DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (56c0806d5bf2)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef vm_BigIntType_h
#define vm_BigIntType_h

#include "mozilla/Range.h"
#include "mozilla/Span.h"

#include "jstypes.h"
#include "gc/Barrier.h"
#include "gc/GC.h"
#include "gc/Heap.h"
#include "js/AllocPolicy.h"
#include "js/GCHashTable.h"
#include "js/Result.h"
#include "js/RootingAPI.h"
#include "js/TraceKind.h"
#include "js/TypeDecls.h"
#include "vm/StringType.h"
#include "vm/Xdr.h"

namespace JS {

class JS_PUBLIC_API BigInt;

}  // namespace JS

namespace js {

template <XDRMode mode>
XDRResult XDRBigInt(XDRState<mode>* xdr, MutableHandle<JS::BigInt*> bi);

}  // namespace js

namespace JS {

class BigInt final : public js::gc::TenuredCell {
 public:
  using Digit = uintptr_t;

 private:
  // The low js::gc::Cell::ReservedBits are reserved.
  static constexpr uintptr_t SignBit = JS_BIT(js::gc::Cell::ReservedBits);
  static constexpr uintptr_t LengthShift = js::gc::Cell::ReservedBits + 1;
  static constexpr size_t InlineDigitsLength =
      (js::gc::MinCellSize - sizeof(uintptr_t)) / sizeof(Digit);

  uintptr_t lengthSignAndReservedBits_;

  // The digit storage starts with the least significant digit (little-endian
  // digit order).  Byte order within a digit is of course native endian.
  union {
    Digit* heapDigits_;
    Digit inlineDigits_[InlineDigitsLength];
  };

 public:
  static const JS::TraceKind TraceKind = JS::TraceKind::BigInt;

  size_t digitLength() const {
    return lengthSignAndReservedBits_ >> LengthShift;
  }

  bool hasInlineDigits() const { return digitLength() <= InlineDigitsLength; }
  bool hasHeapDigits() const { return !hasInlineDigits(); }

  using Digits = mozilla::Span<Digit>;
  Digits digits() {
    return Digits(hasInlineDigits() ? inlineDigits_ : heapDigits_,
                  digitLength());
  }
  Digit digit(size_t idx) { return digits()[idx]; }
  void setDigit(size_t idx, Digit digit) { digits()[idx] = digit; }

  bool isZero() const { return digitLength() == 0; }
  bool isNegative() const { return lengthSignAndReservedBits_ & SignBit; }

  // Offset for direct access from JIT code.
  static constexpr size_t offsetOfLengthSignAndReservedBits() {
    return offsetof(BigInt, lengthSignAndReservedBits_);
  }

  void initializeDigitsToZero();

  void traceChildren(JSTracer* trc);
  void finalize(js::FreeOp* fop);
  js::HashNumber hash();
  size_t sizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf) const;

  static BigInt* createUninitialized(JSContext* cx, size_t length,
                                     bool isNegative);
  static BigInt* createFromDouble(JSContext* cx, double d);
  static BigInt* createFromUint64(JSContext* cx, uint64_t n);
  static BigInt* createFromInt64(JSContext* cx, int64_t n);
  static BigInt* createFromDigit(JSContext* cx, Digit d, bool isNegative);
  // FIXME: Cache these values.
  static BigInt* zero(JSContext* cx);
  static BigInt* one(JSContext* cx);
  static BigInt* negativeOne(JSContext* cx);

  static BigInt* copy(JSContext* cx, Handle<BigInt*> x);
  static BigInt* add(JSContext* cx, Handle<BigInt*> x, Handle<BigInt*> y);
  static BigInt* sub(JSContext* cx, Handle<BigInt*> x, Handle<BigInt*> y);
  static BigInt* mul(JSContext* cx, Handle<BigInt*> x, Handle<BigInt*> y);
  static BigInt* div(JSContext* cx, Handle<BigInt*> x, Handle<BigInt*> y);
  static BigInt* mod(JSContext* cx, Handle<BigInt*> x, Handle<BigInt*> y);
  static BigInt* pow(JSContext* cx, Handle<BigInt*> x, Handle<BigInt*> y);
  static BigInt* neg(JSContext* cx, Handle<BigInt*> x);
  static BigInt* inc(JSContext* cx, Handle<BigInt*> x);
  static BigInt* dec(JSContext* cx, Handle<BigInt*> x);
  static BigInt* lsh(JSContext* cx, Handle<BigInt*> x, Handle<BigInt*> y);
  static BigInt* rsh(JSContext* cx, Handle<BigInt*> x, Handle<BigInt*> y);
  static BigInt* bitAnd(JSContext* cx, Handle<BigInt*> x, Handle<BigInt*> y);
  static BigInt* bitXor(JSContext* cx, Handle<BigInt*> x, Handle<BigInt*> y);
  static BigInt* bitOr(JSContext* cx, Handle<BigInt*> x, Handle<BigInt*> y);
  static BigInt* bitNot(JSContext* cx, Handle<BigInt*> x);

  static int64_t toInt64(BigInt* x);
  static uint64_t toUint64(BigInt* x);

  static BigInt* asIntN(JSContext* cx, Handle<BigInt*> x, uint64_t bits);
  static BigInt* asUintN(JSContext* cx, Handle<BigInt*> x, uint64_t bits);

  // Type-checking versions of arithmetic operations. These methods
  // must be called with at least one BigInt operand. Binary
  // operations will throw a TypeError if one of the operands is not a
  // BigInt value.
  static bool add(JSContext* cx, Handle<Value> lhs, Handle<Value> rhs,
                  MutableHandle<Value> res);
  static bool sub(JSContext* cx, Handle<Value> lhs, Handle<Value> rhs,
                  MutableHandle<Value> res);
  static bool mul(JSContext* cx, Handle<Value> lhs, Handle<Value> rhs,
                  MutableHandle<Value> res);
  static bool div(JSContext* cx, Handle<Value> lhs, Handle<Value> rhs,
                  MutableHandle<Value> res);
  static bool mod(JSContext* cx, Handle<Value> lhs, Handle<Value> rhs,
                  MutableHandle<Value> res);
  static bool pow(JSContext* cx, Handle<Value> lhs, Handle<Value> rhs,
                  MutableHandle<Value> res);
  static bool neg(JSContext* cx, Handle<Value> operand,
                  MutableHandle<Value> res);
  static bool inc(JSContext* cx, Handle<Value> operand,
                  MutableHandle<Value> res);
  static bool dec(JSContext* cx, Handle<Value> operand,
                  MutableHandle<Value> res);
  static bool lsh(JSContext* cx, Handle<Value> lhs, Handle<Value> rhs,
                  MutableHandle<Value> res);
  static bool rsh(JSContext* cx, Handle<Value> lhs, Handle<Value> rhs,
                  MutableHandle<Value> res);
  static bool bitAnd(JSContext* cx, Handle<Value> lhs, Handle<Value> rhs,
                     MutableHandle<Value> res);
  static bool bitXor(JSContext* cx, Handle<Value> lhs, Handle<Value> rhs,
                     MutableHandle<Value> res);
  static bool bitOr(JSContext* cx, Handle<Value> lhs, Handle<Value> rhs,
                    MutableHandle<Value> res);
  static bool bitNot(JSContext* cx, Handle<Value> operand,
                     MutableHandle<Value> res);

  static double numberValue(BigInt* x);

  template <js::AllowGC allowGC>
  static JSLinearString* toString(JSContext* cx, Handle<BigInt*> x,
                                  uint8_t radix);
  template <typename CharT>
  static BigInt* parseLiteral(JSContext* cx,
                              const mozilla::Range<const CharT> chars,
                              bool* haveParseError);
  template <typename CharT>
  static BigInt* parseLiteralDigits(JSContext* cx,
                                    const mozilla::Range<const CharT> chars,
                                    unsigned radix, bool isNegative,
                                    bool* haveParseError);

  static int8_t compare(BigInt* lhs, BigInt* rhs);
  static bool equal(BigInt* lhs, BigInt* rhs);
  static JS::Result<bool> looselyEqual(JSContext* cx, Handle<BigInt*> lhs,
                                       HandleValue rhs);

  static bool lessThan(BigInt* x, BigInt* y);
  // These methods return Nothing when the non-BigInt operand is NaN
  // or a string that can't be interpreted as a BigInt.
  static mozilla::Maybe<bool> lessThan(BigInt* lhs, double rhs);
  static mozilla::Maybe<bool> lessThan(double lhs, BigInt* rhs);
  static bool lessThan(JSContext* cx, Handle<BigInt*> lhs, HandleString rhs,
                       mozilla::Maybe<bool>& res);
  static bool lessThan(JSContext* cx, HandleString lhs, Handle<BigInt*> rhs,
                       mozilla::Maybe<bool>& res);
  static bool lessThan(JSContext* cx, HandleValue lhs, HandleValue rhs,
                       mozilla::Maybe<bool>& res);

#if defined(DEBUG) || defined(JS_JITSPEW)
  void dump();  // Debugger-friendly stderr dump.
  void dump(js::GenericPrinter& out);
#endif

 private:
  static constexpr size_t DigitBits = sizeof(Digit) * CHAR_BIT;
  static constexpr size_t HalfDigitBits = DigitBits / 2;
  static constexpr Digit HalfDigitMask = (1ull << HalfDigitBits) - 1;

  static_assert(DigitBits == 32 || DigitBits == 64,
                "Unexpected BigInt Digit size");

  // Limit the size of bigint values to 1 million bits, to prevent excessive
  // memory usage.  This limit may be raised in the future if needed.  Note
  // however that there are many parts of the implementation that rely on being
  // able to count and index bits using a 32-bit signed ints, so until those
  // sites are fixed, the practical limit is 0x7fffffff bits.
  static constexpr size_t MaxBitLength = 1024 * 1024;
  static constexpr size_t MaxDigitLength = MaxBitLength / DigitBits;

  // BigInts can be serialized to strings of radix between 2 and 36.  For a
  // given bigint, radix 2 will take the most characters (one per bit).
  // Ensure that the max bigint size is small enough so that we can fit the
  // corresponding character count into a size_t, with space for a possible
  // sign prefix.
  static_assert(MaxBitLength <= std::numeric_limits<size_t>::max() - 1,
                "BigInt max length must be small enough to be serialized as a "
                "binary string");

  static size_t calculateMaximumCharactersRequired(HandleBigInt x,
                                                   unsigned radix);
  static MOZ_MUST_USE bool calculateMaximumDigitsRequired(JSContext* cx,
                                                          uint8_t radix,
                                                          size_t charCount,
                                                          size_t* result);

  static bool absoluteDivWithDigitDivisor(
      JSContext* cx, Handle<BigInt*> x, Digit divisor,
      const mozilla::Maybe<MutableHandle<BigInt*>>& quotient, Digit* remainder,
      bool quotientNegative);
  static void internalMultiplyAdd(BigInt* source, Digit factor, Digit summand,
                                  unsigned, BigInt* result);
  static void multiplyAccumulate(BigInt* multiplicand, Digit multiplier,
                                 BigInt* accumulator,
                                 unsigned accumulatorIndex);
  static bool absoluteDivWithBigIntDivisor(
      JSContext* cx, Handle<BigInt*> dividend, Handle<BigInt*> divisor,
      const mozilla::Maybe<MutableHandle<BigInt*>>& quotient,
      const mozilla::Maybe<MutableHandle<BigInt*>>& remainder,
      bool quotientNegative);

  enum class LeftShiftMode { SameSizeResult, AlwaysAddOneDigit };

  static BigInt* absoluteLeftShiftAlwaysCopy(JSContext* cx, Handle<BigInt*> x,
                                             unsigned shift, LeftShiftMode);
  static bool productGreaterThan(Digit factor1, Digit factor2, Digit high,
                                 Digit low);
  static BigInt* lshByAbsolute(JSContext* cx, HandleBigInt x, HandleBigInt y);
  static BigInt* rshByAbsolute(JSContext* cx, HandleBigInt x, HandleBigInt y);
  static BigInt* rshByMaximum(JSContext* cx, bool isNegative);
  static BigInt* truncateAndSubFromPowerOfTwo(JSContext* cx, HandleBigInt x,
                                              uint64_t bits,
                                              bool resultNegative);

  Digit absoluteInplaceAdd(BigInt* summand, unsigned startIndex);
  Digit absoluteInplaceSub(BigInt* subtrahend, unsigned startIndex);
  void inplaceRightShiftLowZeroBits(unsigned shift);
  void inplaceMultiplyAdd(Digit multiplier, Digit part);

  // The result of an SymmetricTrim bitwise op has as many digits as the
  // smaller operand.  A SymmetricFill bitwise op result has as many digits as
  // the larger operand, with high digits (if any) copied from the larger
  // operand.  AsymmetricFill is like SymmetricFill, except the result has as
  // many digits as the first operand; this kind is used for the and-not
  // operation.
  enum class BitwiseOpKind { SymmetricTrim, SymmetricFill, AsymmetricFill };

  template <BitwiseOpKind kind, typename BitwiseOp>
  static BigInt* absoluteBitwiseOp(JSContext* cx, Handle<BigInt*> x,
                                   Handle<BigInt*> y, BitwiseOp&& op);

  // Return `|x| & |y|`.
  static BigInt* absoluteAnd(JSContext* cx, Handle<BigInt*> x,
                             Handle<BigInt*> y);

  // Return `|x| | |y|`.
  static BigInt* absoluteOr(JSContext* cx, Handle<BigInt*> x,
                            Handle<BigInt*> y);

  // Return `|x| & ~|y|`.
  static BigInt* absoluteAndNot(JSContext* cx, Handle<BigInt*> x,
                                Handle<BigInt*> y);

  // Return `|x| ^ |y|`.
  static BigInt* absoluteXor(JSContext* cx, Handle<BigInt*> x,
                             Handle<BigInt*> y);

  // Return `(|x| + 1) * (resultNegative ? -1 : +1)`.
  static BigInt* absoluteAddOne(JSContext* cx, Handle<BigInt*> x,
                                bool resultNegative);

  // Return `(|x| - 1) * (resultNegative ? -1 : +1)`, with the precondition that
  // |x| != 0.
  static BigInt* absoluteSubOne(JSContext* cx, Handle<BigInt*> x,
                                bool resultNegative = false);

  // Return `a + b`, incrementing `*carry` if the addition overflows.
  static inline Digit digitAdd(Digit a, Digit b, Digit* carry) {
    Digit result = a + b;
    *carry += static_cast<Digit>(result < a);
    return result;
  }

  // Return `left - right`, incrementing `*borrow` if the addition overflows.
  static inline Digit digitSub(Digit left, Digit right, Digit* borrow) {
    Digit result = left - right;
    *borrow += static_cast<Digit>(result > left);
    return result;
  }

  // Compute `a * b`, returning the low half of the result and putting the
  // high half in `*high`.
  static Digit digitMul(Digit a, Digit b, Digit* high);

  // Divide `(high << DigitBits) + low` by `divisor`, returning the quotient
  // and storing the remainder in `*remainder`, with the precondition that
  // `high < divisor` so that the result fits in a Digit.
  static Digit digitDiv(Digit high, Digit low, Digit divisor, Digit* remainder);

  // Return `(|x| + |y|) * (resultNegative ? -1 : +1)`.
  static BigInt* absoluteAdd(JSContext* cx, Handle<BigInt*> x,
                             Handle<BigInt*> y, bool resultNegative);

  // Return `(|x| - |y|) * (resultNegative ? -1 : +1)`, with the precondition
  // that |x| >= |y|.
  static BigInt* absoluteSub(JSContext* cx, Handle<BigInt*> x,
                             Handle<BigInt*> y, bool resultNegative);

  // If `|x| < |y|` return -1; if `|x| == |y|` return 0; otherwise return 1.
  static int8_t absoluteCompare(BigInt* lhs, BigInt* rhs);

  static int8_t compare(BigInt* lhs, double rhs);

  static bool equal(BigInt* lhs, double rhs);

  template <js::AllowGC allowGC>
  static JSLinearString* toStringBasePowerOfTwo(JSContext* cx, Handle<BigInt*>,
                                                unsigned radix);
  template <js::AllowGC allowGC>
  static JSLinearString* toStringSingleDigitBaseTen(JSContext* cx, Digit digit,
                                                    bool isNegative);
  static JSLinearString* toStringGeneric(JSContext* cx, Handle<BigInt*>,
                                         unsigned radix);

  static BigInt* trimHighZeroDigits(JSContext* cx, Handle<BigInt*> x);
  static BigInt* destructivelyTrimHighZeroDigits(JSContext* cx,
                                                 Handle<BigInt*> x);

  friend struct ::JSStructuredCloneReader;
  friend struct ::JSStructuredCloneWriter;
  template <js::XDRMode mode>
  friend js::XDRResult js::XDRBigInt(js::XDRState<mode>* xdr,
                                     MutableHandle<BigInt*> bi);

  BigInt() = delete;
  BigInt(const BigInt& other) = delete;
  void operator=(const BigInt& other) = delete;
};

static_assert(
    sizeof(BigInt) >= js::gc::MinCellSize,
    "sizeof(BigInt) must be greater than the minimum allocation size");

static_assert(
    sizeof(BigInt) == js::gc::MinCellSize,
    "sizeof(BigInt) intended to be the same as the minimum allocation size");

}  // namespace JS

namespace js {

template <AllowGC allowGC>
extern JSAtom* BigIntToAtom(JSContext* cx, JS::HandleBigInt bi);

extern JS::BigInt* NumberToBigInt(JSContext* cx, double d);

// Parse a BigInt from a string, using the method specified for StringToBigInt.
// Used by the BigInt constructor among other places.
extern JS::Result<JS::BigInt*, JS::OOM&> StringToBigInt(
    JSContext* cx, JS::Handle<JSString*> str);

// Parse a BigInt from an already-validated numeric literal.  Used by the
// parser.  Can only fail in out-of-memory situations.
extern JS::BigInt* ParseBigIntLiteral(
    JSContext* cx, const mozilla::Range<const char16_t>& chars);

extern JS::BigInt* ToBigInt(JSContext* cx, JS::Handle<JS::Value> v);
extern JS::Result<int64_t> ToBigInt64(JSContext* cx, JS::Handle<JS::Value> v);
extern JS::Result<uint64_t> ToBigUint64(JSContext* cx, JS::Handle<JS::Value> v);

}  // namespace js

#endif