DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (92ad4fa429a6)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "Blur.h"
#include <arm_neon.h>

namespace mozilla {
namespace gfx {

MOZ_ALWAYS_INLINE
uint16x4_t Divide(uint32x4_t aValues, uint32x2_t aDivisor) {
  uint64x2_t roundingAddition = vdupq_n_u64(int64_t(1) << 31);
  uint64x2_t multiplied21 = vmull_u32(vget_low_u32(aValues), aDivisor);
  uint64x2_t multiplied43 = vmull_u32(vget_high_u32(aValues), aDivisor);
  return vqmovn_u32(
      vcombine_u32(vshrn_n_u64(vaddq_u64(multiplied21, roundingAddition), 32),
                   vshrn_n_u64(vaddq_u64(multiplied43, roundingAddition), 32)));
}

MOZ_ALWAYS_INLINE
uint16x4_t BlurFourPixels(const uint32x4_t& aTopLeft,
                          const uint32x4_t& aTopRight,
                          const uint32x4_t& aBottomRight,
                          const uint32x4_t& aBottomLeft,
                          const uint32x2_t& aDivisor) {
  uint32x4_t values = vaddq_u32(
      vsubq_u32(vsubq_u32(aBottomRight, aTopRight), aBottomLeft), aTopLeft);
  return Divide(values, aDivisor);
}

MOZ_ALWAYS_INLINE
void LoadIntegralRowFromRow(uint32_t* aDest, const uint8_t* aSource,
                            int32_t aSourceWidth, int32_t aLeftInflation,
                            int32_t aRightInflation) {
  int32_t currentRowSum = 0;

  for (int x = 0; x < aLeftInflation; x++) {
    currentRowSum += aSource[0];
    aDest[x] = currentRowSum;
  }
  for (int x = aLeftInflation; x < (aSourceWidth + aLeftInflation); x++) {
    currentRowSum += aSource[(x - aLeftInflation)];
    aDest[x] = currentRowSum;
  }
  for (int x = (aSourceWidth + aLeftInflation);
       x < (aSourceWidth + aLeftInflation + aRightInflation); x++) {
    currentRowSum += aSource[aSourceWidth - 1];
    aDest[x] = currentRowSum;
  }
}

MOZ_ALWAYS_INLINE void GenerateIntegralImage_NEON(
    int32_t aLeftInflation, int32_t aRightInflation, int32_t aTopInflation,
    int32_t aBottomInflation, uint32_t* aIntegralImage,
    size_t aIntegralImageStride, uint8_t* aSource, int32_t aSourceStride,
    const IntSize& aSize) {
  MOZ_ASSERT(!(aLeftInflation & 3));

  uint32_t stride32bit = aIntegralImageStride / 4;
  IntSize integralImageSize(aSize.width + aLeftInflation + aRightInflation,
                            aSize.height + aTopInflation + aBottomInflation);

  LoadIntegralRowFromRow(aIntegralImage, aSource, aSize.width, aLeftInflation,
                         aRightInflation);

  for (int y = 1; y < aTopInflation + 1; y++) {
    uint32_t* intRow = aIntegralImage + (y * stride32bit);
    uint32_t* intPrevRow = aIntegralImage + (y - 1) * stride32bit;
    uint32_t* intFirstRow = aIntegralImage;

    for (int x = 0; x < integralImageSize.width; x += 4) {
      uint32x4_t firstRow = vld1q_u32(intFirstRow + x);
      uint32x4_t previousRow = vld1q_u32(intPrevRow + x);
      vst1q_u32(intRow + x, vaddq_u32(firstRow, previousRow));
    }
  }

  for (int y = aTopInflation + 1; y < (aSize.height + aTopInflation); y++) {
    uint32x4_t currentRowSum = vdupq_n_u32(0);
    uint32_t* intRow = aIntegralImage + (y * stride32bit);
    uint32_t* intPrevRow = aIntegralImage + (y - 1) * stride32bit;
    uint8_t* sourceRow = aSource + aSourceStride * (y - aTopInflation);

    uint32_t pixel = sourceRow[0];
    for (int x = 0; x < aLeftInflation; x += 4) {
      uint32_t temp[4];
      temp[0] = pixel;
      temp[1] = temp[0] + pixel;
      temp[2] = temp[1] + pixel;
      temp[3] = temp[2] + pixel;
      uint32x4_t sumPixels = vld1q_u32(temp);
      sumPixels = vaddq_u32(sumPixels, currentRowSum);
      currentRowSum = vdupq_n_u32(vgetq_lane_u32(sumPixels, 3));
      vst1q_u32(intRow + x, vaddq_u32(sumPixels, vld1q_u32(intPrevRow + x)));
    }

    for (int x = aLeftInflation; x < (aSize.width + aLeftInflation); x += 4) {
      // It's important to shuffle here. When we exit this loop currentRowSum
      // has to be set to sumPixels, so that the following loop can get the
      // correct pixel for the currentRowSum. The highest order pixel in
      // currentRowSum could've originated from accumulation in the stride.
      currentRowSum = vdupq_n_u32(vgetq_lane_u32(currentRowSum, 3));

      uint32_t temp[4];
      temp[0] = *(sourceRow + (x - aLeftInflation));
      temp[1] = temp[0] + *(sourceRow + (x - aLeftInflation) + 1);
      temp[2] = temp[1] + *(sourceRow + (x - aLeftInflation) + 2);
      temp[3] = temp[2] + *(sourceRow + (x - aLeftInflation) + 3);
      uint32x4_t sumPixels = vld1q_u32(temp);
      sumPixels = vaddq_u32(sumPixels, currentRowSum);
      currentRowSum = sumPixels;
      vst1q_u32(intRow + x, vaddq_u32(sumPixels, vld1q_u32(intPrevRow + x)));
    }

    pixel = sourceRow[aSize.width - 1];
    int x = (aSize.width + aLeftInflation);
    if ((aSize.width & 3)) {
      // Deal with unaligned portion. Get the correct pixel from currentRowSum,
      // see explanation above.
      uint32_t intCurrentRowSum =
          ((uint32_t*)&currentRowSum)[(aSize.width % 4) - 1];
      for (; x < integralImageSize.width; x++) {
        // We could be unaligned here!
        if (!(x & 3)) {
          // aligned!
          currentRowSum = vdupq_n_u32(intCurrentRowSum);
          break;
        }
        intCurrentRowSum += pixel;
        intRow[x] = intPrevRow[x] + intCurrentRowSum;
      }
    } else {
      currentRowSum = vdupq_n_u32(vgetq_lane_u32(currentRowSum, 3));
    }

    for (; x < integralImageSize.width; x += 4) {
      uint32_t temp[4];
      temp[0] = pixel;
      temp[1] = temp[0] + pixel;
      temp[2] = temp[1] + pixel;
      temp[3] = temp[2] + pixel;
      uint32x4_t sumPixels = vld1q_u32(temp);
      sumPixels = vaddq_u32(sumPixels, currentRowSum);
      currentRowSum = vdupq_n_u32(vgetq_lane_u32(sumPixels, 3));
      vst1q_u32(intRow + x, vaddq_u32(sumPixels, vld1q_u32(intPrevRow + x)));
    }
  }

  if (aBottomInflation) {
    // Store the last valid row of our source image in the last row of
    // our integral image. This will be overwritten with the correct values
    // in the upcoming loop.
    LoadIntegralRowFromRow(
        aIntegralImage + (integralImageSize.height - 1) * stride32bit,
        aSource + (aSize.height - 1) * aSourceStride, aSize.width,
        aLeftInflation, aRightInflation);

    for (int y = aSize.height + aTopInflation; y < integralImageSize.height;
         y++) {
      uint32_t* intRow = aIntegralImage + (y * stride32bit);
      uint32_t* intPrevRow = aIntegralImage + (y - 1) * stride32bit;
      uint32_t* intLastRow =
          aIntegralImage + (integralImageSize.height - 1) * stride32bit;
      for (int x = 0; x < integralImageSize.width; x += 4) {
        vst1q_u32(intRow + x, vaddq_u32(vld1q_u32(intLastRow + x),
                                        vld1q_u32(intPrevRow + x)));
      }
    }
  }
}

/**
 * Attempt to do an in-place box blur using an integral image.
 */
void AlphaBoxBlur::BoxBlur_NEON(uint8_t* aData, int32_t aLeftLobe,
                                int32_t aRightLobe, int32_t aTopLobe,
                                int32_t aBottomLobe, uint32_t* aIntegralImage,
                                size_t aIntegralImageStride) const {
  IntSize size = GetSize();

  MOZ_ASSERT(size.height > 0);

  // Our 'left' or 'top' lobe will include the current pixel. i.e. when
  // looking at an integral image the value of a pixel at 'x,y' is calculated
  // using the value of the integral image values above/below that.
  aLeftLobe++;
  aTopLobe++;
  int32_t boxSize = (aLeftLobe + aRightLobe) * (aTopLobe + aBottomLobe);

  MOZ_ASSERT(boxSize > 0);

  if (boxSize == 1) {
    return;
  }

  uint32_t reciprocal = uint32_t((uint64_t(1) << 32) / boxSize);
  uint32_t stride32bit = aIntegralImageStride / 4;
  int32_t leftInflation = RoundUpToMultipleOf4(aLeftLobe).value();

  GenerateIntegralImage_NEON(leftInflation, aRightLobe, aTopLobe, aBottomLobe,
                             aIntegralImage, aIntegralImageStride, aData,
                             mStride, size);

  uint32x2_t divisor = vdup_n_u32(reciprocal);

  // This points to the start of the rectangle within the IntegralImage that
  // overlaps the surface being blurred.
  uint32_t* innerIntegral =
      aIntegralImage + (aTopLobe * stride32bit) + leftInflation;
  IntRect skipRect = mSkipRect;
  int32_t stride = mStride;
  uint8_t* data = aData;

  for (int32_t y = 0; y < size.height; y++) {
    bool inSkipRectY = y > skipRect.y && y < skipRect.YMost();
    uint32_t* topLeftBase =
        innerIntegral + ((y - aTopLobe) * ptrdiff_t(stride32bit) - aLeftLobe);
    uint32_t* topRightBase =
        innerIntegral + ((y - aTopLobe) * ptrdiff_t(stride32bit) + aRightLobe);
    uint32_t* bottomRightBase =
        innerIntegral +
        ((y + aBottomLobe) * ptrdiff_t(stride32bit) + aRightLobe);
    uint32_t* bottomLeftBase =
        innerIntegral +
        ((y + aBottomLobe) * ptrdiff_t(stride32bit) - aLeftLobe);

    int32_t x = 0;
    // Process 16 pixels at a time for as long as possible.
    for (; x <= size.width - 16; x += 16) {
      if (inSkipRectY && x > skipRect.x && x < skipRect.XMost()) {
        x = skipRect.XMost() - 16;
        // Trigger early jump on coming loop iterations, this will be reset
        // next line anyway.
        inSkipRectY = false;
        continue;
      }

      uint32x4_t topLeft;
      uint32x4_t topRight;
      uint32x4_t bottomRight;
      uint32x4_t bottomLeft;
      topLeft = vld1q_u32(topLeftBase + x);
      topRight = vld1q_u32(topRightBase + x);
      bottomRight = vld1q_u32(bottomRightBase + x);
      bottomLeft = vld1q_u32(bottomLeftBase + x);
      uint16x4_t result1 =
          BlurFourPixels(topLeft, topRight, bottomRight, bottomLeft, divisor);

      topLeft = vld1q_u32(topLeftBase + x + 4);
      topRight = vld1q_u32(topRightBase + x + 4);
      bottomRight = vld1q_u32(bottomRightBase + x + 4);
      bottomLeft = vld1q_u32(bottomLeftBase + x + 4);
      uint16x4_t result2 =
          BlurFourPixels(topLeft, topRight, bottomRight, bottomLeft, divisor);

      topLeft = vld1q_u32(topLeftBase + x + 8);
      topRight = vld1q_u32(topRightBase + x + 8);
      bottomRight = vld1q_u32(bottomRightBase + x + 8);
      bottomLeft = vld1q_u32(bottomLeftBase + x + 8);
      uint16x4_t result3 =
          BlurFourPixels(topLeft, topRight, bottomRight, bottomLeft, divisor);

      topLeft = vld1q_u32(topLeftBase + x + 12);
      topRight = vld1q_u32(topRightBase + x + 12);
      bottomRight = vld1q_u32(bottomRightBase + x + 12);
      bottomLeft = vld1q_u32(bottomLeftBase + x + 12);
      uint16x4_t result4 =
          BlurFourPixels(topLeft, topRight, bottomRight, bottomLeft, divisor);

      uint8x8_t combine1 = vqmovn_u16(vcombine_u16(result1, result2));
      uint8x8_t combine2 = vqmovn_u16(vcombine_u16(result3, result4));
      uint8x16_t final = vcombine_u8(combine1, combine2);
      vst1q_u8(data + stride * y + x, final);
    }

    // Process the remaining pixels 4 bytes at a time.
    for (; x < size.width; x += 4) {
      if (inSkipRectY && x > skipRect.x && x < skipRect.XMost()) {
        x = skipRect.XMost() - 4;
        // Trigger early jump on coming loop iterations, this will be reset
        // next line anyway.
        inSkipRectY = false;
        continue;
      }

      uint32x4_t topLeft = vld1q_u32(topLeftBase + x);
      uint32x4_t topRight = vld1q_u32(topRightBase + x);
      uint32x4_t bottomRight = vld1q_u32(bottomRightBase + x);
      uint32x4_t bottomLeft = vld1q_u32(bottomLeftBase + x);
      uint16x4_t result =
          BlurFourPixels(topLeft, topRight, bottomRight, bottomLeft, divisor);
      uint32x2_t final =
          vreinterpret_u32_u8(vmovn_u16(vcombine_u16(result, vdup_n_u16(0))));
      *(uint32_t*)(data + stride * y + x) = vget_lane_u32(final, 0);
    }
  }
}

}  // namespace gfx
}  // namespace mozilla