DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (b219cfa26dc2)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef mozilla_recordreplay_ProcessRedirect_h
#define mozilla_recordreplay_ProcessRedirect_h

#include "Assembler.h"
#include "Callback.h"
#include "CallFunction.h"
#include "ProcessRecordReplay.h"
#include "ProcessRewind.h"
#include "Thread.h"

#include "mozilla/Assertions.h"
#include "mozilla/Atomics.h"
#include "mozilla/Casting.h"

#include <errno.h>

namespace mozilla {
namespace recordreplay {

// Redirections Overview.
//
// The vast majority of recording and replaying is done through function
// redirections. When the record/replay system is initialized, a set of system
// library API functions have their machine code modified so that when that API
// is called it redirects control to a custom record/replay function with the
// same signature. Machine code is also generated that contains any overwritten
// instructions in the API, and which may be called to get the API's original
// behavior before it was redirected.
//
// In the usual case, a record/replay function redirection does the following
// standard steps:
//
// 1. If events are being passed through, the original function is called and
//    its results returned to the caller, as if the redirection was not there
//    at all.
//
// 2. If events are not passed through and we are recording, the original
//    function is called, and then an event is recorded for the current thread
//    along with any outputs produced by the call.
//
// 3. If events are not passed through and we are replaying, the original
//    function is *not* called, but rather the event and outputs are read from
//    the recording and sent back to the caller.
//
// Redirections do not need to adhere to this protocol, however, and can have
// whatever behaviors that are necessary for reliable record/replay.
// Controlling how a redirected function behaves and which outputs it saves is
// done through a set of hooks associated with each redirection.
//
// Some platforms need additional redirection techniques for handling different
// features of that platform. See the individual ProcessRedirect*.cpp files for
// descriptions of these.
//
// The main advantage of using redirections is that Gecko code does not need to
// be modified at all to take advantage of them. Redirected APIs should be
// functions that are directly called by Gecko code and are part of system
// libraries. These APIs are well defined, well documented by the platform, and
// stable. The main maintenance burden going forward is in handling new library
// APIs that were not previously called by Gecko.
//
// The main risk with using function redirections is that the set of redirected
// functions is incomplete. If a library API is not redirected then it might
// behave differently between recording and replaying, or it might crash while
// replaying.

///////////////////////////////////////////////////////////////////////////////
// Function Redirections
///////////////////////////////////////////////////////////////////////////////

struct CallArguments;

// All argument and return value data that is stored in registers and whose
// values are preserved when calling a redirected function.
struct CallRegisterArguments {
 protected:
  size_t arg0;        // 0
  size_t arg1;        // 8
  size_t arg2;        // 16
  size_t arg3;        // 24
  size_t arg4;        // 32
  size_t arg5;        // 40
  double floatarg0;   // 48
  double floatarg1;   // 56
  double floatarg2;   // 64
  size_t rval0;       // 72
  size_t rval1;       // 80
  double floatrval0;  // 88
  double floatrval1;  // 96
                      // Size: 104

 public:
  void CopyFrom(const CallRegisterArguments* aArguments);
  void CopyTo(CallRegisterArguments* aArguments) const;
  void CopyRvalFrom(const CallRegisterArguments* aArguments);
};

// Capture the arguments that can be passed to a redirection, and provide
// storage to specify the redirection's return value. We only need to capture
// enough argument data here for calls made directly from Gecko code,
// i.e. where events are not passed through. Calls made while events are passed
// through are performed with the same stack and register state as when they
// were initially invoked.
//
// Arguments and return value indexes refer to the register contents as passed
// to the function originally. For functions with complex or floating point
// arguments and return values, the right index to use might be different than
// expected, per the requirements of the System V x64 ABI.
struct CallArguments : public CallRegisterArguments {
  // The maximum number of stack arguments that can be captured.
  static const size_t NumStackArguments = 64;

 protected:
  size_t stack[NumStackArguments];  // 104
                                    // Size: 616

 public:
  template <typename T>
  T& Arg(size_t aIndex) {
    static_assert(sizeof(T) == sizeof(size_t), "Size must match");
    static_assert(IsFloatingPoint<T>::value == false, "FloatArg NYI");
    MOZ_RELEASE_ASSERT(aIndex < 70);
    switch (aIndex) {
      case 0:
        return (T&)arg0;
      case 1:
        return (T&)arg1;
      case 2:
        return (T&)arg2;
      case 3:
        return (T&)arg3;
      case 4:
        return (T&)arg4;
      case 5:
        return (T&)arg5;
      default:
        return (T&)stack[aIndex - 6];
    }
  }

  template <size_t Index, typename T>
  T& Arg() {
    return Arg<T>(Index);
  }

  template <size_t Offset>
  size_t* StackAddress() {
    static_assert(Offset % sizeof(size_t) == 0, "Bad stack offset");
    return &stack[Offset / sizeof(size_t)];
  }

  template <typename T, size_t Index = 0>
  T& Rval() {
    static_assert(sizeof(T) == sizeof(size_t), "Size must match");
    static_assert(IsFloatingPoint<T>::value == false, "Use FloatRval instead");
    static_assert(Index == 0 || Index == 1, "Bad index");
    switch (Index) {
      case 0:
        return (T&)rval0;
      case 1:
        return (T&)rval1;
    }
  }

  template <size_t Index = 0>
  double& FloatRval() {
    static_assert(Index == 0 || Index == 1, "Bad index");
    switch (Index) {
      case 0:
        return floatrval0;
      case 1:
        return floatrval1;
    }
  }
};

inline void CallRegisterArguments::CopyFrom(
    const CallRegisterArguments* aArguments) {
  memcpy(this, aArguments, sizeof(CallRegisterArguments));
}

inline void CallRegisterArguments::CopyTo(
    CallRegisterArguments* aArguments) const {
  memcpy(aArguments, this, sizeof(CallRegisterArguments));
}

inline void CallRegisterArguments::CopyRvalFrom(
    const CallRegisterArguments* aArguments) {
  rval0 = aArguments->rval0;
  rval1 = aArguments->rval1;
  floatrval0 = aArguments->floatrval0;
  floatrval1 = aArguments->floatrval1;
}

// Generic type for a system error code.
typedef ssize_t ErrorType;

// Signature for a function that saves some output produced by a redirection
// while recording, and restores that output while replaying. aEvents is the
// event stream for the current thread, aArguments specifies the arguments to
// the called function, and aError specifies any system error which the call
// produces.
typedef void (*SaveOutputFn)(Stream& aEvents, CallArguments* aArguments,
                             ErrorType* aError);

// Possible results for the redirection preamble hook.
enum class PreambleResult {
  // Do not perform any further processing.
  Veto,

  // If events are not passed through, add an event for the function call and
  // perform a function redirection as normal.
  Redirect,

  // Don't add an event for the call or perform a normal function redirection.
  // If events are not passed through, they may still be added for transitive
  // callees.
  IgnoreRedirect,

  // Do not add an event for the call or anything it transitively calls, as if
  // events were passed through.
  PassThrough,
};

// Signature for a function that is called on entry to a redirection and can
// modify its behavior.
typedef PreambleResult (*PreambleFn)(CallArguments* aArguments);

// Signature for a function that conveys data about a call to or from the
// middleman process.
struct MiddlemanCallContext;
typedef void (*MiddlemanCallFn)(MiddlemanCallContext& aCx);

// Information about a system library API function which is being redirected.
struct Redirection {
  // Name of the function being redirected.
  const char* mName;

  // Address of the function which is being redirected. The code for this
  // function is modified so that attempts to call this function will instead
  // call into RecordReplayInterceptCall.
  uint8_t* mBaseFunction;

  // Function with the same signature and original behavior as
  // mBaseFunction.
  uint8_t* mOriginalFunction;

  // Redirection hooks are used to control the behavior of the redirected
  // function.

  // If specified, will be called at the end of the redirection when events are
  // not being passed through to record/replay any outputs from the call.
  SaveOutputFn mSaveOutput;

  // If specified, will be called upon entry to the redirected call.
  PreambleFn mPreamble;

  // If specified, will be called while replaying and diverged from the
  // recording to perform this call in the middleman process.
  MiddlemanCallFn mMiddlemanCall;

  // Additional preamble that is only called while replaying and diverged from
  // the recording.
  PreambleFn mMiddlemanPreamble;
};

// Platform specific methods describing the set of redirections.
size_t NumRedirections();
Redirection& GetRedirection(size_t aCallId);

// Platform specific early initialization of redirections. This is done on both
// recording/replaying and middleman processes, and allows OriginalCall() to
// work in either case.
void EarlyInitializeRedirections();

// Set up all platform specific redirections, or fail and set
// gInitializationFailureMessage.
bool InitializeRedirections();

// Platform specific function called after setting up redirections in recording
// or replaying processes.
void LateInitializeRedirections();

// Functions for saving or restoring system error codes.
static inline ErrorType SaveError() { return errno; }
static inline void RestoreError(ErrorType aError) { errno = aError; }

// Specify the default ABI to use by the record/replay macros below.
#define DEFAULTABI

// Define CallFunction(...) for all supported ABIs.
DefineAllCallFunctions(DEFAULTABI)

    // Get the address of the original function for a call event ID.
    static inline void* OriginalFunction(size_t aCallId) {
  return GetRedirection(aCallId).mOriginalFunction;
}

// Get the address of the original function by name.
void* OriginalFunction(const char* aName);

static inline ThreadEvent CallIdToThreadEvent(size_t aCallId) {
  return (ThreadEvent)((uint32_t)ThreadEvent::CallStart + aCallId);
}

void RecordReplayInvokeCall(void* aFunction, CallArguments* aArguments);

///////////////////////////////////////////////////////////////////////////////
// Callback Redirections
///////////////////////////////////////////////////////////////////////////////

// Below are helpers for use in handling a common callback pattern used within
// redirections: the system is passed a pointer to a Gecko callback, and a
// pointer to some opaque Gecko data which the system will pass to the callback
// when invoking it.
//
// This pattern may be handled by replacing the Gecko callback with a callback
// wrapper (see Callback.h), and replacing the opaque Gecko data with a pointer
// to a CallbackWrapperData structure, which contains both the original Gecko
// callback to use and the data which should be passed to it.
//
// The RecordReplayCallback is used early in the callback wrapper to save and
// restore both the Gecko callback and its opaque data pointer.

struct CallbackWrapperData {
  void* mFunction;
  void* mData;

  template <typename FunctionType>
  CallbackWrapperData(FunctionType aFunction, void* aData)
      : mFunction(BitwiseCast<void*>(aFunction)), mData(aData) {}
};

// This class should not be used directly, but rather through the macro below.
template <typename FunctionType>
struct AutoRecordReplayCallback {
  FunctionType mFunction;

  AutoRecordReplayCallback(void** aDataArgument, size_t aCallbackId)
      : mFunction(nullptr) {
    MOZ_ASSERT(IsRecordingOrReplaying());
    if (IsRecording()) {
      CallbackWrapperData* wrapperData = (CallbackWrapperData*)*aDataArgument;
      mFunction = (FunctionType)wrapperData->mFunction;
      *aDataArgument = wrapperData->mData;
      BeginCallback(aCallbackId);
    }
    SaveOrRestoreCallbackData((void**)&mFunction);
    SaveOrRestoreCallbackData(aDataArgument);
  }

  ~AutoRecordReplayCallback() {
    if (IsRecording()) {
      EndCallback();
    }
  }
};

// Macro for using AutoRecordReplayCallback.
#define RecordReplayCallback(aFunctionType, aDataArgument)   \
  AutoRecordReplayCallback<aFunctionType> rrc(aDataArgument, \
                                              CallbackEvent_##aFunctionType)

///////////////////////////////////////////////////////////////////////////////
// Redirection Helpers
///////////////////////////////////////////////////////////////////////////////

extern Atomic<size_t, SequentiallyConsistent, Behavior::DontPreserve>
    gMemoryLeakBytes;

// For allocating memory in redirections that will never be reclaimed. This is
// done for simplicity. If the amount of leaked memory from redirected calls
// grows too large then steps can be taken to more closely emulate the library
// behavior.
template <typename T>
static inline T* NewLeakyArray(size_t aSize) {
  gMemoryLeakBytes += aSize * sizeof(T);
  return new T[aSize];
}

// Record/replay a string rval.
static inline void RR_CStringRval(Stream& aEvents, CallArguments* aArguments,
                                  ErrorType* aError) {
  auto& rval = aArguments->Rval<char*>();
  size_t len = (IsRecording() && rval) ? strlen(rval) + 1 : 0;
  aEvents.RecordOrReplayValue(&len);
  if (IsReplaying()) {
    // Note: Some users (e.g. realpath) require malloc to be used to allocate
    // the returned buffer.
    rval = len ? (char*)malloc(len) : nullptr;
  }
  if (len) {
    aEvents.RecordOrReplayBytes(rval, len);
  }
}

// Ensure that the return value matches the specified argument.
template <size_t Argument>
static inline void RR_RvalIsArgument(Stream& aEvents, CallArguments* aArguments,
                                     ErrorType* aError) {
  auto& rval = aArguments->Rval<size_t>();
  auto& arg = aArguments->Arg<Argument, size_t>();
  if (IsRecording()) {
    MOZ_RELEASE_ASSERT(rval == arg);
  } else {
    rval = arg;
  }
}

// No-op record/replay output method.
static inline void RR_NoOp(Stream& aEvents, CallArguments* aArguments,
                           ErrorType* aError) {}

// Record/replay multiple SaveOutput functions sequentially.
template <SaveOutputFn Fn0, SaveOutputFn Fn1, SaveOutputFn Fn2 = RR_NoOp,
          SaveOutputFn Fn3 = RR_NoOp, SaveOutputFn Fn4 = RR_NoOp>
static inline void RR_Compose(Stream& aEvents, CallArguments* aArguments,
                              ErrorType* aError) {
  Fn0(aEvents, aArguments, aError);
  Fn1(aEvents, aArguments, aError);
  Fn2(aEvents, aArguments, aError);
  Fn3(aEvents, aArguments, aError);
  Fn4(aEvents, aArguments, aError);
}

// Record/replay a success code rval (where negative values are failure) and
// errno value on failure. SuccessFn does any further processing in non-error
// cases.
template <SaveOutputFn SuccessFn = RR_NoOp>
static inline void RR_SaveRvalHadErrorNegative(Stream& aEvents,
                                               CallArguments* aArguments,
                                               ErrorType* aError) {
  auto& rval = aArguments->Rval<ssize_t>();
  aEvents.RecordOrReplayValue(&rval);
  if (rval < 0) {
    aEvents.RecordOrReplayValue(aError);
  } else {
    SuccessFn(aEvents, aArguments, aError);
  }
}

// Record/replay a success code rval (where zero is a failure) and errno value
// on failure. SuccessFn does any further processing in non-error cases.
template <SaveOutputFn SuccessFn = RR_NoOp>
static inline void RR_SaveRvalHadErrorZero(Stream& aEvents,
                                           CallArguments* aArguments,
                                           ErrorType* aError) {
  auto& rval = aArguments->Rval<ssize_t>();
  aEvents.RecordOrReplayValue(&rval);
  if (rval == 0) {
    aEvents.RecordOrReplayValue(aError);
  } else {
    SuccessFn(aEvents, aArguments, aError);
  }
}

// Record/replay the contents of a buffer at argument BufferArg with element
// count at CountArg.
template <size_t BufferArg, size_t CountArg, typename ElemType = char>
static inline void RR_WriteBuffer(Stream& aEvents, CallArguments* aArguments,
                                  ErrorType* aError) {
  auto& buf = aArguments->Arg<BufferArg, ElemType*>();
  auto& count = aArguments->Arg<CountArg, size_t>();
  aEvents.CheckInput(count);
  aEvents.RecordOrReplayBytes(buf, count * sizeof(ElemType));
}

// Record/replay the contents of a buffer at argument BufferArg with element
// count at CountArg, and which may be null.
template <size_t BufferArg, size_t CountArg, typename ElemType = char>
static inline void RR_WriteOptionalBuffer(Stream& aEvents,
                                          CallArguments* aArguments,
                                          ErrorType* aError) {
  auto& buf = aArguments->Arg<BufferArg, ElemType*>();
  auto& count = aArguments->Arg<CountArg, size_t>();
  aEvents.CheckInput(!!buf);
  if (buf) {
    aEvents.CheckInput(count);
    aEvents.RecordOrReplayBytes(buf, count * sizeof(ElemType));
  }
}

// Record/replay the contents of a buffer at argument BufferArg with fixed
// size ByteCount.
template <size_t BufferArg, size_t ByteCount>
static inline void RR_WriteBufferFixedSize(Stream& aEvents,
                                           CallArguments* aArguments,
                                           ErrorType* aError) {
  auto& buf = aArguments->Arg<BufferArg, void*>();
  aEvents.RecordOrReplayBytes(buf, ByteCount);
}

// Record/replay the contents of a buffer at argument BufferArg with fixed
// size ByteCount, and which may be null.
template <size_t BufferArg, size_t ByteCount>
static inline void RR_WriteOptionalBufferFixedSize(Stream& aEvents,
                                                   CallArguments* aArguments,
                                                   ErrorType* aError) {
  auto& buf = aArguments->Arg<BufferArg, void*>();
  aEvents.CheckInput(!!buf);
  if (buf) {
    aEvents.RecordOrReplayBytes(buf, ByteCount);
  }
}

// Record/replay the contents of a buffer at argument BufferArg with byte size
// CountArg, where the call return value plus Offset indicates the amount of
// data written to the buffer by the call. The return value must already have
// been recorded/replayed.
template <size_t BufferArg, size_t CountArg, size_t Offset = 0>
static inline void RR_WriteBufferViaRval(Stream& aEvents,
                                         CallArguments* aArguments,
                                         ErrorType* aError) {
  auto& buf = aArguments->Arg<BufferArg, void*>();
  auto& count = aArguments->Arg<CountArg, size_t>();
  aEvents.CheckInput(count);

  auto& rval = aArguments->Rval<size_t>();
  MOZ_RELEASE_ASSERT(rval + Offset <= count);
  aEvents.RecordOrReplayBytes(buf, rval + Offset);
}

// Record/replay a scalar return value.
static inline void RR_ScalarRval(Stream& aEvents, CallArguments* aArguments,
                                 ErrorType* aError) {
  aEvents.RecordOrReplayValue(&aArguments->Rval<size_t>());
}

// Record/replay a complex scalar return value that fits in two registers.
static inline void RR_ComplexScalarRval(Stream& aEvents,
                                        CallArguments* aArguments,
                                        ErrorType* aError) {
  aEvents.RecordOrReplayValue(&aArguments->Rval<size_t>());
  aEvents.RecordOrReplayValue(&aArguments->Rval<size_t, 1>());
}

// Record/replay a floating point return value.
static inline void RR_FloatRval(Stream& aEvents, CallArguments* aArguments,
                                ErrorType* aError) {
  aEvents.RecordOrReplayValue(&aArguments->FloatRval());
}

// Record/replay a complex floating point return value that fits in two
// registers.
static inline void RR_ComplexFloatRval(Stream& aEvents,
                                       CallArguments* aArguments,
                                       ErrorType* aError) {
  aEvents.RecordOrReplayValue(&aArguments->FloatRval());
  aEvents.RecordOrReplayValue(&aArguments->FloatRval<1>());
}

// Record/replay a return value that does not fit in the return registers,
// and whose storage is pointed to by the first argument register.
template <size_t ByteCount>
static inline void RR_OversizeRval(Stream& aEvents, CallArguments* aArguments,
                                   ErrorType* aError) {
  RR_WriteBufferFixedSize<0, ByteCount>(aEvents, aArguments, aError);
}

template <size_t ReturnValue>
static inline PreambleResult Preamble_Veto(CallArguments* aArguments) {
  aArguments->Rval<size_t>() = ReturnValue;
  return PreambleResult::Veto;
}

template <size_t ReturnValue>
static inline PreambleResult Preamble_VetoIfNotPassedThrough(
    CallArguments* aArguments) {
  if (AreThreadEventsPassedThrough()) {
    return PreambleResult::PassThrough;
  }
  aArguments->Rval<size_t>() = ReturnValue;
  return PreambleResult::Veto;
}

static inline PreambleResult Preamble_PassThrough(CallArguments* aArguments) {
  return PreambleResult::PassThrough;
}

static inline PreambleResult Preamble_WaitForever(CallArguments* aArguments) {
  Thread::WaitForever();
  Unreachable();
  return PreambleResult::PassThrough;
}

///////////////////////////////////////////////////////////////////////////////
// Other Redirection Interfaces
///////////////////////////////////////////////////////////////////////////////

// Given an argument function aFunction, generate code for a new function that
// takes one fewer argument than aFunction and then calls aFunction with all
// its arguments and the aArgument value in the last argument position.
//
// i.e. if aFunction has the signature: size_t (*)(void*, void*, void*);
//
// Then BindFunctionArgument(aFunction, aArgument, 2) produces this function:
//
// size_t result(void* a0, void* a1) {
//   return aFunction(a0, a1, aArgument);
// }
//
// Supported positions for the bound argument are 1, 2, and 3.
void* BindFunctionArgument(void* aFunction, void* aArgument,
                           size_t aArgumentPosition, Assembler& aAssembler);

}  // namespace recordreplay
}  // namespace mozilla

#endif  // mozilla_recordreplay_ProcessRedirect_h