DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (3605f84159bc)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
/* udis86 - libudis86/decode.c
 * 
 * Copyright (c) 2002-2009 Vivek Thampi
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without modification, 
 * are permitted provided that the following conditions are met:
 * 
 *     * Redistributions of source code must retain the above copyright notice, 
 *       this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright notice, 
 *       this list of conditions and the following disclaimer in the documentation 
 *       and/or other materials provided with the distribution.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
#include "udint.h"
#include "types.h"
#include "decode.h"

#ifndef __UD_STANDALONE__
# include <string.h>
#endif /* __UD_STANDALONE__ */

/* The max number of prefixes to an instruction */
#define MAX_PREFIXES    15

/* rex prefix bits */
#define REX_W(r)        ( ( 0xF & ( r ) )  >> 3 )
#define REX_R(r)        ( ( 0x7 & ( r ) )  >> 2 )
#define REX_X(r)        ( ( 0x3 & ( r ) )  >> 1 )
#define REX_B(r)        ( ( 0x1 & ( r ) )  >> 0 )
#define REX_PFX_MASK(n) ( ( P_REXW(n) << 3 ) | \
                          ( P_REXR(n) << 2 ) | \
                          ( P_REXX(n) << 1 ) | \
                          ( P_REXB(n) << 0 ) )

/* scable-index-base bits */
#define SIB_S(b)        ( ( b ) >> 6 )
#define SIB_I(b)        ( ( ( b ) >> 3 ) & 7 )
#define SIB_B(b)        ( ( b ) & 7 )

/* modrm bits */
#define MODRM_REG(b)    ( ( ( b ) >> 3 ) & 7 )
#define MODRM_NNN(b)    ( ( ( b ) >> 3 ) & 7 )
#define MODRM_MOD(b)    ( ( ( b ) >> 6 ) & 3 )
#define MODRM_RM(b)     ( ( b ) & 7 )

static int decode_ext(struct ud *u, uint16_t ptr);

enum reg_class { /* register classes */
  REGCLASS_GPR,
  REGCLASS_MMX,
  REGCLASS_CR,
  REGCLASS_DB,
  REGCLASS_SEG,
  REGCLASS_XMM
};

 /* 
 * inp_start
 *    Should be called before each de-code operation.
 */
static void
inp_start(struct ud *u)
{
  u->inp_ctr = 0;
}

   
static uint8_t
inp_next(struct ud *u)
{
  if (u->inp_end == 0) {
    if (u->inp_buf != NULL) {
      if (u->inp_buf_index < u->inp_buf_size) {
        u->inp_ctr++;
        return (u->inp_curr = u->inp_buf[u->inp_buf_index++]);
      }
    } else {
      MOZ_CRASH();
    }
  }
  u->inp_end = 1;
  UDERR(u, "byte expected, eoi received\n");
  return 0;
}

static uint8_t
inp_curr(struct ud *u)
{
  return u->inp_curr;
}


/*
 * inp_uint8
 * int_uint16
 * int_uint32
 * int_uint64
 *    Load little-endian values from input
 */
static uint8_t 
inp_uint8(struct ud* u)
{
  return inp_next(u);
}

static uint16_t 
inp_uint16(struct ud* u)
{
  uint16_t r, ret;

  ret = inp_next(u);
  r = inp_next(u);
  return ret | (r << 8);
}

static uint32_t 
inp_uint32(struct ud* u)
{
  uint32_t r, ret;

  ret = inp_next(u);
  r = inp_next(u);
  ret = ret | (r << 8);
  r = inp_next(u);
  ret = ret | (r << 16);
  r = inp_next(u);
  return ret | (r << 24);
}

static uint64_t 
inp_uint64(struct ud* u)
{
  uint64_t r, ret;

  ret = inp_next(u);
  r = inp_next(u);
  ret = ret | (r << 8);
  r = inp_next(u);
  ret = ret | (r << 16);
  r = inp_next(u);
  ret = ret | (r << 24);
  r = inp_next(u);
  ret = ret | (r << 32);
  r = inp_next(u);
  ret = ret | (r << 40);
  r = inp_next(u);
  ret = ret | (r << 48);
  r = inp_next(u);
  return ret | (r << 56);
}


static inline int
eff_opr_mode(int dis_mode, int rex_w, int pfx_opr)
{
  if (dis_mode == 64) {
    return rex_w ? 64 : (pfx_opr ? 16 : 32);
  } else if (dis_mode == 32) {
    return pfx_opr ? 16 : 32;
  } else {
    UD_ASSERT(dis_mode == 16);
    return pfx_opr ? 32 : 16;
  }
}


static inline int
eff_adr_mode(int dis_mode, int pfx_adr)
{
  if (dis_mode == 64) {
    return pfx_adr ? 32 : 64;
  } else if (dis_mode == 32) {
    return pfx_adr ? 16 : 32;
  } else {
    UD_ASSERT(dis_mode == 16);
    return pfx_adr ? 32 : 16;
  }
}


/* 
 * decode_prefixes
 *
 *  Extracts instruction prefixes.
 */
static int 
decode_prefixes(struct ud *u)
{
  int done = 0;
  uint8_t curr = 0, last = 0;
  UD_RETURN_ON_ERROR(u);

  do {
    last = curr;
    curr = inp_next(u); 
    UD_RETURN_ON_ERROR(u);
    if (u->inp_ctr == MAX_INSN_LENGTH) {
      UD_RETURN_WITH_ERROR(u, "max instruction length");
    }
   
    switch (curr)  
    {
    case 0x2E: 
      u->pfx_seg = UD_R_CS; 
      break;
    case 0x36:     
      u->pfx_seg = UD_R_SS; 
      break;
    case 0x3E: 
      u->pfx_seg = UD_R_DS; 
      break;
    case 0x26: 
      u->pfx_seg = UD_R_ES; 
      break;
    case 0x64: 
      u->pfx_seg = UD_R_FS; 
      break;
    case 0x65: 
      u->pfx_seg = UD_R_GS; 
      break;
    case 0x67: /* adress-size override prefix */ 
      u->pfx_adr = 0x67;
      break;
    case 0xF0: 
      u->pfx_lock = 0xF0;
      break;
    case 0x66: 
      u->pfx_opr = 0x66;
      break;
    case 0xF2:
      u->pfx_str = 0xf2;
      break;
    case 0xF3:
      u->pfx_str = 0xf3;
      break;
    default:
      /* consume if rex */
      done = (u->dis_mode == 64 && (curr & 0xF0) == 0x40) ? 0 : 1;
      break;
    }
  } while (!done);
  /* rex prefixes in 64bit mode, must be the last prefix */
  if (u->dis_mode == 64 && (last & 0xF0) == 0x40) {
    u->pfx_rex = last;  
  }
  return 0;
}


static inline unsigned int modrm( struct ud * u )
{
    if ( !u->have_modrm ) {
        u->modrm = inp_next( u );
        u->have_modrm = 1;
    }
    return u->modrm;
}


static unsigned int
resolve_operand_size( const struct ud * u, unsigned int s )
{
    switch ( s ) 
    {
    case SZ_V:
        return ( u->opr_mode );
    case SZ_Z:  
        return ( u->opr_mode == 16 ) ? 16 : 32;
    case SZ_Y:
        return ( u->opr_mode == 16 ) ? 32 : u->opr_mode;
    case SZ_RDQ:
        return ( u->dis_mode == 64 ) ? 64 : 32;
    default:
        return s;
    }
}


static int resolve_mnemonic( struct ud* u )
{
  /* resolve 3dnow weirdness. */
  if ( u->mnemonic == UD_I3dnow ) {
    u->mnemonic = ud_itab[ u->le->table[ inp_curr( u )  ] ].mnemonic;
  }
  /* SWAPGS is only valid in 64bits mode */
  if ( u->mnemonic == UD_Iswapgs && u->dis_mode != 64 ) {
    UDERR(u, "swapgs invalid in 64bits mode\n");
    return -1;
  }

  if (u->mnemonic == UD_Ixchg) {
    if ((u->operand[0].type == UD_OP_REG && u->operand[0].base == UD_R_AX  &&
         u->operand[1].type == UD_OP_REG && u->operand[1].base == UD_R_AX) ||
        (u->operand[0].type == UD_OP_REG && u->operand[0].base == UD_R_EAX &&
         u->operand[1].type == UD_OP_REG && u->operand[1].base == UD_R_EAX)) {
      u->operand[0].type = UD_NONE;
      u->operand[1].type = UD_NONE;
      u->mnemonic = UD_Inop;
    }
  }

  if (u->mnemonic == UD_Inop && u->pfx_repe) {
    u->pfx_repe = 0;
    u->mnemonic = UD_Ipause;
  }
  return 0;
}


/* -----------------------------------------------------------------------------
 * decode_a()- Decodes operands of the type seg:offset
 * -----------------------------------------------------------------------------
 */
static void 
decode_a(struct ud* u, struct ud_operand *op)
{
  if (u->opr_mode == 16) {  
    /* seg16:off16 */
    op->type = UD_OP_PTR;
    op->size = 32;
    op->lval.ptr.off = inp_uint16(u);
    op->lval.ptr.seg = inp_uint16(u);
  } else {
    /* seg16:off32 */
    op->type = UD_OP_PTR;
    op->size = 48;
    op->lval.ptr.off = inp_uint32(u);
    op->lval.ptr.seg = inp_uint16(u);
  }
}

/* -----------------------------------------------------------------------------
 * decode_gpr() - Returns decoded General Purpose Register 
 * -----------------------------------------------------------------------------
 */
static int
decode_gpr(struct ud* u, unsigned int s, unsigned char rm)
{
  switch (s) {
    case 64:
        return UD_R_RAX + rm;
    case 32:
        return UD_R_EAX + rm;
    case 16:
        return UD_R_AX  + rm;
    case  8:
        if (u->dis_mode == 64 && u->pfx_rex) {
            if (rm >= 4)
                return UD_R_SPL + (rm-4);
            return UD_R_AL + rm;
        } else return UD_R_AL + rm;
    case 0:
        /* invalid size in case of a decode error */
        UD_ASSERT(u->error);
        return UD_NONE;
    default:
        UD_ASSERT(!(size_t)"invalid operand size");
        return UD_NONE;
  }
}

static void
decode_reg(struct ud *u, 
           struct ud_operand *opr,
           int type,
           int num,
           int size)
{
  int reg;
  size = resolve_operand_size(u, size);
  switch (type) {
    case REGCLASS_GPR : reg = decode_gpr(u, size, num); break;
    case REGCLASS_MMX : reg = UD_R_MM0  + (num & 7); break;
    case REGCLASS_XMM : reg = UD_R_XMM0 + num; break;
    case REGCLASS_CR : reg = UD_R_CR0  + num; break;
    case REGCLASS_DB : reg = UD_R_DR0  + num; break;
    case REGCLASS_SEG : {
      /*
       * Only 6 segment registers, anything else is an error.
       */
      if ((num & 7) > 5) {
        UDERR(u, "invalid segment register value\n");
        return;
      } else {
        reg = UD_R_ES + (num & 7);
      }
      break;
    }
    default:
      UD_ASSERT(!(size_t)"invalid register type");
      return;
  }
  opr->type = UD_OP_REG;
  opr->base = reg;
  opr->size = size;
}


/*
 * decode_imm 
 *
 *    Decode Immediate values.
 */
static void 
decode_imm(struct ud* u, unsigned int size, struct ud_operand *op)
{
  op->size = resolve_operand_size(u, size);
  op->type = UD_OP_IMM;

  switch (op->size) {
  case  8: op->lval.sbyte = inp_uint8(u);   break;
  case 16: op->lval.uword = inp_uint16(u);  break;
  case 32: op->lval.udword = inp_uint32(u); break;
  case 64: op->lval.uqword = inp_uint64(u); break;
  default: return;
  }
}


/* 
 * decode_mem_disp
 *
 *    Decode mem address displacement.
 */
static void 
decode_mem_disp(struct ud* u, unsigned int size, struct ud_operand *op)
{
  switch (size) {
  case 8:
    op->offset = 8; 
    op->lval.ubyte  = inp_uint8(u);
    break;
  case 16:
    op->offset = 16; 
    op->lval.uword  = inp_uint16(u); 
    break;
  case 32:
    op->offset = 32; 
    op->lval.udword = inp_uint32(u); 
    break;
  case 64:
    op->offset = 64; 
    op->lval.uqword = inp_uint64(u); 
    break;
  default:
      return;
  }
}


/*
 * decode_modrm_reg
 *
 *    Decodes reg field of mod/rm byte
 * 
 */
static inline void
decode_modrm_reg(struct ud         *u, 
                 struct ud_operand *operand,
                 unsigned int       type,
                 unsigned int       size)
{
  uint8_t reg = (REX_R(u->pfx_rex) << 3) | MODRM_REG(modrm(u));
  decode_reg(u, operand, type, reg, size);
}


/*
 * decode_modrm_rm
 *
 *    Decodes rm field of mod/rm byte
 * 
 */
static void 
decode_modrm_rm(struct ud         *u, 
                struct ud_operand *op,
                unsigned char      type,    /* register type */
                unsigned int       size)    /* operand size */

{
  size_t offset = 0;
  unsigned char mod, rm;

  /* get mod, r/m and reg fields */
  mod = MODRM_MOD(modrm(u));
  rm  = (REX_B(u->pfx_rex) << 3) | MODRM_RM(modrm(u));

  /* 
   * If mod is 11b, then the modrm.rm specifies a register.
   *
   */
  if (mod == 3) {
    decode_reg(u, op, type, rm, size);
    return;
  }

  /* 
   * !11b => Memory Address
   */  
  op->type = UD_OP_MEM;
  op->size = resolve_operand_size(u, size);

  if (u->adr_mode == 64) {
    op->base = UD_R_RAX + rm;
    if (mod == 1) {
      offset = 8;
    } else if (mod == 2) {
      offset = 32;
    } else if (mod == 0 && (rm & 7) == 5) {           
      op->base = UD_R_RIP;
      offset = 32;
    } else {
      offset = 0;
    }
    /* 
     * Scale-Index-Base (SIB) 
     */
    if ((rm & 7) == 4) {
      inp_next(u);
      
      op->scale = (1 << SIB_S(inp_curr(u))) & ~1;
      op->index = UD_R_RAX + (SIB_I(inp_curr(u)) | (REX_X(u->pfx_rex) << 3));
      op->base  = UD_R_RAX + (SIB_B(inp_curr(u)) | (REX_B(u->pfx_rex) << 3));

      /* special conditions for base reference */
      if (op->index == UD_R_RSP) {
        op->index = UD_NONE;
        op->scale = UD_NONE;
      }

      if (op->base == UD_R_RBP || op->base == UD_R_R13) {
        if (mod == 0) {
          op->base = UD_NONE;
        } 
        if (mod == 1) {
          offset = 8;
        } else {
          offset = 32;
        }
      }
    }
  } else if (u->adr_mode == 32) {
    op->base = UD_R_EAX + rm;
    if (mod == 1) {
      offset = 8;
    } else if (mod == 2) {
      offset = 32;
    } else if (mod == 0 && rm == 5) {
      op->base = UD_NONE;
      offset = 32;
    } else {
      offset = 0;
    }

    /* Scale-Index-Base (SIB) */
    if ((rm & 7) == 4) {
      inp_next(u);

      op->scale = (1 << SIB_S(inp_curr(u))) & ~1;
      op->index = UD_R_EAX + (SIB_I(inp_curr(u)) | (REX_X(u->pfx_rex) << 3));
      op->base  = UD_R_EAX + (SIB_B(inp_curr(u)) | (REX_B(u->pfx_rex) << 3));

      if (op->index == UD_R_ESP) {
        op->index = UD_NONE;
        op->scale = UD_NONE;
      }

      /* special condition for base reference */
      if (op->base == UD_R_EBP) {
        if (mod == 0) {
          op->base = UD_NONE;
        } 
        if (mod == 1) {
          offset = 8;
        } else {
          offset = 32;
        }
      }
    }
  } else {
    const unsigned int bases[]   = { UD_R_BX, UD_R_BX, UD_R_BP, UD_R_BP,
                                     UD_R_SI, UD_R_DI, UD_R_BP, UD_R_BX };
    const unsigned int indices[] = { UD_R_SI, UD_R_DI, UD_R_SI, UD_R_DI,
                                     UD_NONE, UD_NONE, UD_NONE, UD_NONE };
    op->base  = bases[rm & 7];
    op->index = indices[rm & 7];
    if (mod == 0 && rm == 6) {
      offset = 16;
      op->base = UD_NONE;
    } else if (mod == 1) {
      offset = 8;
    } else if (mod == 2) { 
      offset = 16;
    }
  }

  if (offset) {
    decode_mem_disp(u, offset, op);
  }
}


/* 
 * decode_moffset
 *    Decode offset-only memory operand
 */
static void
decode_moffset(struct ud *u, unsigned int size, struct ud_operand *opr)
{
  opr->type = UD_OP_MEM;
  opr->size = resolve_operand_size(u, size);
  decode_mem_disp(u, u->adr_mode, opr);
}


/* -----------------------------------------------------------------------------
 * decode_operands() - Disassembles Operands.
 * -----------------------------------------------------------------------------
 */
static int
decode_operand(struct ud           *u, 
               struct ud_operand   *operand,
               enum ud_operand_code type,
               unsigned int         size)
{
  operand->_oprcode = type;

  switch (type) {
    case OP_A :
      decode_a(u, operand);
      break;
    case OP_MR:
      decode_modrm_rm(u, operand, REGCLASS_GPR, 
                      MODRM_MOD(modrm(u)) == 3 ? 
                        Mx_reg_size(size) : Mx_mem_size(size));
      break;
    case OP_F:
      u->br_far  = 1;
      MOZ_FALLTHROUGH;
    case OP_M:
      if (MODRM_MOD(modrm(u)) == 3) {
        UDERR(u, "expected modrm.mod != 3\n");
      }
      MOZ_FALLTHROUGH;
    case OP_E:
      decode_modrm_rm(u, operand, REGCLASS_GPR, size);
      break;
    case OP_G:
      decode_modrm_reg(u, operand, REGCLASS_GPR, size);
      break;
    case OP_sI:
    case OP_I:
      decode_imm(u, size, operand);
      break;
    case OP_I1:
      operand->type = UD_OP_CONST;
      operand->lval.udword = 1;
      break;
    case OP_N:
      if (MODRM_MOD(modrm(u)) != 3) {
        UDERR(u, "expected modrm.mod == 3\n");
      }
      MOZ_FALLTHROUGH;
    case OP_Q:
      decode_modrm_rm(u, operand, REGCLASS_MMX, size);
      break;
    case OP_P:
      decode_modrm_reg(u, operand, REGCLASS_MMX, size);
      break;
    case OP_U:
      if (MODRM_MOD(modrm(u)) != 3) {
        UDERR(u, "expected modrm.mod == 3\n");
      }
      MOZ_FALLTHROUGH;
    case OP_W:
      decode_modrm_rm(u, operand, REGCLASS_XMM, size);
      break;
    case OP_V:
      decode_modrm_reg(u, operand, REGCLASS_XMM, size);
      break;
    case OP_MU:
      decode_modrm_rm(u, operand, REGCLASS_XMM, 
                      MODRM_MOD(modrm(u)) == 3 ? 
                        Mx_reg_size(size) : Mx_mem_size(size));
      break;
    case OP_S:
      decode_modrm_reg(u, operand, REGCLASS_SEG, size);
      break;
    case OP_O:
      decode_moffset(u, size, operand);
      break;
    case OP_R0: 
    case OP_R1: 
    case OP_R2: 
    case OP_R3: 
    case OP_R4: 
    case OP_R5: 
    case OP_R6: 
    case OP_R7:
      decode_reg(u, operand, REGCLASS_GPR, 
                 (REX_B(u->pfx_rex) << 3) | (type - OP_R0), size);
      break;
    case OP_AL:
    case OP_AX:
    case OP_eAX:
    case OP_rAX:
      decode_reg(u, operand, REGCLASS_GPR, 0, size);
      break;
    case OP_CL:
    case OP_CX:
    case OP_eCX:
      decode_reg(u, operand, REGCLASS_GPR, 1, size);
      break;
    case OP_DL:
    case OP_DX:
    case OP_eDX:
      decode_reg(u, operand, REGCLASS_GPR, 2, size);
      break;
    case OP_ES: 
    case OP_CS: 
    case OP_DS:
    case OP_SS: 
    case OP_FS: 
    case OP_GS:
      /* in 64bits mode, only fs and gs are allowed */
      if (u->dis_mode == 64) {
        if (type != OP_FS && type != OP_GS) {
          UDERR(u, "invalid segment register in 64bits\n");
        }
      }
      operand->type = UD_OP_REG;
      operand->base = (type - OP_ES) + UD_R_ES;
      operand->size = 16;
      break;
    case OP_J :
      decode_imm(u, size, operand);
      operand->type = UD_OP_JIMM;
      break ;
    case OP_R :
      if (MODRM_MOD(modrm(u)) != 3) {
        UDERR(u, "expected modrm.mod == 3\n");
      }
      decode_modrm_rm(u, operand, REGCLASS_GPR, size);
      break;
    case OP_C:
      decode_modrm_reg(u, operand, REGCLASS_CR, size);
      break;
    case OP_D:
      decode_modrm_reg(u, operand, REGCLASS_DB, size);
      break;
    case OP_I3 :
      operand->type = UD_OP_CONST;
      operand->lval.sbyte = 3;
      break;
    case OP_ST0: 
    case OP_ST1: 
    case OP_ST2: 
    case OP_ST3:
    case OP_ST4:
    case OP_ST5: 
    case OP_ST6: 
    case OP_ST7:
      operand->type = UD_OP_REG;
      operand->base = (type - OP_ST0) + UD_R_ST0;
      operand->size = 80;
      break;
    default :
      break;
  }
  return 0;
}


/* 
 * decode_operands
 *
 *    Disassemble upto 3 operands of the current instruction being
 *    disassembled. By the end of the function, the operand fields
 *    of the ud structure will have been filled.
 */
static int
decode_operands(struct ud* u)
{
  decode_operand(u, &u->operand[0],
                    u->itab_entry->operand1.type,
                    u->itab_entry->operand1.size);
  decode_operand(u, &u->operand[1],
                    u->itab_entry->operand2.type,
                    u->itab_entry->operand2.size);
  decode_operand(u, &u->operand[2],
                    u->itab_entry->operand3.type,
                    u->itab_entry->operand3.size);
  return 0;
}
    
/* -----------------------------------------------------------------------------
 * clear_insn() - clear instruction structure
 * -----------------------------------------------------------------------------
 */
static void
clear_insn(struct ud* u)
{
  u->error     = 0;
  u->pfx_seg   = 0;
  u->pfx_opr   = 0;
  u->pfx_adr   = 0;
  u->pfx_lock  = 0;
  u->pfx_repne = 0;
  u->pfx_rep   = 0;
  u->pfx_repe  = 0;
  u->pfx_rex   = 0;
  u->pfx_str   = 0;
  u->mnemonic  = UD_Inone;
  u->itab_entry = NULL;
  u->have_modrm = 0;
  u->br_far    = 0;

  memset( &u->operand[ 0 ], 0, sizeof( struct ud_operand ) );
  memset( &u->operand[ 1 ], 0, sizeof( struct ud_operand ) );
  memset( &u->operand[ 2 ], 0, sizeof( struct ud_operand ) );
}


static inline int
resolve_pfx_str(struct ud* u)
{
  if (u->pfx_str == 0xf3) {
    if (P_STR(u->itab_entry->prefix)) {
        u->pfx_rep  = 0xf3;
    } else {
        u->pfx_repe = 0xf3;
    }
  } else if (u->pfx_str == 0xf2) {
    u->pfx_repne = 0xf3;
  }
  return 0;
}


static int
resolve_mode( struct ud* u )
{
  int default64;
  /* if in error state, bail out */
  if ( u->error ) return -1; 

  /* propagate prefix effects */
  if ( u->dis_mode == 64 ) {  /* set 64bit-mode flags */

    /* Check validity of  instruction m64 */
    if ( P_INV64( u->itab_entry->prefix ) ) {
      UDERR(u, "instruction invalid in 64bits\n");
      return -1;
    }

    /* effective rex prefix is the  effective mask for the 
     * instruction hard-coded in the opcode map.
     */
    u->pfx_rex = ( u->pfx_rex & 0x40 ) | 
                 ( u->pfx_rex & REX_PFX_MASK( u->itab_entry->prefix ) ); 

    /* whether this instruction has a default operand size of 
     * 64bit, also hardcoded into the opcode map.
     */
    default64 = P_DEF64( u->itab_entry->prefix ); 
    /* calculate effective operand size */
    if ( REX_W( u->pfx_rex ) ) {
        u->opr_mode = 64;
    } else if ( u->pfx_opr ) {
        u->opr_mode = 16;
    } else {
        /* unless the default opr size of instruction is 64,
         * the effective operand size in the absence of rex.w
         * prefix is 32.
         */
        u->opr_mode = default64 ? 64 : 32;
    }

    /* calculate effective address size */
    u->adr_mode = (u->pfx_adr) ? 32 : 64;
  } else if ( u->dis_mode == 32 ) { /* set 32bit-mode flags */
    u->opr_mode = ( u->pfx_opr ) ? 16 : 32;
    u->adr_mode = ( u->pfx_adr ) ? 16 : 32;
  } else if ( u->dis_mode == 16 ) { /* set 16bit-mode flags */
    u->opr_mode = ( u->pfx_opr ) ? 32 : 16;
    u->adr_mode = ( u->pfx_adr ) ? 32 : 16;
  }

  return 0;
}


static inline int
decode_insn(struct ud *u, uint16_t ptr)
{
  UD_ASSERT((ptr & 0x8000) == 0);
  u->itab_entry = &ud_itab[ ptr ];
  u->mnemonic = u->itab_entry->mnemonic;
  return (resolve_pfx_str(u)  == 0 &&
          resolve_mode(u)     == 0 &&
          decode_operands(u)  == 0 &&
          resolve_mnemonic(u) == 0) ? 0 : -1;
}


/*
 * decode_3dnow()
 *
 *    Decoding 3dnow is a little tricky because of its strange opcode
 *    structure. The final opcode disambiguation depends on the last
 *    byte that comes after the operands have been decoded. Fortunately,
 *    all 3dnow instructions have the same set of operand types. So we
 *    go ahead and decode the instruction by picking an arbitrarily chosen
 *    valid entry in the table, decode the operands, and read the final
 *    byte to resolve the menmonic.
 */
static inline int
decode_3dnow(struct ud* u)
{
  uint16_t ptr;
  UD_ASSERT(u->le->type == UD_TAB__OPC_3DNOW);
  UD_ASSERT(u->le->table[0xc] != 0);
  decode_insn(u, u->le->table[0xc]);
  inp_next(u); 
  if (u->error) {
    return -1;
  }
  ptr = u->le->table[inp_curr(u)]; 
  UD_ASSERT((ptr & 0x8000) == 0);
  u->mnemonic = ud_itab[ptr].mnemonic;
  return 0;
}


static int
decode_ssepfx(struct ud *u)
{
  uint8_t idx;
  uint8_t pfx;
 
  /*
   * String prefixes (f2, f3) take precedence over operand
   * size prefix (66).
   */
  pfx = u->pfx_str;
  if (pfx == 0) {
    pfx = u->pfx_opr;
  }
  idx = ((pfx & 0xf) + 1) / 2;
  if (u->le->table[idx] == 0) {
    idx = 0;
  }
  if (idx && u->le->table[idx] != 0) {
    /*
     * "Consume" the prefix as a part of the opcode, so it is no
     * longer exported as an instruction prefix.
     */
    u->pfx_str = 0;
    if (pfx == 0x66) {
        /* 
         * consume "66" only if it was used for decoding, leaving
         * it to be used as an operands size override for some
         * simd instructions.
         */
        u->pfx_opr = 0;
    }
  }
  return decode_ext(u, u->le->table[idx]);
}


/*
 * decode_ext()
 *
 *    Decode opcode extensions (if any)
 */
static int
decode_ext(struct ud *u, uint16_t ptr)
{
  uint8_t idx = 0;
  if ((ptr & 0x8000) == 0) {
    return decode_insn(u, ptr); 
  }
  u->le = &ud_lookup_table_list[(~0x8000 & ptr)];
  if (u->le->type == UD_TAB__OPC_3DNOW) {
    return decode_3dnow(u);
  }

  switch (u->le->type) {
    case UD_TAB__OPC_MOD:
      /* !11 = 0, 11 = 1 */
      idx = (MODRM_MOD(modrm(u)) + 1) / 4;
      break;
      /* disassembly mode/operand size/address size based tables.
       * 16 = 0,, 32 = 1, 64 = 2
       */
    case UD_TAB__OPC_MODE:
      idx = u->dis_mode != 64 ? 0 : 1;
      break;
    case UD_TAB__OPC_OSIZE:
      idx = eff_opr_mode(u->dis_mode, REX_W(u->pfx_rex), u->pfx_opr) / 32;
      break;
    case UD_TAB__OPC_ASIZE:
      idx = eff_adr_mode(u->dis_mode, u->pfx_adr) / 32;
      break;
    case UD_TAB__OPC_X87:
      idx = modrm(u) - 0xC0;
      break;
    case UD_TAB__OPC_VENDOR:
      MOZ_CRASH();
      break;
    case UD_TAB__OPC_RM:
      idx = MODRM_RM(modrm(u));
      break;
    case UD_TAB__OPC_REG:
      idx = MODRM_REG(modrm(u));
      break;
    case UD_TAB__OPC_SSE:
      return decode_ssepfx(u);
    default:
      UD_ASSERT(!(size_t)"not reached");
      break;
  }

  return decode_ext(u, u->le->table[idx]);
}


static int
decode_opcode(struct ud *u)
{
  uint16_t ptr;
  UD_ASSERT(u->le->type == UD_TAB__OPC_TABLE);
  UD_RETURN_ON_ERROR(u);
  u->primary_opcode = inp_curr(u);
  ptr = u->le->table[inp_curr(u)];
  if (ptr & 0x8000) {
    u->le = &ud_lookup_table_list[ptr & ~0x8000];
    if (u->le->type == UD_TAB__OPC_TABLE) {
      inp_next(u);
      return decode_opcode(u);
    }
  }
  return decode_ext(u, ptr);
}

 
/* =============================================================================
 * ud_decode() - Instruction decoder. Returns the number of bytes decoded.
 * =============================================================================
 */
unsigned int
ud_decode(struct ud *u)
{
  inp_start(u);
  clear_insn(u);
  u->le = &ud_lookup_table_list[0];
  u->error = decode_prefixes(u) == -1 || 
             decode_opcode(u)   == -1 ||
             u->error;
  /* Handle decode error. */
  if (u->error) {
    /* clear out the decode data. */
    clear_insn(u);
    /* mark the sequence of bytes as invalid. */
    u->itab_entry = &ud_itab[0]; /* entry 0 is invalid */
    u->mnemonic = u->itab_entry->mnemonic;
  } 

    /* maybe this stray segment override byte
     * should be spewed out?
     */
    if ( !P_SEG( u->itab_entry->prefix ) && 
            u->operand[0].type != UD_OP_MEM &&
            u->operand[1].type != UD_OP_MEM )
        u->pfx_seg = 0;

  /* return number of bytes disassembled. */
  return u->inp_ctr;
}

/*
vim: set ts=2 sw=2 expandtab
*/