DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
/*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/video_coding/session_info.h"

#include "modules/video_coding/packet.h"
#include "rtc_base/logging.h"

namespace webrtc {

namespace {

uint16_t BufferToUWord16(const uint8_t* dataBuffer) {
  return (dataBuffer[0] << 8) | dataBuffer[1];
}

}  // namespace

VCMSessionInfo::VCMSessionInfo()
    : session_nack_(false),
      complete_(false),
      decodable_(false),
      frame_type_(kVideoFrameDelta),
      packets_(),
      empty_seq_num_low_(-1),
      empty_seq_num_high_(-1),
      first_packet_seq_num_(-1),
      last_packet_seq_num_(-1) {}

void VCMSessionInfo::UpdateDataPointers(const uint8_t* old_base_ptr,
                                        const uint8_t* new_base_ptr) {
  for (PacketIterator it = packets_.begin(); it != packets_.end(); ++it)
    if ((*it).dataPtr != NULL) {
      assert(old_base_ptr != NULL && new_base_ptr != NULL);
      (*it).dataPtr = new_base_ptr + ((*it).dataPtr - old_base_ptr);
    }
}

int VCMSessionInfo::LowSequenceNumber() const {
  if (packets_.empty())
    return empty_seq_num_low_;
  return packets_.front().seqNum;
}

int VCMSessionInfo::HighSequenceNumber() const {
  if (packets_.empty())
    return empty_seq_num_high_;
  if (empty_seq_num_high_ == -1)
    return packets_.back().seqNum;
  return LatestSequenceNumber(packets_.back().seqNum, empty_seq_num_high_);
}

int VCMSessionInfo::PictureId() const {
  if (packets_.empty())
    return kNoPictureId;
  if (packets_.front().video_header.codec == kRtpVideoVp8) {
    return packets_.front().video_header.codecHeader.VP8.pictureId;
  } else if (packets_.front().video_header.codec == kRtpVideoVp9) {
    return packets_.front().video_header.codecHeader.VP9.picture_id;
  } else {
    return kNoPictureId;
  }
}

int VCMSessionInfo::TemporalId() const {
  if (packets_.empty())
    return kNoTemporalIdx;
  if (packets_.front().video_header.codec == kRtpVideoVp8) {
    return packets_.front().video_header.codecHeader.VP8.temporalIdx;
  } else if (packets_.front().video_header.codec == kRtpVideoVp9) {
    return packets_.front().video_header.codecHeader.VP9.temporal_idx;
  } else {
    return kNoTemporalIdx;
  }
}

bool VCMSessionInfo::LayerSync() const {
  if (packets_.empty())
    return false;
  if (packets_.front().video_header.codec == kRtpVideoVp8) {
    return packets_.front().video_header.codecHeader.VP8.layerSync;
  } else if (packets_.front().video_header.codec == kRtpVideoVp9) {
    return packets_.front().video_header.codecHeader.VP9.temporal_up_switch;
  } else {
    return false;
  }
}

int VCMSessionInfo::Tl0PicId() const {
  if (packets_.empty())
    return kNoTl0PicIdx;
  if (packets_.front().video_header.codec == kRtpVideoVp8) {
    return packets_.front().video_header.codecHeader.VP8.tl0PicIdx;
  } else if (packets_.front().video_header.codec == kRtpVideoVp9) {
    return packets_.front().video_header.codecHeader.VP9.tl0_pic_idx;
  } else {
    return kNoTl0PicIdx;
  }
}

bool VCMSessionInfo::NonReference() const {
  if (packets_.empty() || packets_.front().video_header.codec != kRtpVideoVp8)
    return false;
  return packets_.front().video_header.codecHeader.VP8.nonReference;
}

std::vector<NaluInfo> VCMSessionInfo::GetNaluInfos() const {
  if (packets_.empty() || packets_.front().video_header.codec != kRtpVideoH264)
    return std::vector<NaluInfo>();
  std::vector<NaluInfo> nalu_infos;
  for (const VCMPacket& packet : packets_) {
    for (size_t i = 0; i < packet.video_header.codecHeader.H264.nalus_length;
         ++i) {
      nalu_infos.push_back(packet.video_header.codecHeader.H264.nalus[i]);
    }
  }
  return nalu_infos;
}

void VCMSessionInfo::SetGofInfo(const GofInfoVP9& gof_info, size_t idx) {
  if (packets_.empty() || packets_.front().video_header.codec != kRtpVideoVp9 ||
      packets_.front().video_header.codecHeader.VP9.flexible_mode) {
    return;
  }
  packets_.front().video_header.codecHeader.VP9.temporal_idx =
      gof_info.temporal_idx[idx];
  packets_.front().video_header.codecHeader.VP9.temporal_up_switch =
      gof_info.temporal_up_switch[idx];
  packets_.front().video_header.codecHeader.VP9.num_ref_pics =
      gof_info.num_ref_pics[idx];
  for (uint8_t i = 0; i < gof_info.num_ref_pics[idx]; ++i) {
    packets_.front().video_header.codecHeader.VP9.pid_diff[i] =
        gof_info.pid_diff[idx][i];
  }
}

void VCMSessionInfo::Reset() {
  session_nack_ = false;
  complete_ = false;
  decodable_ = false;
  frame_type_ = kVideoFrameDelta;
  packets_.clear();
  empty_seq_num_low_ = -1;
  empty_seq_num_high_ = -1;
  first_packet_seq_num_ = -1;
  last_packet_seq_num_ = -1;
}

size_t VCMSessionInfo::SessionLength() const {
  size_t length = 0;
  for (PacketIteratorConst it = packets_.begin(); it != packets_.end(); ++it)
    length += (*it).sizeBytes;
  return length;
}

int VCMSessionInfo::NumPackets() const {
  return packets_.size();
}

size_t VCMSessionInfo::InsertBuffer(uint8_t* frame_buffer,
                                    PacketIterator packet_it) {
  VCMPacket& packet = *packet_it;
  PacketIterator it;

  // Calculate the offset into the frame buffer for this packet.
  size_t offset = 0;
  for (it = packets_.begin(); it != packet_it; ++it)
    offset += (*it).sizeBytes;

  // Set the data pointer to pointing to the start of this packet in the
  // frame buffer.
  const uint8_t* packet_buffer = packet.dataPtr;
  packet.dataPtr = frame_buffer + offset;

  // We handle H.264 STAP-A packets in a special way as we need to remove the
  // two length bytes between each NAL unit, and potentially add start codes.
  // TODO(pbos): Remove H264 parsing from this step and use a fragmentation
  // header supplied by the H264 depacketizer.
  const size_t kH264NALHeaderLengthInBytes = 1;
  const size_t kLengthFieldLength = 2;
  if (packet.video_header.codec == kRtpVideoH264 &&
      packet.video_header.codecHeader.H264.packetization_type == kH264StapA) {
    size_t required_length = 0;
    const uint8_t* nalu_ptr = packet_buffer + kH264NALHeaderLengthInBytes;
    // Must check that incoming data length doesn't extend past end of buffer.
    // We allow for 100 bytes of expansion due to startcodes being longer than
    // length fields.
    while (nalu_ptr + kLengthFieldLength <= packet_buffer + packet.sizeBytes) {
      size_t length = BufferToUWord16(nalu_ptr);
      if (nalu_ptr + kLengthFieldLength + length <= packet_buffer + packet.sizeBytes) {
        required_length +=
          length + (packet.insertStartCode ? kH264StartCodeLengthBytes : 0);
        nalu_ptr += kLengthFieldLength + length;
      } else {
        // Something is very wrong!
        RTC_LOG(LS_ERROR) << "Failed to insert packet due to corrupt H264 STAP-A";
        return 0;
      }
    }
    ShiftSubsequentPackets(packet_it, required_length);
    nalu_ptr = packet_buffer + kH264NALHeaderLengthInBytes;
    uint8_t* frame_buffer_ptr = frame_buffer + offset;
    // we already know we won't go past end-of-buffer
    while (nalu_ptr + kLengthFieldLength <= packet_buffer + packet.sizeBytes) {
      size_t length = BufferToUWord16(nalu_ptr);
      nalu_ptr += kLengthFieldLength;
      frame_buffer_ptr += Insert(nalu_ptr, length, packet.insertStartCode,
                                 const_cast<uint8_t*>(frame_buffer_ptr));
      nalu_ptr += length;
    }
    packet.sizeBytes = required_length;
    return packet.sizeBytes;
  }
  ShiftSubsequentPackets(
      packet_it, packet.sizeBytes +
                     (packet.insertStartCode ? kH264StartCodeLengthBytes : 0));

  packet.sizeBytes =
      Insert(packet_buffer, packet.sizeBytes, packet.insertStartCode,
             const_cast<uint8_t*>(packet.dataPtr));
  return packet.sizeBytes;
}

size_t VCMSessionInfo::Insert(const uint8_t* buffer,
                              size_t length,
                              bool insert_start_code,
                              uint8_t* frame_buffer) {
  if (insert_start_code) {
    const unsigned char startCode[] = {0, 0, 0, 1};
    memcpy(frame_buffer, startCode, kH264StartCodeLengthBytes);
  }
  memcpy(frame_buffer + (insert_start_code ? kH264StartCodeLengthBytes : 0),
         buffer, length);
  length += (insert_start_code ? kH264StartCodeLengthBytes : 0);

  return length;
}

void VCMSessionInfo::ShiftSubsequentPackets(PacketIterator it,
                                            int steps_to_shift) {
  ++it;
  if (it == packets_.end())
    return;
  uint8_t* first_packet_ptr = const_cast<uint8_t*>((*it).dataPtr);
  int shift_length = 0;
  // Calculate the total move length and move the data pointers in advance.
  for (; it != packets_.end(); ++it) {
    shift_length += (*it).sizeBytes;
    if ((*it).dataPtr != NULL)
      (*it).dataPtr += steps_to_shift;
  }
  memmove(first_packet_ptr + steps_to_shift, first_packet_ptr, shift_length);
}

void VCMSessionInfo::UpdateCompleteSession() {
  if (HaveFirstPacket() && HaveLastPacket()) {
    // Do we have all the packets in this session?
    bool complete_session = true;
    PacketIterator it = packets_.begin();
    PacketIterator prev_it = it;
    ++it;
    for (; it != packets_.end(); ++it) {
      if (!InSequence(it, prev_it)) {
        complete_session = false;
        break;
      }
      prev_it = it;
    }
    complete_ = complete_session;
  }
}

void VCMSessionInfo::UpdateDecodableSession(const FrameData& frame_data) {
  // Irrelevant if session is already complete or decodable
  if (complete_ || decodable_)
    return;
  // TODO(agalusza): Account for bursty loss.
  // TODO(agalusza): Refine these values to better approximate optimal ones.
  // Do not decode frames if the RTT is lower than this.
  const int64_t kRttThreshold = 100;
  // Do not decode frames if the number of packets is between these two
  // thresholds.
  const float kLowPacketPercentageThreshold = 0.2f;
  const float kHighPacketPercentageThreshold = 0.8f;
  if (frame_data.rtt_ms < kRttThreshold || frame_type_ == kVideoFrameKey ||
      !HaveFirstPacket() ||
      (NumPackets() <= kHighPacketPercentageThreshold *
                           frame_data.rolling_average_packets_per_frame &&
       NumPackets() > kLowPacketPercentageThreshold *
                          frame_data.rolling_average_packets_per_frame))
    return;

  decodable_ = true;
}

bool VCMSessionInfo::complete() const {
  return complete_;
}

bool VCMSessionInfo::decodable() const {
  return decodable_;
}

// Find the end of the NAL unit which the packet pointed to by |packet_it|
// belongs to. Returns an iterator to the last packet of the frame if the end
// of the NAL unit wasn't found.
VCMSessionInfo::PacketIterator VCMSessionInfo::FindNaluEnd(
    PacketIterator packet_it) const {
  if ((*packet_it).completeNALU == kNaluEnd ||
      (*packet_it).completeNALU == kNaluComplete) {
    return packet_it;
  }
  // Find the end of the NAL unit.
  for (; packet_it != packets_.end(); ++packet_it) {
    if (((*packet_it).completeNALU == kNaluComplete &&
         (*packet_it).sizeBytes > 0) ||
        // Found next NALU.
        (*packet_it).completeNALU == kNaluStart)
      return --packet_it;
    if ((*packet_it).completeNALU == kNaluEnd)
      return packet_it;
  }
  // The end wasn't found.
  return --packet_it;
}

size_t VCMSessionInfo::DeletePacketData(PacketIterator start,
                                        PacketIterator end) {
  size_t bytes_to_delete = 0;  // The number of bytes to delete.
  PacketIterator packet_after_end = end;
  ++packet_after_end;

  // Get the number of bytes to delete.
  // Clear the size of these packets.
  for (PacketIterator it = start; it != packet_after_end; ++it) {
    bytes_to_delete += (*it).sizeBytes;
    (*it).sizeBytes = 0;
    (*it).dataPtr = NULL;
  }
  if (bytes_to_delete > 0)
    ShiftSubsequentPackets(end, -static_cast<int>(bytes_to_delete));
  return bytes_to_delete;
}

VCMSessionInfo::PacketIterator VCMSessionInfo::FindNextPartitionBeginning(
    PacketIterator it) const {
  while (it != packets_.end()) {
    if ((*it).video_header.codecHeader.VP8.beginningOfPartition) {
      return it;
    }
    ++it;
  }
  return it;
}

VCMSessionInfo::PacketIterator VCMSessionInfo::FindPartitionEnd(
    PacketIterator it) const {
  assert((*it).codec == kVideoCodecVP8);
  PacketIterator prev_it = it;
  const int partition_id = (*it).video_header.codecHeader.VP8.partitionId;
  while (it != packets_.end()) {
    bool beginning = (*it).video_header.codecHeader.VP8.beginningOfPartition;
    int current_partition_id = (*it).video_header.codecHeader.VP8.partitionId;
    bool packet_loss_found = (!beginning && !InSequence(it, prev_it));
    if (packet_loss_found ||
        (beginning && current_partition_id != partition_id)) {
      // Missing packet, the previous packet was the last in sequence.
      return prev_it;
    }
    prev_it = it;
    ++it;
  }
  return prev_it;
}

bool VCMSessionInfo::InSequence(const PacketIterator& packet_it,
                                const PacketIterator& prev_packet_it) {
  // If the two iterators are pointing to the same packet they are considered
  // to be in sequence.
  return (packet_it == prev_packet_it ||
          (static_cast<uint16_t>((*prev_packet_it).seqNum + 1) ==
           (*packet_it).seqNum));
}

size_t VCMSessionInfo::MakeDecodable() {
  size_t return_length = 0;
  if (packets_.empty()) {
    return 0;
  }
  PacketIterator it = packets_.begin();
  // Make sure we remove the first NAL unit if it's not decodable.
  if ((*it).completeNALU == kNaluIncomplete || (*it).completeNALU == kNaluEnd) {
    PacketIterator nalu_end = FindNaluEnd(it);
    return_length += DeletePacketData(it, nalu_end);
    it = nalu_end;
  }
  PacketIterator prev_it = it;
  // Take care of the rest of the NAL units.
  for (; it != packets_.end(); ++it) {
    bool start_of_nalu = ((*it).completeNALU == kNaluStart ||
                          (*it).completeNALU == kNaluComplete);
    if (!start_of_nalu && !InSequence(it, prev_it)) {
      // Found a sequence number gap due to packet loss.
      PacketIterator nalu_end = FindNaluEnd(it);
      return_length += DeletePacketData(it, nalu_end);
      it = nalu_end;
    }
    prev_it = it;
  }
  return return_length;
}

void VCMSessionInfo::SetNotDecodableIfIncomplete() {
  // We don't need to check for completeness first because the two are
  // orthogonal. If complete_ is true, decodable_ is irrelevant.
  decodable_ = false;
}

bool VCMSessionInfo::HaveFirstPacket() const {
  return !packets_.empty() && (first_packet_seq_num_ != -1);
}

bool VCMSessionInfo::HaveLastPacket() const {
  return !packets_.empty() && (last_packet_seq_num_ != -1);
}

bool VCMSessionInfo::session_nack() const {
  return session_nack_;
}

int VCMSessionInfo::InsertPacket(const VCMPacket& packet,
                                 uint8_t* frame_buffer,
                                 VCMDecodeErrorMode decode_error_mode,
                                 const FrameData& frame_data) {
  if (packet.frameType == kEmptyFrame) {
    // Update sequence number of an empty packet.
    // Only media packets are inserted into the packet list.
    InformOfEmptyPacket(packet.seqNum);
    return 0;
  }

  if (packets_.size() == kMaxPacketsInSession) {
    RTC_LOG(LS_ERROR) << "Max number of packets per frame has been reached.";
    return -1;
  }

  // Find the position of this packet in the packet list in sequence number
  // order and insert it. Loop over the list in reverse order.
  ReversePacketIterator rit = packets_.rbegin();
  for (; rit != packets_.rend(); ++rit)
    if (LatestSequenceNumber(packet.seqNum, (*rit).seqNum) == packet.seqNum)
      break;

  // Check for duplicate packets.
  if (rit != packets_.rend() && (*rit).seqNum == packet.seqNum &&
      (*rit).sizeBytes > 0)
    return -2;

  if (packet.codec == kVideoCodecH264) {
    // H.264 can have leading or trailing non-VCL (Video Coding Layer)
    // NALUs, such as SPS/PPS/SEI and others.  Also, the RTP marker bit is
    // not reliable for the last packet of a frame (RFC 6184 5.1 - "Decoders
    // [] MUST NOT rely on this property"), so allow out-of-order packets to
    // update the first and last seq# range.  Also mark as a key frame if
    // any packet is of that type.
    if (frame_type_ != kVideoFrameKey) {
      frame_type_ = packet.frameType;
    }
    if (packet.is_first_packet_in_frame &&
        (first_packet_seq_num_ == -1 ||
         IsNewerSequenceNumber(first_packet_seq_num_, packet.seqNum))) {
      first_packet_seq_num_ = packet.seqNum;
    }
    // Note: the code does *not* currently handle the Marker bit being totally
    // absent from a frame.  It does not, however, depend on it being on the last
    // packet of the 'frame'/'session'.
    if (packet.markerBit &&
        (last_packet_seq_num_ == -1 ||
         IsNewerSequenceNumber(packet.seqNum, last_packet_seq_num_))) {
      last_packet_seq_num_ = packet.seqNum;
    }
  } else {
    // Only insert media packets between first and last packets (when
    // available).
    // Placing check here, as to properly account for duplicate packets.
    // Check if this is first packet (only valid for some codecs)
    // Should only be set for one packet per session.
    if (packet.is_first_packet_in_frame && first_packet_seq_num_ == -1) {
      // The first packet in a frame signals the frame type.
      frame_type_ = packet.frameType;
      // Store the sequence number for the first packet.
      first_packet_seq_num_ = static_cast<int>(packet.seqNum);
    } else if (first_packet_seq_num_ != -1 &&
               IsNewerSequenceNumber(first_packet_seq_num_, packet.seqNum)) {
      RTC_LOG(LS_WARNING)
          << "Received packet with a sequence number which is out "
             "of frame boundaries";
      return -3;
    } else if (frame_type_ == kEmptyFrame && packet.frameType != kEmptyFrame) {
      // Update the frame type with the type of the first media packet.
      // TODO(mikhal): Can this trigger?
      frame_type_ = packet.frameType;
    }

    // Track the marker bit, should only be set for one packet per session.
    if (packet.markerBit && last_packet_seq_num_ == -1) {
      last_packet_seq_num_ = static_cast<int>(packet.seqNum);
    } else if (last_packet_seq_num_ != -1 &&
               IsNewerSequenceNumber(packet.seqNum, last_packet_seq_num_)) {
      RTC_LOG(LS_WARNING)
          << "Received packet with a sequence number which is out "
             "of frame boundaries";
      return -3;
    }
  }

  // The insert operation invalidates the iterator |rit|.
  PacketIterator packet_list_it = packets_.insert(rit.base(), packet);

  size_t returnLength = InsertBuffer(frame_buffer, packet_list_it);
  UpdateCompleteSession();
  // We call MakeDecodable() before decoding, which removes packets after a loss
  // (and which means h.264 mode 1 frames with a loss in the first packet will be
  // totally removed)
  if (decode_error_mode == kWithErrors)
    decodable_ = true;
  else if (decode_error_mode == kSelectiveErrors)
    UpdateDecodableSession(frame_data);
  return static_cast<int>(returnLength);
}

void VCMSessionInfo::InformOfEmptyPacket(uint16_t seq_num) {
  // Empty packets may be FEC or filler packets. They are sequential and
  // follow the data packets, therefore, we should only keep track of the high
  // and low sequence numbers and may assume that the packets in between are
  // empty packets belonging to the same frame (timestamp).
  if (empty_seq_num_high_ == -1)
    empty_seq_num_high_ = seq_num;
  else
    empty_seq_num_high_ = LatestSequenceNumber(seq_num, empty_seq_num_high_);
  if (empty_seq_num_low_ == -1 ||
      IsNewerSequenceNumber(empty_seq_num_low_, seq_num))
    empty_seq_num_low_ = seq_num;
}

}  // namespace webrtc