChannel;
  }
  const MessageChannel* GetIPCChannel() const {
    if (mMiddlemanChannelOverride) {
      return mMiddlemanChannelOverride;
    }
    return &mChannel;
  }

  // NOTE: The target actor's Manager must already be set.
  void SetEventTargetForActorInternal(IProtocol* aActor,
                                      nsIEventTarget* aEventTarget);
  void ReplaceEventTargetForActor(IProtocol* aActor,
                                  nsIEventTarget* aEventTarget);
  void SetEventTargetForRoute(int32_t aRoute, nsIEventTarget* aEventTarget);
  nsIEventTarget* GetActorEventTarget();
  already_AddRefed<nsIEventTarget> GetActorEventTarget(IProtocol* aActor);

  ProcessId OtherPid() const;
  void SetOtherProcessId(base::ProcessId aOtherPid);

  // Toplevel protocol specific methods.
  void SetTransport(UniquePtr<Transport> aTrans) { mTrans = std::move(aTrans); }

  Transport* GetTransport() const { return mTrans.get(); }

  virtual void OnChannelClose() = 0;
  virtual void OnChannelError() = 0;
  virtual void ProcessingError(Result aError, const char* aMsgName) {}
  virtual void OnChannelConnected(int32_t peer_pid) {}

  bool Open(mozilla::ipc::Transport* aTransport, base::ProcessId aOtherPid,
            MessageLoop* aThread = nullptr,
            mozilla::ipc::Side aSide = mozilla::ipc::UnknownSide);

  bool Open(MessageChannel* aChannel, MessageLoop* aMessageLoop,
            mozilla::ipc::Side aSide = mozilla::ipc::UnknownSide);

  bool Open(MessageChannel* aChannel, nsIEventTarget* aEventTarget,
            mozilla::ipc::Side aSide = mozilla::ipc::UnknownSide);

  bool OpenWithAsyncPid(mozilla::ipc::Transport* aTransport,
                        MessageLoop* aThread = nullptr,
                        mozilla::ipc::Side aSide = mozilla::ipc::UnknownSide);

  // Open a toplevel actor such that both ends of the actor's channel are on
  // the same thread. This method should be called on the thread to perform
  // the link.
  //
  // WARNING: Attempting to send a sync or intr message on the same thread
  // will crash.
  bool OpenOnSameThread(MessageChannel* aChannel,
                        mozilla::ipc::Side aSide = mozilla::ipc::UnknownSide);

  void Close();

  void SetReplyTimeoutMs(int32_t aTimeoutMs);

  void DeallocShmems();
  bool ShmemCreated(const Message& aMsg);
  bool ShmemDestroyed(const Message& aMsg);

  virtual bool ShouldContinueFromReplyTimeout() { return false; }

  // WARNING: This function is called with the MessageChannel monitor held.
  virtual void IntentionalCrash() { MOZ_CRASH("Intentional IPDL crash"); }

  // The code here is only useful for fuzzing. It should not be used for any
  // other purpose.
#ifdef DEBUG
  // Returns true if we should simulate a timeout.
  // WARNING: This is a testing-only function that is called with the
  // MessageChannel monitor held. Don't do anything fancy here or we could
  // deadlock.
  virtual bool ArtificialTimeout() { return false; }

  // Returns true if we want to cause the worker thread to sleep with the
  // monitor unlocked.
  virtual bool NeedArtificialSleep() { return false; }

  // This function should be implemented to sleep for some amount of time on
  // the worker thread. Will only be called if NeedArtificialSleep() returns
  // true.
  virtual void ArtificialSleep() {}
#else
  bool ArtificialTimeout() { return false; }
  bool NeedArtificialSleep() { return false; }
  void ArtificialSleep() {}
#endif

  virtual void EnteredCxxStack() {}
  virtual void ExitedCxxStack() {}
  virtual void EnteredCall() {}
  virtual void ExitedCall() {}

  bool IsOnCxxStack() const;

  virtual RacyInterruptPolicy MediateInterruptRace(const MessageInfo& parent,
                                                   const MessageInfo& child) {
    return RIPChildWins;
  }

  /**
   * Return true if windows messages can be handled while waiting for a reply
   * to a sync IPDL message.
   */
  virtual bool HandleWindowsMessages(const Message& aMsg) const { return true; }

  virtual void OnEnteredSyncSend() {}
  virtual void OnExitedSyncSend() {}

  virtual void ProcessRemoteNativeEventsInInterruptCall() {}

  virtual void OnChannelReceivedMessage(const Message& aMsg) {}

  void OnIPCChannelOpened() { ActorConnected(); }

  already_AddRefed<nsIEventTarget> GetMessageEventTarget(const Message& aMsg);

  void SetMiddlemanIPCChannel(MessageChannel* aChannel) {
    // Middleman processes sometimes need to change the channel used by a
    // protocol.
    MOZ_RELEASE_ASSERT(recordreplay::IsMiddleman());
    mMiddlemanChannelOverride = aChannel;
  }

 protected:
  // Override this method in top-level protocols to change the event target
  // for a new actor (and its sub-actors).
  virtual already_AddRefed<nsIEventTarget> GetConstructedEventTarget(
      const Message& aMsg) {
    return nullptr;
  }

  // Override this method in top-level protocols to change the event target
  // for specific messages.
  virtual already_AddRefed<nsIEventTarget> GetSpecificMessageEventTarget(
      const Message& aMsg) {
    return nullptr;
  }

 private:
  base::ProcessId OtherPidMaybeInvalid() const { return mOtherPid; }

  int32_t NextId();

  UniquePtr<Transport> mTrans;
  base::ProcessId mOtherPid;

  // NOTE NOTE NOTE
  // Used to be on mState
  int32_t mLastLocalId;
  IDMap<IProtocol*> mActorMap;
  IDMap<Shmem::SharedMemory*> mShmemMap;

  // XXX: We no longer need mEventTargetMap for Quantum DOM, so it may be
  // worthwhile to remove it before people start depending on it for other weird
  // things.
  Mutex mEventTargetMutex;
  IDMap<nsCOMPtr<nsIEventTarget>> mEventTargetMap;

  // In the middleman process for recordreplay, we override the channel which
  // should be used by an actor. Due to this, we need to hold a separate pointer
  // here which can be used to specify that we shouldn't send messages to our
  // mChannel actor member. FIXME: This should probably be removed.
  MessageChannel* mMiddlemanChannelOverride;

  MessageChannel mChannel;
};

class IShmemAllocator {
 public:
  virtual bool AllocShmem(size_t aSize,
                          mozilla::ipc::SharedMemory::SharedMemoryType aShmType,
                          mozilla::ipc::Shmem* aShmem) = 0;
  virtual bool AllocUnsafeShmem(
      size_t aSize, mozilla::ipc::SharedMemory::SharedMemoryType aShmType,
      mozilla::ipc::Shmem* aShmem) = 0;
  virtual bool DeallocShmem(mozilla::ipc::Shmem& aShmem) = 0;
};

#define FORWARD_SHMEM_ALLOCATOR_TO(aImplClass)                             \
  virtual bool AllocShmem(                                                 \
      size_t aSize, mozilla::ipc::SharedMemory::SharedMemoryType aShmType, \
      mozilla::ipc::Shmem* aShmem) override {                              \
    return aImplClass::AllocShmem(aSize, aShmType, aShmem);                \
  }                                                                        \
  virtual bool AllocUnsafeShmem(                                           \
      size_t aSize, mozilla::ipc::SharedMemory::SharedMemoryType aShmType, \
      mozilla::ipc::Shmem* aShmem) override {                              \
    return aImplClass::AllocUnsafeShmem(aSize, aShmType, aShmem);          \
  }                                                                        \
  virtual bool DeallocShmem(mozilla::ipc::Shmem& aShmem) override {        \
    return aImplClass::DeallocShmem(aShmem);                               \
  }

inline bool LoggingEnabled() {
#if defined(DEBUG) || defined(FUZZING)
  return !!PR_GetEnv("MOZ_IPC_MESSAGE_LOG");
#else
  return false;
#endif
}

inline bool LoggingEnabledFor(const char* aTopLevelProtocol) {
#if defined(DEBUG) || defined(FUZZING)
  const char* filter = PR_GetEnv("MOZ_IPC_MESSAGE_LOG");
  if (!filter) {
    return false;
  }
  return strcmp(filter, "1") == 0 || strcmp(filter, aTopLevelProtocol) == 0;
#else
  return false;
#endif
}

enum class MessageDirection {
  eSending,
  eReceiving,
};

MOZ_NEVER_INLINE void LogMessageForProtocol(const char* aTopLevelProtocol,
                                            base::ProcessId aOtherPid,
                                            const char* aContextDescription,
                                            uint32_t aMessageId,
                                            MessageDirection aDirection);

MOZ_NEVER_INLINE void ProtocolErrorBreakpoint(const char* aMsg);

// The code generator calls this function for errors which come from the
// methods of protocols.  Doing this saves codesize by making the error
// cases significantly smaller.
MOZ_NEVER_INLINE void FatalError(const char* aMsg, bool aIsParent);

// The code generator calls this function for errors which are not
// protocol-specific: errors in generated struct methods or errors in
// transition functions, for instance.  Doing this saves codesize by
// by making the error cases significantly smaller.
MOZ_NEVER_INLINE void LogicError(const char* aMsg);

MOZ_NEVER_INLINE void ActorIdReadError(const char* aActorDescription);

MOZ_NEVER_INLINE void BadActorIdError(const char* aActorDescription);

MOZ_NEVER_INLINE void ActorLookupError(const char* aActorDescription);

MOZ_NEVER_INLINE void MismatchedActorTypeError(const char* aActorDescription);

MOZ_NEVER_INLINE void UnionTypeReadError(const char* aUnionName);

MOZ_NEVER_INLINE void ArrayLengthReadError(const char* aElementName);

MOZ_NEVER_INLINE void SentinelReadError(const char* aElementName);

struct PrivateIPDLInterface {};

nsresult Bridge(const PrivateIPDLInterface&, MessageChannel*, base::ProcessId,
                MessageChannel*, base::ProcessId, ProtocolId, ProtocolId);

bool Open(const PrivateIPDLInterface&, MessageChannel*, base::ProcessId,
          Transport::Mode, ProtocolId, ProtocolId);

bool UnpackChannelOpened(const PrivateIPDLInterface&, const IPC::Message&,
                         TransportDescriptor*, base::ProcessId*, ProtocolId*);

#if defined(XP_WIN)
// This is a restricted version of Windows' DuplicateHandle() function
// that works inside the sandbox and can send handles but not retrieve
// them.  Unlike DuplicateHandle(), it takes a process ID rather than
// a process handle.  It returns true on success, false otherwise.
bool DuplicateHandle(HANDLE aSourceHandle, DWORD aTargetProcessId,
                     HANDLE* aTargetHandle, DWORD aDesiredAccess,
                     DWORD aOptions);
#endif

/**
 * Annotate the crash reporter with the error code from the most recent system
 * call. Returns the system error.
 */
void AnnotateSystemError();

/**
 * An endpoint represents one end of a partially initialized IPDL channel. To
 * set up a new top-level protocol:
 *
 * Endpoint<PFooParent> parentEp;
 * Endpoint<PFooChild> childEp;
 * nsresult rv;
 * rv = PFoo::CreateEndpoints(parentPid, childPid, &parentEp, &childEp);
 *
 * You're required to pass in parentPid and childPid, which are the pids of the
 * processes in which the parent and child endpoints will be used.
 *
 * Endpoints can be passed in IPDL messages or sent to other threads using
 * PostTask. Once an Endpoint has arrived at its destination process and thread,
 * you need to create the top-level actor and bind it to the endpoint:
 *
 * FooParent* parent = new FooParent();
 * bool rv1 = parentEp.Bind(parent, processActor);
 * bool rv2 = parent->SendBar(...);
 *
 * (See Bind below for an explanation of processActor.) Once the actor is bound
 * to the endpoint, it can send and receive messages.
 */
template <class PFooSide>
class Endpoint {
 public:
  typedef base::ProcessId ProcessId;

  Endpoint()
      : mValid(false),
        mMode(static_cast<mozilla::ipc::Transport::Mode>(0)),
        mMyPid(0),
        mOtherPid(0) {}

  Endpoint(const PrivateIPDLInterface&, mozilla::ipc::Transport::Mode aMode,
           TransportDescriptor aTransport, ProcessId aMyPid,
           ProcessId aOtherPid)
      : mValid(true),
        mMode(aMode),
        mTransport(aTransport),
        mMyPid(aMyPid),
        mOtherPid(aOtherPid) {}

  Endpoint(Endpoint&& aOther)
      : mValid(aOther.mValid),
        mTransport(aOther.mTransport),
        mMyPid(aOther.mMyPid),
        mOtherPid(aOther.mOtherPid) {
    if (aOther.mValid) {
      mMode = aOther.mMode;
    }
    aOther.mValid = false;
  }

  Endpoint& operator=(Endpoint&& aOther) {
    mValid = aOther.mValid;
    if (aOther.mValid) {
      mMode = aOther.mMode;
    }
    mTransport = aOther.mTransport;
    mMyPid = aOther.mMyPid;
    mOtherPid = aOther.mOtherPid;

    aOther.mValid = false;
    return *this;
  }

  ~Endpoint() {
    if (mValid) {
      CloseDescriptor(mTransport);
    }
  }

  ProcessId OtherPid() const { return mOtherPid; }

  // This method binds aActor to this endpoint. After this call, the actor can
  // be used to send and receive messages. The endpoint becomes invalid.
  bool Bind(PFooSide* aActor) {
    MOZ_RELEASE_ASSERT(mValid);
    if (mMyPid != base::GetCurrentProcId()) {
      // These pids must match, unless we are recording or replaying, in
      // which case the parent process will have supplied the pid for the
      // middleman process instead. Fix this here. If we're replaying
      // we'll see the pid of the middleman used while recording.
      MOZ_RELEASE_ASSERT(recordreplay::IsRecordingOrReplaying());
      MOZ_RELEASE_ASSERT(recordreplay::IsReplaying() ||
                         mMyPid == recordreplay::child::MiddlemanProcessId());
      mMyPid = base::GetCurrentProcId();
    }

    UniquePtr<Transport> t = mozilla::ipc::OpenDescriptor(mTransport, mMode);
    if (!t) {
      return false;
    }
    if (!aActor->Open(
            t.get(), mOtherPid, XRE_GetIOMessageLoop(),
            mMode == Transport::MODE_SERVER ? ParentSide : ChildSide)) {
      return false;
    }
    mValid = false;
    aActor->SetTransport(std::move(t));
    return true;
  }

  bool IsValid() const { return mValid; }

 private:
  friend struct IPC::ParamTraits<Endpoint<PFooSide>>;

  Endpoint(const Endpoint&) = delete;
  Endpoint& operator=(const Endpoint&) = delete;

  bool mValid;
  mozilla::ipc::Transport::Mode mMode;
  TransportDescriptor mTransport;
  ProcessId mMyPid, mOtherPid;
};

#if defined(XP_MACOSX)
void AnnotateCrashReportWithErrno(CrashReporter::Annotation tag, int error);
#else
static inline void AnnotateCrashReportWithErrno(CrashReporter::Annotation tag,
                                                int error) {}
#endif

// This function is used internally to create a pair of Endpoints. See the
// comment above Endpoint for a description of how it might be used.
template <class PFooParent, class PFooChild>
nsresult CreateEndpoints(const PrivateIPDLInterface& aPrivate,
                         base::ProcessId aParentDestPid,
                         base::ProcessId aChildDestPid,
                         Endpoint<PFooParent>* aParentEndpoint,
                         Endpoint<PFooChild>* aChildEndpoint) {
  MOZ_RELEASE_ASSERT(aParentDestPid);
  MOZ_RELEASE_ASSERT(aChildDestPid);

  TransportDescriptor parentTransport, childTransport;
  nsresult rv;
  if (NS_FAILED(rv = CreateTransport(aParentDestPid, &parentTransport,
                                     &childTransport))) {
    AnnotateCrashReportWithErrno(
        CrashReporter::Annotation::IpcCreateEndpointsNsresult, int(rv));
    return rv;
  }

  *aParentEndpoint =
      Endpoint<PFooParent>(aPrivate, mozilla::ipc::Transport::MODE_SERVER,
                           parentTransport, aParentDestPid, aChildDestPid);

  *aChildEndpoint =
      Endpoint<PFooChild>(aPrivate, mozilla::ipc::Transport::MODE_CLIENT,
                          childTransport, aChildDestPid, aParentDestPid);

  return NS_OK;
}

/**
 * A managed endpoint represents one end of a partially initialized managed
 * IPDL actor. It is used for situations where the usual IPDL Constructor
 * methods do not give sufficient control over the construction of actors, such
 * as when constructing actors within replies, or constructing multiple related
 * actors simultaneously.
 *
 * FooParent* parent = new FooParent();
 * ManagedEndpoint<PFooChild> childEp = parentMgr->OpenPFooEndpoint(parent);
 *
 * ManagedEndpoints should be sent using IPDL messages or other mechanisms to
 * the other side of the manager channel. Once the ManagedEndpoint has arrived
 * at its destination, you can create the actor, and bind it to the endpoint.
 *
 * FooChild* child = new FooChild();
 * childMgr->BindPFooEndpoint(childEp, child);
 *
 * WARNING: If the remote side of an endpoint has not been bound before it
 * begins to receive messages, an IPC routing error will occur, likely causing
 * a browser crash.
 */
template <class PFooSide>
class ManagedEndpoint {
 public:
  ManagedEndpoint() : mId(0) {}

  ManagedEndpoint(const PrivateIPDLInterface&, int32_t aId) : mId(aId) {}

  ManagedEndpoint(ManagedEndpoint&& aOther) : mId(aOther.mId) {
    aOther.mId = 0;
  }

  ManagedEndpoint& operator=(ManagedEndpoint&& aOther) {
    mId = aOther.mId;
    aOther.mId = 0;
    return *this;
  }

  bool IsValid() const { return mId != 0; }

  Maybe<int32_t> ActorId() const { return IsValid() ? Some(mId) : Nothing(); }

 private:
  friend struct IPC::ParamTraits<ManagedEndpoint<PFooSide>>;

  ManagedEndpoint(const ManagedEndpoint&) = delete;
  ManagedEndpoint& operator=(const ManagedEndpoint&) = delete;

  // The routing ID for the to-be-created endpoint.
  int32_t mId;

  // XXX(nika): Might be nice to have other info for assertions?
  // e.g. mManagerId, mManagerType, etc.
};

// The ActorLifecycleProxy is a helper type used internally by IPC to maintain a
// maybe-owning reference to an IProtocol object. For well-behaved actors
// which are not freed until after their `Dealloc` method is called, a
// reference to an actor's `ActorLifecycleProxy` object is an owning one, as the
// `Dealloc` method will only be called when all references to the
// `ActorLifecycleProxy` are released.
//
// Unfortunately, some actors may be destroyed before their `Dealloc` method
// is called. For these actors, `ActorLifecycleProxy` acts as a weak pointer,
// and will begin to return `nullptr` from its `Get()` method once the
// corresponding actor object has been destroyed.
//
// When calling a `Recv` method, IPC will hold a `ActorLifecycleProxy` reference
// to the target actor, meaning that well-behaved actors can behave as though a
// strong reference is being held.
//
// Generic IPC code MUST treat ActorLifecycleProxy references as weak
// references!
class ActorLifecycleProxy {
 public:
  NS_INLINE_DECL_REFCOUNTING(ActorLifecycleProxy)

  IProtocol* Get() { return mActor; }

 private:
  friend class IProtocol;

  explicit ActorLifecycleProxy(IProtocol* aActor);
  ~ActorLifecycleProxy();

  ActorLifecycleProxy(const ActorLifecycleProxy&) = delete;
  ActorLifecycleProxy& operator=(const ActorLifecycleProxy&) = delete;

  IProtocol* MOZ_NON_OWNING_REF mActor;

  // Hold a reference to the actor's manager's ActorLifecycleProxy to help
  // prevent it from dying while we're still alive!
  RefPtr<ActorLifecycleProxy> mManager;
};

void TableToArray(const nsTHashtable<nsPtrHashKey<void>>& aTable,
                  nsTArray<void*>& aArray);

}  // namespace ipc

template <typename Protocol>
class ManagedContainer : public nsTHashtable<nsPtrHashKey<Protocol>> {
  typedef nsTHashtable<nsPtrHashKey<Protocol>> BaseClass;

 public:
  // Having the core logic work on void pointers, rather than typed pointers,
  // means that we can have one instance of this code out-of-line, rather
  // than several hundred instances of this code out-of-lined.  (Those
  // repeated instances don't necessarily get folded together by the linker
  // because they contain member offsets and such that differ between the
  // functions.)  We do have to pay for it with some eye-bleedingly bad casts,
  // though.
  void ToArray(nsTArray<Protocol*>& aArray) const {
    ::mozilla::ipc::TableToArray(
        *reinterpret_cast<const nsTHashtable<nsPtrHashKey<void>>*>(
            static_cast<const BaseClass*>(this)),
        reinterpret_cast<nsTArray<void*>&>(aArray));
  }
};

template <typename Protocol>
Protocol* LoneManagedOrNullAsserts(
    const ManagedContainer<Protocol>& aManagees) {
  if (aManagees.IsEmpty()) {
    return nullptr;
  }
  MOZ_ASSERT(aManagees.Count() == 1);
  return aManagees.ConstIter().Get()->GetKey();
}

template <typename Protocol>
Protocol* SingleManagedOrNull(const ManagedContainer<Protocol>& aManagees) {
  if (aManagees.Count() != 1) {
    return nullptr;
  }
  return aManagees.ConstIter().Get()->GetKey();
}

}  // namespace mozilla

namespace IPC {

template <>
struct ParamTraits<mozilla::ipc::ActorHandle> {
  typedef mozilla::ipc::ActorHandle paramType;

  static void Write(Message* aMsg, const paramType& aParam) {
    IPC::WriteParam(aMsg, aParam.mId);
  }

  static bool Read(const Message* aMsg, PickleIterator* aIter,
                   paramType* aResult) {
    int id;
    if (IPC::ReadParam(aMsg, aIter, &id)) {
      aResult->mId = id;
      return true;
    }
    return false;
  }

  static void Log(const paramType& aParam, std::wstring* aLog) {
    aLog->append(StringPrintf(L"(%d)", aParam.mId));
  }
};

template <class PFooSide>
struct ParamTraits<mozilla::ipc::Endpoint<PFooSide>> {
  typedef mozilla::ipc::Endpoint<PFooSide> paramType;

  static void Write(Message* aMsg, const paramType& aParam) {
    IPC::WriteParam(aMsg, aParam.mValid);
    if (!aParam.mValid) {
      return;
    }

    IPC::WriteParam(aMsg, static_cast<uint32_t>(aParam.mMode));

    // We duplicate the descriptor so that our own file descriptor remains
    // valid after the write. An alternative would be to set
    // aParam.mTransport.mValid to false, but that won't work because aParam
    // is const.
    mozilla::ipc::TransportDescriptor desc =
        mozilla::ipc::DuplicateDescriptor(aParam.mTransport);
    IPC::WriteParam(aMsg, desc);

    IPC::WriteParam(aMsg, aParam.mMyPid);
    IPC::WriteParam(aMsg, aParam.mOtherPid);
  }

  static bool Read(const Message* aMsg, PickleIterator* aIter,
                   paramType* aResult) {
    MOZ_RELEASE_ASSERT(!aResult->mValid);

    if (!IPC::ReadParam(aMsg, aIter, &aResult->mValid)) {
      return false;
    }
    if (!aResult->mValid) {
      // Object is empty, but read succeeded.
      return true;
    }

    uint32_t mode;
    if (!IPC::ReadParam(aMsg, aIter, &mode) ||
        !IPC::ReadParam(aMsg, aIter, &aResult->mTransport) ||
        !IPC::ReadParam(aMsg, aIter, &aResult->mMyPid) ||
        !IPC::ReadParam(aMsg, aIter, &aResult->mOtherPid)) {
      return false;
    }
    aResult->mMode = Channel::Mode(mode);
    return true;
  }

  static void Log(const paramType& aParam, std::wstring* aLog) {
    aLog->append(StringPrintf(L"Endpoint"));
  }
};

template <class PFooSide>
struct ParamTraits<mozilla::ipc::ManagedEndpoint<PFooSide>> {
  typedef mozilla::ipc::ManagedEndpoint<PFooSide> paramType;

  static void Write(Message* aMsg, const paramType& aParam) {
    IPC::WriteParam(aMsg, aParam.mId);
  }

  static bool Read(const Message* aMsg, PickleIterator* aIter,
                   paramType* aResult) {
    MOZ_RELEASE_ASSERT(aResult->mId == 0);

    if (!IPC::ReadParam(aMsg, aIter, &aResult->mId)) {
      return false;
    }
    return true;
  }

  static void Log(const paramType& aParam, std::wstring* aLog) {
    aLog->append(StringPrintf(L"ManagedEndpoint"));
  }
};

}  // namespace IPC

#endif  // mozilla_ipc_ProtocolUtils_h