DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (441520899d5f)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef GFX_FONT_UTILS_H
#define GFX_FONT_UTILS_H

#include "gfxFontVariations.h"
#include "gfxPlatform.h"
#include "nsComponentManagerUtils.h"
#include "nsTArray.h"
#include "ipc/IPCMessageUtils.h"
#include "mozilla/Casting.h"
#include "mozilla/Encoding.h"
#include "mozilla/EndianUtils.h"
#include "mozilla/Likely.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/UniquePtr.h"

#include "zlib.h"
#include <algorithm>

/* Bug 341128 - w32api defines min/max which causes problems with <bitset> */
#ifdef __MINGW32__
#  undef min
#  undef max
#endif

#undef ERROR /* defined by Windows.h, conflicts with some generated bindings \
                code when this gets indirectly included via shared font list \
              */

typedef struct hb_blob_t hb_blob_t;

class SharedBitSet;

class gfxSparseBitSet {
 private:
  friend class SharedBitSet;

  enum { BLOCK_SIZE = 32 };  // ==> 256 codepoints per block
  enum { BLOCK_SIZE_BITS = BLOCK_SIZE * 8 };
  enum { NO_BLOCK = 0xffff };  // index value indicating missing (empty) block

  struct Block {
    Block(const Block& aBlock) { memcpy(mBits, aBlock.mBits, sizeof(mBits)); }
    explicit Block(unsigned char memsetValue = 0) {
      memset(mBits, memsetValue, BLOCK_SIZE);
    }
    uint8_t mBits[BLOCK_SIZE];
  };

 public:
  gfxSparseBitSet() {}
  gfxSparseBitSet(const gfxSparseBitSet& aBitset) {
    mBlockIndex.AppendElements(aBitset.mBlockIndex);
    mBlocks.AppendElements(aBitset.mBlocks);
  }

  bool Equals(const gfxSparseBitSet* aOther) const {
    if (mBlockIndex.Length() != aOther->mBlockIndex.Length()) {
      return false;
    }
    size_t n = mBlockIndex.Length();
    for (size_t i = 0; i < n; ++i) {
      uint32_t b1 = mBlockIndex[i];
      uint32_t b2 = aOther->mBlockIndex[i];
      if ((b1 == NO_BLOCK) != (b2 == NO_BLOCK)) {
        return false;
      }
      if (b1 == NO_BLOCK) {
        continue;
      }
      if (memcmp(&mBlocks[b1].mBits, &aOther->mBlocks[b2].mBits, BLOCK_SIZE) !=
          0) {
        return false;
      }
    }
    return true;
  }

  bool test(uint32_t aIndex) const {
    uint32_t i = aIndex / BLOCK_SIZE_BITS;
    if (i >= mBlockIndex.Length() || mBlockIndex[i] == NO_BLOCK) {
      return false;
    }
    const Block& block = mBlocks[mBlockIndex[i]];
    return ((block.mBits[(aIndex >> 3) & (BLOCK_SIZE - 1)]) &
            (1 << (aIndex & 0x7))) != 0;
  }

  // dump out contents of bitmap
  void Dump(const char* aPrefix, eGfxLog aWhichLog) const;

  bool TestRange(uint32_t aStart, uint32_t aEnd) {
    // start point is beyond the end of the block array? return false
    // immediately
    uint32_t startBlock = aStart / BLOCK_SIZE_BITS;
    uint32_t blockLen = mBlockIndex.Length();
    if (startBlock >= blockLen) {
      return false;
    }

    // check for blocks in range, if none, return false
    bool hasBlocksInRange = false;
    uint32_t endBlock = aEnd / BLOCK_SIZE_BITS;
    for (uint32_t bi = startBlock; bi <= endBlock; bi++) {
      if (bi < blockLen && mBlockIndex[bi] != NO_BLOCK) {
        hasBlocksInRange = true;
        break;
      }
    }
    if (!hasBlocksInRange) {
      return false;
    }

    // first block, check bits
    if (mBlockIndex[startBlock] != NO_BLOCK) {
      const Block& block = mBlocks[mBlockIndex[startBlock]];
      uint32_t start = aStart;
      uint32_t end = std::min(aEnd, ((startBlock + 1) * BLOCK_SIZE_BITS) - 1);
      for (uint32_t i = start; i <= end; i++) {
        if ((block.mBits[(i >> 3) & (BLOCK_SIZE - 1)]) & (1 << (i & 0x7))) {
          return true;
        }
      }
    }
    if (endBlock == startBlock) {
      return false;
    }

    // [2..n-1] blocks check bytes
    for (uint32_t i = startBlock + 1; i < endBlock; i++) {
      if (i >= blockLen || mBlockIndex[i] == NO_BLOCK) {
        continue;
      }
      const Block& block = mBlocks[mBlockIndex[i]];
      for (uint32_t index = 0; index < BLOCK_SIZE; index++) {
        if (block.mBits[index]) {
          return true;
        }
      }
    }

    // last block, check bits
    if (endBlock < blockLen && mBlockIndex[endBlock] != NO_BLOCK) {
      const Block& block = mBlocks[mBlockIndex[endBlock]];
      uint32_t start = endBlock * BLOCK_SIZE_BITS;
      uint32_t end = aEnd;
      for (uint32_t i = start; i <= end; i++) {
        if ((block.mBits[(i >> 3) & (BLOCK_SIZE - 1)]) & (1 << (i & 0x7))) {
          return true;
        }
      }
    }

    return false;
  }

  void set(uint32_t aIndex) {
    uint32_t i = aIndex / BLOCK_SIZE_BITS;
    while (i >= mBlockIndex.Length()) {
      mBlockIndex.AppendElement(NO_BLOCK);
    }
    if (mBlockIndex[i] == NO_BLOCK) {
      mBlocks.AppendElement();
      MOZ_ASSERT(mBlocks.Length() < 0xffff, "block index overflow!");
      mBlockIndex[i] = static_cast<uint16_t>(mBlocks.Length() - 1);
    }
    Block& block = mBlocks[mBlockIndex[i]];
    block.mBits[(aIndex >> 3) & (BLOCK_SIZE - 1)] |= 1 << (aIndex & 0x7);
  }

  void set(uint32_t aIndex, bool aValue) {
    if (aValue) {
      set(aIndex);
    } else {
      clear(aIndex);
    }
  }

  void SetRange(uint32_t aStart, uint32_t aEnd) {
    const uint32_t startIndex = aStart / BLOCK_SIZE_BITS;
    const uint32_t endIndex = aEnd / BLOCK_SIZE_BITS;

    while (endIndex >= mBlockIndex.Length()) {
      mBlockIndex.AppendElement(NO_BLOCK);
    }

    for (uint32_t i = startIndex; i <= endIndex; ++i) {
      const uint32_t blockFirstBit = i * BLOCK_SIZE_BITS;
      const uint32_t blockLastBit = blockFirstBit + BLOCK_SIZE_BITS - 1;

      if (mBlockIndex[i] == NO_BLOCK) {
        bool fullBlock = (aStart <= blockFirstBit && aEnd >= blockLastBit);
        mBlocks.AppendElement(Block(fullBlock ? 0xFF : 0));
        MOZ_ASSERT(mBlocks.Length() < 0xffff, "block index overflow!");
        mBlockIndex[i] = static_cast<uint16_t>(mBlocks.Length() - 1);
        if (fullBlock) {
          continue;
        }
      }

      Block& block = mBlocks[mBlockIndex[i]];
      const uint32_t start =
          aStart > blockFirstBit ? aStart - blockFirstBit : 0;
      const uint32_t end =
          std::min<uint32_t>(aEnd - blockFirstBit, BLOCK_SIZE_BITS - 1);

      for (uint32_t bit = start; bit <= end; ++bit) {
        block.mBits[bit >> 3] |= 1 << (bit & 0x7);
      }
    }
  }

  void clear(uint32_t aIndex) {
    uint32_t i = aIndex / BLOCK_SIZE_BITS;
    if (i >= mBlockIndex.Length()) {
      return;
    }
    if (mBlockIndex[i] == NO_BLOCK) {
      mBlocks.AppendElement();
      MOZ_ASSERT(mBlocks.Length() < 0xffff, "block index overflow!");
      mBlockIndex[i] = static_cast<uint16_t>(mBlocks.Length() - 1);
    }
    Block& block = mBlocks[mBlockIndex[i]];
    block.mBits[(aIndex >> 3) & (BLOCK_SIZE - 1)] &= ~(1 << (aIndex & 0x7));
  }

  void ClearRange(uint32_t aStart, uint32_t aEnd) {
    const uint32_t startIndex = aStart / BLOCK_SIZE_BITS;
    const uint32_t endIndex = aEnd / BLOCK_SIZE_BITS;

    for (uint32_t i = startIndex; i <= endIndex; ++i) {
      if (i >= mBlockIndex.Length()) {
        return;
      }
      if (mBlockIndex[i] == NO_BLOCK) {
        continue;
      }

      const uint32_t blockFirstBit = i * BLOCK_SIZE_BITS;
      Block& block = mBlocks[mBlockIndex[i]];

      const uint32_t start =
          aStart > blockFirstBit ? aStart - blockFirstBit : 0;
      const uint32_t end =
          std::min<uint32_t>(aEnd - blockFirstBit, BLOCK_SIZE_BITS - 1);

      for (uint32_t bit = start; bit <= end; ++bit) {
        block.mBits[bit >> 3] &= ~(1 << (bit & 0x7));
      }
    }
  }

  size_t SizeOfExcludingThis(mozilla::MallocSizeOf aMallocSizeOf) const {
    return mBlocks.ShallowSizeOfExcludingThis(aMallocSizeOf) +
           mBlockIndex.ShallowSizeOfExcludingThis(aMallocSizeOf);
  }

  size_t SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const {
    return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
  }

  // clear out all blocks in the array
  void reset() {
    mBlocks.Clear();
    mBlockIndex.Clear();
  }

  // set this bitset to the union of its current contents and another
  void Union(const gfxSparseBitSet& aBitset) {
    // ensure mBlocks is large enough
    uint32_t blockCount = aBitset.mBlockIndex.Length();
    while (blockCount > mBlockIndex.Length()) {
      mBlockIndex.AppendElement(NO_BLOCK);
    }
    // for each block that may be present in aBitset...
    for (uint32_t i = 0; i < blockCount; ++i) {
      // if it is missing (implicitly empty), just skip
      if (aBitset.mBlockIndex[i] == NO_BLOCK) {
        continue;
      }
      // if the block is missing in this set, just copy the other
      if (mBlockIndex[i] == NO_BLOCK) {
        mBlocks.AppendElement(aBitset.mBlocks[aBitset.mBlockIndex[i]]);
        MOZ_ASSERT(mBlocks.Length() < 0xffff, "block index overflow!");
        mBlockIndex[i] = static_cast<uint16_t>(mBlocks.Length() - 1);
        continue;
      }
      // else set existing block to the union of both
      uint32_t* dst =
          reinterpret_cast<uint32_t*>(&mBlocks[mBlockIndex[i]].mBits);
      const uint32_t* src = reinterpret_cast<const uint32_t*>(
          &aBitset.mBlocks[aBitset.mBlockIndex[i]].mBits);
      for (uint32_t j = 0; j < BLOCK_SIZE / 4; ++j) {
        dst[j] |= src[j];
      }
    }
  }

  inline void Union(const SharedBitSet& aBitset);

  void Compact() {
    // TODO: Discard any empty blocks, and adjust index accordingly.
    // (May not be worth doing, though, because we so rarely clear bits
    // that were previously set.)
    mBlocks.Compact();
    mBlockIndex.Compact();
  }

  uint32_t GetChecksum() const {
    uint32_t check =
        adler32(0, reinterpret_cast<const uint8_t*>(mBlockIndex.Elements()),
                mBlockIndex.Length() * sizeof(uint16_t));
    check = adler32(check, reinterpret_cast<const uint8_t*>(mBlocks.Elements()),
                    mBlocks.Length() * sizeof(Block));
    return check;
  }

 private:
  friend struct IPC::ParamTraits<gfxSparseBitSet>;
  friend struct IPC::ParamTraits<gfxSparseBitSet::Block>;
  nsTArray<uint16_t> mBlockIndex;
  nsTArray<Block> mBlocks;
};

namespace IPC {
template <>
struct ParamTraits<gfxSparseBitSet> {
  typedef gfxSparseBitSet paramType;
  static void Write(Message* aMsg, const paramType& aParam) {
    WriteParam(aMsg, aParam.mBlockIndex);
    WriteParam(aMsg, aParam.mBlocks);
  }
  static bool Read(const Message* aMsg, PickleIterator* aIter,
                   paramType* aResult) {
    return ReadParam(aMsg, aIter, &aResult->mBlockIndex) &&
           ReadParam(aMsg, aIter, &aResult->mBlocks);
  }
};

template <>
struct ParamTraits<gfxSparseBitSet::Block> {
  typedef gfxSparseBitSet::Block paramType;
  static void Write(Message* aMsg, const paramType& aParam) {
    aMsg->WriteBytes(&aParam, sizeof(aParam));
  }
  static bool Read(const Message* aMsg, PickleIterator* aIter,
                   paramType* aResult) {
    return aMsg->ReadBytesInto(aIter, aResult, sizeof(*aResult));
  }
};
}  // namespace IPC

/**
 * SharedBitSet is a version of gfxSparseBitSet that is intended to be used
 * in a shared-memory block, and can be used regardless of the address at which
 * the block has been mapped. The SharedBitSet cannot be modified once it has
 * been created.
 *
 * Max size of a SharedBitSet = 4352 * 32  ; blocks
 *                              + 4352 * 2 ; index
 *                              + 4        ; counts
 *   = 147972 bytes
 *
 * Therefore, SharedFontList must be able to allocate a contiguous block of at
 * least this size.
 */
class SharedBitSet {
 private:
  // We use the same Block type as gfxSparseBitSet.
  typedef gfxSparseBitSet::Block Block;

  enum { BLOCK_SIZE = gfxSparseBitSet::BLOCK_SIZE };
  enum { BLOCK_SIZE_BITS = gfxSparseBitSet::BLOCK_SIZE_BITS };
  enum { NO_BLOCK = gfxSparseBitSet::NO_BLOCK };

 public:
  static const size_t kMaxSize = 147972;  // see above

  // Returns the size needed for a SharedBitSet version of the given
  // gfxSparseBitSet.
  static size_t RequiredSize(const gfxSparseBitSet& aBitset) {
    size_t total = sizeof(SharedBitSet);
    size_t len = aBitset.mBlockIndex.Length();
    total += len * sizeof(uint16_t);  // add size for index array
    // add size for blocks, excluding any missing ones
    for (uint16_t i = 0; i < len; i++) {
      if (aBitset.mBlockIndex[i] != NO_BLOCK) {
        total += sizeof(Block);
      }
    }
    MOZ_ASSERT(total <= kMaxSize);
    return total;
  }

  // Create a SharedBitSet in the provided buffer, initializing it with the
  // contents of aBitset.
  static SharedBitSet* Create(void* aBuffer, size_t aBufSize,
                              const gfxSparseBitSet& aBitset) {
    MOZ_ASSERT(aBufSize >= RequiredSize(aBitset));
    return new (aBuffer) SharedBitSet(aBitset);
  }

  bool test(uint32_t aIndex) const {
    const auto i = static_cast<uint16_t>(aIndex / BLOCK_SIZE_BITS);
    if (i >= mBlockIndexCount) {
      return false;
    }
    const uint16_t* const blockIndex =
        reinterpret_cast<const uint16_t*>(this + 1);
    if (blockIndex[i] == NO_BLOCK) {
      return false;
    }
    const Block* const blocks =
        reinterpret_cast<const Block*>(blockIndex + mBlockIndexCount);
    const Block& block = blocks[blockIndex[i]];
    return ((block.mBits[(aIndex >> 3) & (BLOCK_SIZE - 1)]) &
            (1 << (aIndex & 0x7))) != 0;
  }

  bool Equals(const gfxSparseBitSet* aOther) const {
    if (mBlockIndexCount != aOther->mBlockIndex.Length()) {
      return false;
    }
    const uint16_t* const blockIndex =
        reinterpret_cast<const uint16_t*>(this + 1);
    const Block* const blocks =
        reinterpret_cast<const Block*>(blockIndex + mBlockIndexCount);
    for (uint16_t i = 0; i < mBlockIndexCount; ++i) {
      uint16_t index = blockIndex[i];
      uint16_t otherIndex = aOther->mBlockIndex[i];
      if ((index == NO_BLOCK) != (otherIndex == NO_BLOCK)) {
        return false;
      }
      if (index == NO_BLOCK) {
        continue;
      }
      const Block& b1 = blocks[index];
      const Block& b2 = aOther->mBlocks[otherIndex];
      if (memcmp(&b1.mBits, &b2.mBits, BLOCK_SIZE) != 0) {
        return false;
      }
    }
    return true;
  }

 private:
  friend class gfxSparseBitSet;
  SharedBitSet() = delete;

  explicit SharedBitSet(const gfxSparseBitSet& aBitset)
      : mBlockIndexCount(
            mozilla::AssertedCast<uint16_t>(aBitset.mBlockIndex.Length())),
        mBlockCount(0) {
    uint16_t* blockIndex = reinterpret_cast<uint16_t*>(this + 1);
    Block* blocks = reinterpret_cast<Block*>(blockIndex + mBlockIndexCount);
    for (uint16_t i = 0; i < mBlockIndexCount; i++) {
      if (aBitset.mBlockIndex[i] != NO_BLOCK) {
        const Block& srcBlock = aBitset.mBlocks[aBitset.mBlockIndex[i]];
        std::memcpy(&blocks[mBlockCount], &srcBlock, sizeof(Block));
        blockIndex[i] = mBlockCount;
        mBlockCount++;
      } else {
        blockIndex[i] = NO_BLOCK;
      }
    }
  }

  // We never manage SharedBitSet as a "normal" object, it's a view onto a
  // buffer of shared memory. So we should never be trying to call this.
  ~SharedBitSet() = delete;

  uint16_t mBlockIndexCount;
  uint16_t mBlockCount;

  // After the two "header" fields above, we have a block index array
  // of uint16_t[mBlockIndexCount], followed by mBlockCount Block records.
};

// Union the contents of a SharedBitSet with the target gfxSparseBitSet
inline void gfxSparseBitSet::Union(const SharedBitSet& aBitset) {
  // ensure mBlockIndex is large enough
  while (mBlockIndex.Length() < aBitset.mBlockIndexCount) {
    mBlockIndex.AppendElement(NO_BLOCK);
  }
  auto blockIndex = reinterpret_cast<const uint16_t*>(&aBitset + 1);
  auto blocks = reinterpret_cast<const Block*>(blockIndex + aBitset.mBlockIndexCount);
  for (uint32_t i = 0; i < aBitset.mBlockIndexCount; ++i) {
    // if it is missing (implicitly empty) in source, just skip
    if (blockIndex[i] == NO_BLOCK) {
      continue;
    }
    // if the block is missing, just copy from source bitset
    if (mBlockIndex[i] == NO_BLOCK) {
      mBlocks.AppendElement(blocks[blockIndex[i]]);
      MOZ_ASSERT(mBlocks.Length() < 0xffff, "block index overflow");
      mBlockIndex[i] = uint16_t(mBlocks.Length() - 1);
      continue;
    }
    // else set existing target block to the union of both
    uint32_t* dst = reinterpret_cast<uint32_t*>(
        &mBlocks[mBlockIndex[i]].mBits);
    const uint32_t* src = reinterpret_cast<const uint32_t*>(
        &blocks[blockIndex[i]].mBits);
    for (uint32_t j = 0; j < BLOCK_SIZE / 4; ++j) {
      dst[j] |= src[j];
    }
  }
}

#define TRUETYPE_TAG(a, b, c, d) ((a) << 24 | (b) << 16 | (c) << 8 | (d))

namespace mozilla {

// Byte-swapping types and name table structure definitions moved from
// gfxFontUtils.cpp to .h file so that gfxFont.cpp can also refer to them
#pragma pack(1)

struct AutoSwap_PRUint16 {
#ifdef __SUNPRO_CC
  AutoSwap_PRUint16& operator=(const uint16_t aValue) {
    this->value = mozilla::NativeEndian::swapToBigEndian(aValue);
    return *this;
  }
#else
  MOZ_IMPLICIT AutoSwap_PRUint16(uint16_t aValue) {
    value = mozilla::NativeEndian::swapToBigEndian(aValue);
  }
#endif
  operator uint16_t() const {
    return mozilla::NativeEndian::swapFromBigEndian(value);
  }

  operator uint32_t() const {
    return mozilla::NativeEndian::swapFromBigEndian(value);
  }

  operator uint64_t() const {
    return mozilla::NativeEndian::swapFromBigEndian(value);
  }

 private:
  uint16_t value;
};

struct AutoSwap_PRInt16 {
#ifdef __SUNPRO_CC
  AutoSwap_PRInt16& operator=(const int16_t aValue) {
    this->value = mozilla::NativeEndian::swapToBigEndian(aValue);
    return *this;
  }
#else
  MOZ_IMPLICIT AutoSwap_PRInt16(int16_t aValue) {
    value = mozilla::NativeEndian::swapToBigEndian(aValue);
  }
#endif
  operator int16_t() const {
    return mozilla::NativeEndian::swapFromBigEndian(value);
  }

  operator uint32_t() const {
    return mozilla::NativeEndian::swapFromBigEndian(value);
  }

 private:
  int16_t value;
};

struct AutoSwap_PRUint32 {
#ifdef __SUNPRO_CC
  AutoSwap_PRUint32& operator=(const uint32_t aValue) {
    this->value = mozilla::NativeEndian::swapToBigEndian(aValue);
    return *this;
  }
#else
  MOZ_IMPLICIT AutoSwap_PRUint32(uint32_t aValue) {
    value = mozilla::NativeEndian::swapToBigEndian(aValue);
  }
#endif
  operator uint32_t() const {
    return mozilla::NativeEndian::swapFromBigEndian(value);
  }

 private:
  uint32_t value;
};

struct AutoSwap_PRInt32 {
#ifdef __SUNPRO_CC
  AutoSwap_PRInt32& operator=(const int32_t aValue) {
    this->value = mozilla::NativeEndian::swapToBigEndian(aValue);
    return *this;
  }
#else
  MOZ_IMPLICIT AutoSwap_PRInt32(int32_t aValue) {
    value = mozilla::NativeEndian::swapToBigEndian(aValue);
  }
#endif
  operator int32_t() const {
    return mozilla::NativeEndian::swapFromBigEndian(value);
  }

 private:
  int32_t value;
};

struct AutoSwap_PRUint64 {
#ifdef __SUNPRO_CC
  AutoSwap_PRUint64& operator=(const uint64_t aValue) {
    this->value = mozilla::NativeEndian::swapToBigEndian(aValue);
    return *this;
  }
#else
  MOZ_IMPLICIT AutoSwap_PRUint64(uint64_t aValue) {
    value = mozilla::NativeEndian::swapToBigEndian(aValue);
  }
#endif
  operator uint64_t() const {
    return mozilla::NativeEndian::swapFromBigEndian(value);
  }

 private:
  uint64_t value;
};

struct AutoSwap_PRUint24 {
  operator uint32_t() const {
    return value[0] << 16 | value[1] << 8 | value[2];
  }

 private:
  AutoSwap_PRUint24() {}
  uint8_t value[3];
};

struct SFNTHeader {
  AutoSwap_PRUint32 sfntVersion;    // Fixed, 0x00010000 for version 1.0.
  AutoSwap_PRUint16 numTables;      // Number of tables.
  AutoSwap_PRUint16 searchRange;    // (Maximum power of 2 <= numTables) x 16.
  AutoSwap_PRUint16 entrySelector;  // Log2(maximum power of 2 <= numTables).
  AutoSwap_PRUint16 rangeShift;     // NumTables x 16-searchRange.
};

struct TableDirEntry {
  AutoSwap_PRUint32 tag;       // 4 -byte identifier.
  AutoSwap_PRUint32 checkSum;  // CheckSum for this table.
  AutoSwap_PRUint32 offset;    // Offset from beginning of TrueType font file.
  AutoSwap_PRUint32 length;    // Length of this table.
};

struct HeadTable {
  enum {
    HEAD_VERSION = 0x00010000,
    HEAD_MAGIC_NUMBER = 0x5F0F3CF5,
    HEAD_CHECKSUM_CALC_CONST = 0xB1B0AFBA
  };

  AutoSwap_PRUint32 tableVersionNumber;  // Fixed, 0x00010000 for version 1.0.
  AutoSwap_PRUint32 fontRevision;        // Set by font manufacturer.
  AutoSwap_PRUint32
      checkSumAdjustment;  // To compute: set it to 0, sum the entire font as
                           // ULONG, then store 0xB1B0AFBA - sum.
  AutoSwap_PRUint32 magicNumber;  // Set to 0x5F0F3CF5.
  AutoSwap_PRUint16 flags;
  AutoSwap_PRUint16
      unitsPerEm;  // Valid range is from 16 to 16384. This value should be a
                   // power of 2 for fonts that have TrueType outlines.
  AutoSwap_PRUint64 created;  // Number of seconds since 12:00 midnight, January
                              // 1, 1904. 64-bit integer
  AutoSwap_PRUint64 modified;       // Number of seconds since 12:00 midnight,
                                    // January 1, 1904. 64-bit integer
  AutoSwap_PRInt16 xMin;            // For all glyph bounding boxes.
  AutoSwap_PRInt16 yMin;            // For all glyph bounding boxes.
  AutoSwap_PRInt16 xMax;            // For all glyph bounding boxes.
  AutoSwap_PRInt16 yMax;            // For all glyph bounding boxes.
  AutoSwap_PRUint16 macStyle;       // Bit 0: Bold (if set to 1);
  AutoSwap_PRUint16 lowestRecPPEM;  // Smallest readable size in pixels.
  AutoSwap_PRInt16 fontDirectionHint;
  AutoSwap_PRInt16 indexToLocFormat;
  AutoSwap_PRInt16 glyphDataFormat;
};

struct OS2Table {
  AutoSwap_PRUint16 version;  // 0004 = OpenType 1.5
  AutoSwap_PRInt16 xAvgCharWidth;
  AutoSwap_PRUint16 usWeightClass;
  AutoSwap_PRUint16 usWidthClass;
  AutoSwap_PRUint16 fsType;
  AutoSwap_PRInt16 ySubscriptXSize;
  AutoSwap_PRInt16 ySubscriptYSize;
  AutoSwap_PRInt16 ySubscriptXOffset;
  AutoSwap_PRInt16 ySubscriptYOffset;
  AutoSwap_PRInt16 ySuperscriptXSize;
  AutoSwap_PRInt16 ySuperscriptYSize;
  AutoSwap_PRInt16 ySuperscriptXOffset;
  AutoSwap_PRInt16 ySuperscriptYOffset;
  AutoSwap_PRInt16 yStrikeoutSize;
  AutoSwap_PRInt16 yStrikeoutPosition;
  AutoSwap_PRInt16 sFamilyClass;
  uint8_t panose[10];
  AutoSwap_PRUint32 unicodeRange1;
  AutoSwap_PRUint32 unicodeRange2;
  AutoSwap_PRUint32 unicodeRange3;
  AutoSwap_PRUint32 unicodeRange4;
  uint8_t achVendID[4];
  AutoSwap_PRUint16 fsSelection;
  AutoSwap_PRUint16 usFirstCharIndex;
  AutoSwap_PRUint16 usLastCharIndex;
  AutoSwap_PRInt16 sTypoAscender;
  AutoSwap_PRInt16 sTypoDescender;
  AutoSwap_PRInt16 sTypoLineGap;
  AutoSwap_PRUint16 usWinAscent;
  AutoSwap_PRUint16 usWinDescent;
  AutoSwap_PRUint32 codePageRange1;
  AutoSwap_PRUint32 codePageRange2;
  AutoSwap_PRInt16 sxHeight;
  AutoSwap_PRInt16 sCapHeight;
  AutoSwap_PRUint16 usDefaultChar;
  AutoSwap_PRUint16 usBreakChar;
  AutoSwap_PRUint16 usMaxContext;
};

struct PostTable {
  AutoSwap_PRUint32 version;
  AutoSwap_PRInt32 italicAngle;
  AutoSwap_PRInt16 underlinePosition;
  AutoSwap_PRUint16 underlineThickness;
  AutoSwap_PRUint32 isFixedPitch;
  AutoSwap_PRUint32 minMemType42;
  AutoSwap_PRUint32 maxMemType42;
  AutoSwap_PRUint32 minMemType1;
  AutoSwap_PRUint32 maxMemType1;
};

// This structure is used for both 'hhea' and 'vhea' tables.
// The field names here are those of the horizontal version; the
// vertical table just exchanges vertical and horizontal coordinates.
struct MetricsHeader {
  AutoSwap_PRUint32 version;
  AutoSwap_PRInt16 ascender;
  AutoSwap_PRInt16 descender;
  AutoSwap_PRInt16 lineGap;
  AutoSwap_PRUint16 advanceWidthMax;
  AutoSwap_PRInt16 minLeftSideBearing;
  AutoSwap_PRInt16 minRightSideBearing;
  AutoSwap_PRInt16 xMaxExtent;
  AutoSwap_PRInt16 caretSlopeRise;
  AutoSwap_PRInt16 caretSlopeRun;
  AutoSwap_PRInt16 caretOffset;
  AutoSwap_PRInt16 reserved1;
  AutoSwap_PRInt16 reserved2;
  AutoSwap_PRInt16 reserved3;
  AutoSwap_PRInt16 reserved4;
  AutoSwap_PRInt16 metricDataFormat;
  AutoSwap_PRUint16 numOfLongMetrics;
};

struct MaxpTableHeader {
  AutoSwap_PRUint32 version;  // CFF: 0x00005000; TrueType: 0x00010000
  AutoSwap_PRUint16 numGlyphs;
  // truetype version has additional fields that we don't currently use
};

// old 'kern' table, supported on Windows
// see http://www.microsoft.com/typography/otspec/kern.htm
struct KernTableVersion0 {
  AutoSwap_PRUint16 version;  // 0x0000
  AutoSwap_PRUint16 nTables;
};

struct KernTableSubtableHeaderVersion0 {
  AutoSwap_PRUint16 version;
  AutoSwap_PRUint16 length;
  AutoSwap_PRUint16 coverage;
};

// newer Mac-only 'kern' table, ignored by Windows
// see http://developer.apple.com/textfonts/TTRefMan/RM06/Chap6kern.html
struct KernTableVersion1 {
  AutoSwap_PRUint32 version;  // 0x00010000
  AutoSwap_PRUint32 nTables;
};

struct KernTableSubtableHeaderVersion1 {
  AutoSwap_PRUint32 length;
  AutoSwap_PRUint16 coverage;
  AutoSwap_PRUint16 tupleIndex;
};

struct COLRHeader {
  AutoSwap_PRUint16 version;
  AutoSwap_PRUint16 numBaseGlyphRecord;
  AutoSwap_PRUint32 offsetBaseGlyphRecord;
  AutoSwap_PRUint32 offsetLayerRecord;
  AutoSwap_PRUint16 numLayerRecords;
};

struct CPALHeaderVersion0 {
  AutoSwap_PRUint16 version;
  AutoSwap_PRUint16 numPaletteEntries;
  AutoSwap_PRUint16 numPalettes;
  AutoSwap_PRUint16 numColorRecords;
  AutoSwap_PRUint32 offsetFirstColorRecord;
};

#pragma pack()

// Return just the highest bit of the given value, i.e., the highest
// power of 2 that is <= value, or zero if the input value is zero.
inline uint32_t FindHighestBit(uint32_t value) {
  // propagate highest bit into all lower bits of the value
  value |= (value >> 1);
  value |= (value >> 2);
  value |= (value >> 4);
  value |= (value >> 8);
  value |= (value >> 16);
  // isolate the leftmost bit
  return (value & ~(value >> 1));
}

}  // namespace mozilla

// used for overlaying name changes without touching original font data
struct FontDataOverlay {
  // overlaySrc != 0 ==> use overlay
  uint32_t overlaySrc;     // src offset from start of font data
  uint32_t overlaySrcLen;  // src length
  uint32_t overlayDest;    // dest offset from start of font data
};

enum gfxUserFontType {
  GFX_USERFONT_UNKNOWN = 0,
  GFX_USERFONT_OPENTYPE = 1,
  GFX_USERFONT_SVG = 2,
  GFX_USERFONT_WOFF = 3,
  GFX_USERFONT_WOFF2 = 4
};
#define GFX_PREF_WOFF2_ENABLED "gfx.downloadable_fonts.woff2.enabled"

extern const uint8_t sCJKCompatSVSTable[];

class gfxFontUtils {
 public:
  // these are public because gfxFont.cpp also looks into the name table
  enum {
    NAME_ID_FAMILY = 1,
    NAME_ID_STYLE = 2,
    NAME_ID_UNIQUE = 3,
    NAME_ID_FULL = 4,
    NAME_ID_VERSION = 5,
    NAME_ID_POSTSCRIPT = 6,
    NAME_ID_PREFERRED_FAMILY = 16,
    NAME_ID_PREFERRED_STYLE = 17,

    PLATFORM_ALL = -1,
    PLATFORM_ID_UNICODE = 0,  // Mac OS uses this typically
    PLATFORM_ID_MAC = 1,
    PLATFORM_ID_ISO = 2,
    PLATFORM_ID_MICROSOFT = 3,

    ENCODING_ID_MAC_ROMAN = 0,  // traditional Mac OS script manager encodings
    ENCODING_ID_MAC_JAPANESE =
        1,  // (there are others defined, but some were never
    ENCODING_ID_MAC_TRAD_CHINESE =
        2,  // implemented by Apple, and I have never seen them
    ENCODING_ID_MAC_KOREAN = 3,  // used in font names)
    ENCODING_ID_MAC_ARABIC = 4,
    ENCODING_ID_MAC_HEBREW = 5,
    ENCODING_ID_MAC_GREEK = 6,
    ENCODING_ID_MAC_CYRILLIC = 7,
    ENCODING_ID_MAC_DEVANAGARI = 9,
    ENCODING_ID_MAC_GURMUKHI = 10,
    ENCODING_ID_MAC_GUJARATI = 11,
    ENCODING_ID_MAC_SIMP_CHINESE = 25,

    ENCODING_ID_MICROSOFT_SYMBOL = 0,  // Microsoft platform encoding IDs
    ENCODING_ID_MICROSOFT_UNICODEBMP = 1,
    ENCODING_ID_MICROSOFT_SHIFTJIS = 2,
    ENCODING_ID_MICROSOFT_PRC = 3,
    ENCODING_ID_MICROSOFT_BIG5 = 4,
    ENCODING_ID_MICROSOFT_WANSUNG = 5,
    ENCODING_ID_MICROSOFT_JOHAB = 6,
    ENCODING_ID_MICROSOFT_UNICODEFULL = 10,

    LANG_ALL = -1,
    LANG_ID_MAC_ENGLISH = 0,  // many others are defined, but most don't affect
    LANG_ID_MAC_HEBREW =
        10,  // the charset; should check all the central/eastern
    LANG_ID_MAC_JAPANESE = 11,  // european codes, though
    LANG_ID_MAC_ARABIC = 12,
    LANG_ID_MAC_ICELANDIC = 15,
    LANG_ID_MAC_TURKISH = 17,
    LANG_ID_MAC_TRAD_CHINESE = 19,
    LANG_ID_MAC_URDU = 20,
    LANG_ID_MAC_KOREAN = 23,
    LANG_ID_MAC_POLISH = 25,
    LANG_ID_MAC_FARSI = 31,
    LANG_ID_MAC_SIMP_CHINESE = 33,
    LANG_ID_MAC_ROMANIAN = 37,
    LANG_ID_MAC_CZECH = 38,
    LANG_ID_MAC_SLOVAK = 39,

    LANG_ID_MICROSOFT_EN_US =
        0x0409,  // with Microsoft platformID, EN US lang code

    CMAP_MAX_CODEPOINT = 0x10ffff  // maximum possible Unicode codepoint
                                   // contained in a cmap
  };

  // name table has a header, followed by name records, followed by string data
  struct NameHeader {
    mozilla::AutoSwap_PRUint16 format;        // Format selector (=0).
    mozilla::AutoSwap_PRUint16 count;         // Number of name records.
    mozilla::AutoSwap_PRUint16 stringOffset;  // Offset to start of string
                                              // storage (from start of table)
  };

  struct NameRecord {
    mozilla::AutoSwap_PRUint16 platformID;  // Platform ID
    mozilla::AutoSwap_PRUint16 encodingID;  // Platform-specific encoding ID
    mozilla::AutoSwap_PRUint16 languageID;  // Language ID
    mozilla::AutoSwap_PRUint16 nameID;      // Name ID.
    mozilla::AutoSwap_PRUint16 length;      // String length (in bytes).
    mozilla::AutoSwap_PRUint16 offset;  // String offset from start of storage
                                        // (in bytes).
  };

  // for reading big-endian font data on either big or little-endian platforms

  static inline uint16_t ReadShortAt(const uint8_t* aBuf, uint32_t aIndex) {
    return static_cast<uint16_t>(aBuf[aIndex] << 8) | aBuf[aIndex + 1];
  }

  static inline uint16_t ReadShortAt16(const uint16_t* aBuf, uint32_t aIndex) {
    const uint8_t* buf = reinterpret_cast<const uint8_t*>(aBuf);
    uint32_t index = aIndex << 1;
    return static_cast<uint16_t>(buf[index] << 8) | buf[index + 1];
  }

  static inline uint32_t ReadUint24At(const uint8_t* aBuf, uint32_t aIndex) {
    return ((aBuf[aIndex] << 16) | (aBuf[aIndex + 1] << 8) |
            (aBuf[aIndex + 2]));
  }

  static inline uint32_t ReadLongAt(const uint8_t* aBuf, uint32_t aIndex) {
    return ((aBuf[aIndex] << 24) | (aBuf[aIndex + 1] << 16) |
            (aBuf[aIndex + 2] << 8) | (aBuf[aIndex + 3]));
  }

  static nsresult ReadCMAPTableFormat10(const uint8_t* aBuf, uint32_t aLength,
                                        gfxSparseBitSet& aCharacterMap);

  static nsresult ReadCMAPTableFormat12or13(const uint8_t* aBuf,
                                            uint32_t aLength,
                                            gfxSparseBitSet& aCharacterMap);

  static nsresult ReadCMAPTableFormat4(const uint8_t* aBuf, uint32_t aLength,
                                       gfxSparseBitSet& aCharacterMap);

  static nsresult ReadCMAPTableFormat14(const uint8_t* aBuf, uint32_t aLength,
                                        mozilla::UniquePtr<uint8_t[]>& aTable);

  static uint32_t FindPreferredSubtable(const uint8_t* aBuf,
                                        uint32_t aBufLength,
                                        uint32_t* aTableOffset,
                                        uint32_t* aUVSTableOffset);

  static nsresult ReadCMAP(const uint8_t* aBuf, uint32_t aBufLength,
                           gfxSparseBitSet& aCharacterMap,
                           uint32_t& aUVSOffset);

  static uint32_t MapCharToGlyphFormat4(const uint8_t* aBuf, uint32_t aLength,
                                        char16_t aCh);

  static uint32_t MapCharToGlyphFormat10(const uint8_t* aBuf, uint32_t aCh);

  static uint32_t MapCharToGlyphFormat12or13(const uint8_t* aBuf, uint32_t aCh);

  static uint16_t MapUVSToGlyphFormat14(const uint8_t* aBuf, uint32_t aCh,
                                        uint32_t aVS);

  // sCJKCompatSVSTable is a 'cmap' format 14 subtable that maps
  // <char + var-selector> pairs to the corresponding Unicode
  // compatibility ideograph codepoints.
  static MOZ_ALWAYS_INLINE uint32_t GetUVSFallback(uint32_t aCh, uint32_t aVS) {
    aCh = MapUVSToGlyphFormat14(sCJKCompatSVSTable, aCh, aVS);
    return aCh >= 0xFB00 ? aCh + (0x2F800 - 0xFB00) : aCh;
  }

  static uint32_t MapCharToGlyph(const uint8_t* aCmapBuf, uint32_t aBufLength,
                                 uint32_t aUnicode, uint32_t aVarSelector = 0);

#ifdef XP_WIN
  // determine whether a font (which has already been sanitized, so is known
  // to be a valid sfnt) is CFF format rather than TrueType
  static bool IsCffFont(const uint8_t* aFontData);
#endif

  // determine the format of font data
  static gfxUserFontType DetermineFontDataType(const uint8_t* aFontData,
                                               uint32_t aFontDataLength);

  // Read the fullname from the sfnt data (used to save the original name
  // prior to renaming the font for installation).
  // This is called with sfnt data that has already been validated,
  // so it should always succeed in finding the name table.
  static nsresult GetFullNameFromSFNT(const uint8_t* aFontData,
                                      uint32_t aLength, nsACString& aFullName);

  // helper to get fullname from name table, constructing from family+style
  // if no explicit fullname is present
  static nsresult GetFullNameFromTable(hb_blob_t* aNameTable,
                                       nsACString& aFullName);

  // helper to get family name from name table
  static nsresult GetFamilyNameFromTable(hb_blob_t* aNameTable,
                                         nsACString& aFamilyName);

  // Find the table directory entry for a given table tag, in a (validated)
  // buffer of 'sfnt' data. Returns null if the tag is not present.
  static mozilla::TableDirEntry* FindTableDirEntry(const void* aFontData,
                                                   uint32_t aTableTag);

  // Return a blob that wraps a table found within a buffer of font data.
  // The blob does NOT own its data; caller guarantees that the buffer
  // will remain valid at least as long as the blob.
  // Returns null if the specified table is not found.
  // This method assumes aFontData is valid 'sfnt' data; before using this,
  // caller is responsible to do any sanitization/validation necessary.
  static hb_blob_t* GetTableFromFontData(const void* aFontData,
                                         uint32_t aTableTag);

  // create a new name table and build a new font with that name table
  // appended on the end, returns true on success
  static nsresult RenameFont(const nsAString& aName, const uint8_t* aFontData,
                             uint32_t aFontDataLength,
                             FallibleTArray<uint8_t>* aNewFont);

  // read all names matching aNameID, returning in aNames array
  static nsresult ReadNames(const char* aNameData, uint32_t aDataLen,
                            uint32_t aNameID, int32_t aPlatformID,
                            nsTArray<nsCString>& aNames);

  // reads English or first name matching aNameID, returning in aName
  // platform based on OS
  static nsresult ReadCanonicalName(hb_blob_t* aNameTable, uint32_t aNameID,
                                    nsCString& aName);

  static nsresult ReadCanonicalName(const char* aNameData, uint32_t aDataLen,
                                    uint32_t aNameID, nsCString& aName);

  // convert a name from the raw name table data into an nsString,
  // provided we know how; return true if successful, or false
  // if we can't handle the encoding
  static bool DecodeFontName(const char* aBuf, int32_t aLength,
                             uint32_t aPlatformCode, uint32_t aScriptCode,
                             uint32_t aLangCode, nsACString& dest);

  static inline bool IsJoinCauser(uint32_t ch) { return (ch == 0x200D); }

  // We treat Combining Grapheme Joiner (U+034F) together with the join
  // controls (ZWJ, ZWNJ) here, because (like them) it is an invisible
  // char that will be handled by the shaper even if not explicitly
  // supported by the font. (See bug 1408366.)
  static inline bool IsJoinControl(uint32_t ch) {
    return (ch == 0x200C || ch == 0x200D || ch == 0x034f);
  }

  enum {
    kUnicodeVS1 = 0xFE00,
    kUnicodeVS16 = 0xFE0F,
    kUnicodeVS17 = 0xE0100,
    kUnicodeVS256 = 0xE01EF
  };

  static inline bool IsVarSelector(uint32_t ch) {
    return (ch >= kUnicodeVS1 && ch <= kUnicodeVS16) ||
           (ch >= kUnicodeVS17 && ch <= kUnicodeVS256);
  }

  enum {
    kUnicodeRegionalIndicatorA = 0x1F1E6,
    kUnicodeRegionalIndicatorZ = 0x1F1FF
  };

  static inline bool IsRegionalIndicator(uint32_t aCh) {
    return aCh >= kUnicodeRegionalIndicatorA &&
           aCh <= kUnicodeRegionalIndicatorZ;
  }

  static inline bool IsInvalid(uint32_t ch) { return (ch == 0xFFFD); }

  // Font code may want to know if there is the potential for bidi behavior
  // to be triggered by any of the characters in a text run; this can be
  // used to test that possibility.
  enum {
    kUnicodeBidiScriptsStart = 0x0590,
    kUnicodeBidiScriptsEnd = 0x08FF,
    kUnicodeBidiPresentationStart = 0xFB1D,
    kUnicodeBidiPresentationEnd = 0xFEFC,
    kUnicodeFirstHighSurrogateBlock = 0xD800,
    kUnicodeRLM = 0x200F,
    kUnicodeRLE = 0x202B,
    kUnicodeRLO = 0x202E
  };

  static inline bool PotentialRTLChar(char16_t aCh) {
    if (aCh >= kUnicodeBidiScriptsStart && aCh <= kUnicodeBidiScriptsEnd)
      // bidi scripts Hebrew, Arabic, Syriac, Thaana, N'Ko are all encoded
      // together
      return true;

    if (aCh == kUnicodeRLM || aCh == kUnicodeRLE || aCh == kUnicodeRLO)
      // directional controls that trigger bidi layout
      return true;

    if (aCh >= kUnicodeBidiPresentationStart &&
        aCh <= kUnicodeBidiPresentationEnd)
      // presentation forms of Arabic and Hebrew letters
      return true;

    if ((aCh & 0xFF00) == kUnicodeFirstHighSurrogateBlock)
      // surrogate that could be part of a bidi supplementary char
      // (Cypriot, Aramaic, Phoenecian, etc)
      return true;

    // otherwise we know this char cannot trigger bidi reordering
    return false;
  }

  // parse a simple list of font family names into
  // an array of strings
  static void ParseFontList(const nsACString& aFamilyList,
                            nsTArray<nsCString>& aFontList);

  // for a given font list pref name, append list of font names
  static void AppendPrefsFontList(const char* aPrefName,
                                  nsTArray<nsCString>& aFontList);

  // for a given font list pref name, initialize a list of font names
  static void GetPrefsFontList(const char* aPrefName,
                               nsTArray<nsCString>& aFontList);

  // generate a unique font name
  static nsresult MakeUniqueUserFontName(nsAString& aName);

  // for color layer from glyph using COLR and CPAL tables
  static bool ValidateColorGlyphs(hb_blob_t* aCOLR, hb_blob_t* aCPAL);
  static bool GetColorGlyphLayers(hb_blob_t* aCOLR, hb_blob_t* aCPAL,
                                  uint32_t aGlyphId,
                                  const mozilla::gfx::Color& aDefaultColor,
                                  nsTArray<uint16_t>& aGlyphs,
                                  nsTArray<mozilla::gfx::Color>& aColors);

  // Helper used to implement gfxFontEntry::GetVariationInstances for
  // platforms where the native font APIs don't provide the info we want
  // in a convenient form.
  // (Not used on platforms -- currently, freetype -- where the font APIs
  // expose variation instance details directly.)
  static void GetVariationInstances(
      gfxFontEntry* aFontEntry, nsTArray<gfxFontVariationInstance>& aInstances);

  // Helper method for reading localized family names from the name table
  // of a single face.
  static void ReadOtherFamilyNamesForFace(
      const nsACString& aFamilyName, const char* aNameData,
      uint32_t aDataLength, nsTArray<nsCString>& aOtherFamilyNames,
      bool useFullName);

 protected:
  friend struct MacCharsetMappingComparator;

  static nsresult ReadNames(const char* aNameData, uint32_t aDataLen,
                            uint32_t aNameID, int32_t aLangID,
                            int32_t aPlatformID, nsTArray<nsCString>& aNames);

  // convert opentype name-table platform/encoding/language values to an
  // Encoding object we can use to convert the name data to unicode
  static const mozilla::Encoding* GetCharsetForFontName(uint16_t aPlatform,
                                                        uint16_t aScript,
                                                        uint16_t aLanguage);

  struct MacFontNameCharsetMapping {
    uint16_t mScript;
    uint16_t mLanguage;
    const mozilla::Encoding* mEncoding;

    bool operator<(const MacFontNameCharsetMapping& rhs) const {
      return (mScript < rhs.mScript) ||
             ((mScript == rhs.mScript) && (mLanguage < rhs.mLanguage));
    }
  };
  static const MacFontNameCharsetMapping gMacFontNameCharsets[];
  static const mozilla::Encoding* gISOFontNameCharsets[];
  static const mozilla::Encoding* gMSFontNameCharsets[];
};

// style distance ==> [0,500]
static inline double StyleDistance(const mozilla::SlantStyleRange& aRange,
                                   mozilla::FontSlantStyle aTargetStyle) {
  const mozilla::FontSlantStyle minStyle = aRange.Min();
  if (aTargetStyle == minStyle) {
    return 0.0;  // styles match exactly ==> 0
  }

  // bias added to angle difference when searching in the non-preferred
  // direction from a target angle
  const double kReverse = 100.0;

  // bias added when we've crossed from positive to negative angles or
  // vice versa
  const double kNegate = 200.0;

  if (aTargetStyle.IsNormal()) {
    if (minStyle.IsOblique()) {
      // to distinguish oblique 0deg from normal, we add 1.0 to the angle
      const double minAngle = minStyle.ObliqueAngle();
      if (minAngle >= 0.0) {
        return 1.0 + minAngle;
      }
      const mozilla::FontSlantStyle maxStyle = aRange.Max();
      const double maxAngle = maxStyle.ObliqueAngle();
      if (maxAngle >= 0.0) {
        // [min,max] range includes 0.0, so just return our minimum
        return 1.0;
      }
      // negative oblique is even worse than italic
      return kNegate - maxAngle;
    }
    // must be italic, which is worse than any non-negative oblique;
    // treat as a match in the wrong search direction
    MOZ_ASSERT(minStyle.IsItalic());
    return kReverse;
  }

  const double kDefaultAngle =
      mozilla::FontSlantStyle::Oblique().ObliqueAngle();

  if (aTargetStyle.IsItalic()) {
    if (minStyle.IsOblique()) {
      const double minAngle = minStyle.ObliqueAngle();
      if (minAngle >= kDefaultAngle) {
        return 1.0 + (minAngle - kDefaultAngle);
      }
      const mozilla::FontSlantStyle maxStyle = aRange.Max();
      const double maxAngle = maxStyle.ObliqueAngle();
      if (maxAngle >= kDefaultAngle) {
        return 1.0;
      }
      if (maxAngle > 0.0) {
        // wrong direction but still > 0, add bias of 100
        return kReverse + (kDefaultAngle - maxAngle);
      }
      // negative oblique angle, add bias of 300
      return kReverse + kNegate + (kDefaultAngle - maxAngle);
    }
    // normal is worse than oblique > 0, but better than oblique <= 0
    MOZ_ASSERT(minStyle.IsNormal());
    return kNegate;
  }

  // target is oblique <angle>: four different cases depending on
  // the value of the <angle>, which determines the preferred direction
  // of search
  const double targetAngle = aTargetStyle.ObliqueAngle();
  if (targetAngle >= kDefaultAngle) {
    if (minStyle.IsOblique()) {
      const double minAngle = minStyle.ObliqueAngle();
      if (minAngle >= targetAngle) {
        return minAngle - targetAngle;
      }
      const mozilla::FontSlantStyle maxStyle = aRange.Max();
      const double maxAngle = maxStyle.ObliqueAngle();
      if (maxAngle >= targetAngle) {
        return 0.0;
      }
      if (maxAngle > 0.0) {
        return kReverse + (targetAngle - maxAngle);
      }
      return kReverse + kNegate + (targetAngle - maxAngle);
    }
    if (minStyle.IsItalic()) {
      return kReverse + kNegate;
    }
    return kReverse + kNegate + 1.0;
  }

  if (targetAngle <= -kDefaultAngle) {
    if (minStyle.IsOblique()) {
      const mozilla::FontSlantStyle maxStyle = aRange.Max();
      const double maxAngle = maxStyle.ObliqueAngle();
      if (maxAngle <= targetAngle) {
        return targetAngle - maxAngle;
      }
      const double minAngle = minStyle.ObliqueAngle();
      if (minAngle <= targetAngle) {
        return 0.0;
      }
      if (minAngle < 0.0) {
        return kReverse + (minAngle - targetAngle);
      }
      return kReverse + kNegate + (minAngle - targetAngle);
    }
    if (minStyle.IsItalic()) {
      return kReverse + kNegate;
    }
    return kReverse + kNegate + 1.0;
  }

  if (targetAngle >= 0.0) {
    if (minStyle.IsOblique()) {
      const double minAngle = minStyle.ObliqueAngle();
      if (minAngle > targetAngle) {
        return kReverse + (minAngle - targetAngle);
      }
      const mozilla::FontSlantStyle maxStyle = aRange.Max();
      const double maxAngle = maxStyle.ObliqueAngle();
      if (maxAngle >= targetAngle) {
        return 0.0;
      }
      if (maxAngle > 0.0) {
        return targetAngle - maxAngle;
      }
      return kReverse + kNegate + (targetAngle - maxAngle);
    }
    if (minStyle.IsItalic()) {
      return kReverse + kNegate - 2.0;
    }
    return kReverse + kNegate - 1.0;
  }

  // last case: (targetAngle < 0.0 && targetAngle > kDefaultAngle)
  if (minStyle.IsOblique()) {
    const mozilla::FontSlantStyle maxStyle = aRange.Max();
    const double maxAngle = maxStyle.ObliqueAngle();
    if (maxAngle < targetAngle) {
      return kReverse + (targetAngle - maxAngle);
    }
    const double minAngle = minStyle.ObliqueAngle();
    if (minAngle <= targetAngle) {
      return 0.0;
    }
    if (minAngle < 0.0) {
      return minAngle - targetAngle;
    }
    return kReverse + kNegate + (minAngle - targetAngle);
  }
  if (minStyle.IsItalic()) {
    return kReverse + kNegate - 2.0;
  }
  return kReverse + kNegate - 1.0;
}

// stretch distance ==> [0,2000]
static inline double StretchDistance(const mozilla::StretchRange& aRange,
                                     mozilla::FontStretch aTargetStretch) {
  const double kReverseDistance = 1000.0;

  mozilla::FontStretch minStretch = aRange.Min();
  mozilla::FontStretch maxStretch = aRange.Max();

  // The stretch value is a (non-negative) percentage; currently we support
  // values in the range 0 .. 1000. (If the upper limit is ever increased,
  // the kReverseDistance value used here may need to be adjusted.)
  // If aTargetStretch is >100, we prefer larger values if available;
  // if <=100, we prefer smaller values if available.
  if (aTargetStretch < minStretch) {
    if (aTargetStretch > mozilla::FontStretch::Normal()) {
      return minStretch - aTargetStretch;
    }
    return (minStretch - aTargetStretch) + kReverseDistance;
  }
  if (aTargetStretch > maxStretch) {
    if (aTargetStretch <= mozilla::FontStretch::Normal()) {
      return aTargetStretch - maxStretch;
    }
    return (aTargetStretch - maxStretch) + kReverseDistance;
  }
  return 0.0;
}

// Calculate weight distance with values in the range (0..1000). In general,
// heavier weights match towards even heavier weights while lighter weights
// match towards even lighter weights. Target weight values in the range
// [400..500] are special, since they will first match up to 500, then down
// towards 0, then up again towards 999.
//
// Example: with target 600 and font weight 800, distance will be 200. With
// target 300 and font weight 600, distance will be 900, since heavier
// weights are farther away than lighter weights. If the target is 5 and the
// font weight 995, the distance would be 1590 for the same reason.

// weight distance ==> [0,1600]
static inline double WeightDistance(const mozilla::WeightRange& aRange,
                                    mozilla::FontWeight aTargetWeight) {
  const double kNotWithinCentralRange = 100.0;
  const double kReverseDistance = 600.0;

  mozilla::FontWeight minWeight = aRange.Min();
  mozilla::FontWeight maxWeight = aRange.Max();

  if (aTargetWeight >= minWeight && aTargetWeight <= maxWeight) {
    // Target is within the face's range, so it's a perfect match
    return 0.0;
  }

  if (aTargetWeight < mozilla::FontWeight(400)) {
    // Requested a lighter-than-400 weight
    if (maxWeight < aTargetWeight) {
      return aTargetWeight - maxWeight;
    }
    // Add reverse-search penalty for bolder faces
    return (minWeight - aTargetWeight) + kReverseDistance;
  }

  if (aTargetWeight > mozilla::FontWeight(500)) {
    // Requested a bolder-than-500 weight
    if (minWeight > aTargetWeight) {
      return minWeight - aTargetWeight;
    }
    // Add reverse-search penalty for lighter faces
    return (aTargetWeight - maxWeight) + kReverseDistance;
  }

  // Special case for requested weight in the [400..500] range
  if (minWeight > aTargetWeight) {
    if (minWeight <= mozilla::FontWeight(500)) {
      // Bolder weight up to 500 is first choice
      return minWeight - aTargetWeight;
    }
    // Other bolder weights get a reverse-search penalty
    return (minWeight - aTargetWeight) + kReverseDistance;
  }
  // Lighter weights are not as good as bolder ones within [400..500]
  return (aTargetWeight - maxWeight) + kNotWithinCentralRange;
}

#endif /* GFX_FONT_UTILS_H */