DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (803daa1cbd9b)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "ImageScaling.h"
#include "mozilla/Attributes.h"

#include "SSEHelpers.h"

/* The functions below use the following system for averaging 4 pixels:
 *
 * The first observation is that a half-adder is implemented as follows:
 * R = S + 2C or in the case of a and b (a ^ b) + ((a & b) << 1);
 *
 * This can be trivially extended to three pixels by observaring that when
 * doing (a ^ b ^ c) as the sum, the carry is simply the bitwise-or of the
 * carries of the individual numbers, since the sum of 3 bits can only ever
 * have a carry of one.
 *
 * We then observe that the average is then ((carry << 1) + sum) >> 1, or,
 * assuming eliminating overflows and underflows, carry + (sum >> 1).
 *
 * We now average our existing sum with the fourth number, so we get:
 * sum2 = (sum + d) >> 1 or (sum >> 1) + (d >> 1).
 *
 * We now observe that our sum has been moved into place relative to the
 * carry, so we can now average with the carry to get the final 4 input
 * average: avg = (sum2 + carry) >> 1;
 *
 * Or to reverse the proof:
 * avg = ((sum >> 1) + carry + d >> 1) >> 1
 * avg = ((a + b + c) >> 1 + d >> 1) >> 1
 * avg = ((a + b + c + d) >> 2)
 *
 * An additional fact used in the SSE versions is the concept that we can
 * trivially convert a rounded average to a truncated average:
 *
 * We have:
 * f(a, b) = (a + b + 1) >> 1
 *
 * And want:
 * g(a, b) = (a + b) >> 1
 *
 * Observe:
 * ~f(~a, ~b) == ~((~a + ~b + 1) >> 1)
 *            == ~((-a - 1 + -b - 1 + 1) >> 1)
 *            == ~((-a - 1 + -b) >> 1)
 *            == ~((-(a + b) - 1) >> 1)
 *            == ~((~(a + b)) >> 1)
 *            == (a + b) >> 1
 *            == g(a, b)
 */

MOZ_ALWAYS_INLINE __m128i _mm_not_si128(__m128i arg) {
  __m128i minusone = _mm_set1_epi32(0xffffffff);
  return _mm_xor_si128(arg, minusone);
}

/* We have to pass pointers here, MSVC does not allow passing more than 3
 * __m128i arguments on the stack. And it does not allow 16-byte aligned
 * stack variables. This inlines properly on MSVC 2010. It does -not- inline
 * with just the inline directive.
 */
MOZ_ALWAYS_INLINE __m128i avg_sse2_8x2(__m128i* a, __m128i* b, __m128i* c,
                                       __m128i* d) {
#define shuf1 _MM_SHUFFLE(2, 0, 2, 0)
#define shuf2 _MM_SHUFFLE(3, 1, 3, 1)

// This cannot be an inline function as the __Imm argument to _mm_shuffle_ps
// needs to be a compile time constant.
#define shuffle_si128(arga, argb, imm)                      \
  _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps((arga)), \
                                  _mm_castsi128_ps((argb)), (imm)));

  __m128i t = shuffle_si128(*a, *b, shuf1);
  *b = shuffle_si128(*a, *b, shuf2);
  *a = t;
  t = shuffle_si128(*c, *d, shuf1);
  *d = shuffle_si128(*c, *d, shuf2);
  *c = t;

#undef shuf1
#undef shuf2
#undef shuffle_si128

  __m128i sum = _mm_xor_si128(*a, _mm_xor_si128(*b, *c));

  __m128i carry =
      _mm_or_si128(_mm_and_si128(*a, *b),
                   _mm_or_si128(_mm_and_si128(*a, *c), _mm_and_si128(*b, *c)));

  sum = _mm_avg_epu8(_mm_not_si128(sum), _mm_not_si128(*d));

  return _mm_not_si128(_mm_avg_epu8(sum, _mm_not_si128(carry)));
}

MOZ_ALWAYS_INLINE __m128i avg_sse2_4x2_4x1(__m128i a, __m128i b) {
  return _mm_not_si128(_mm_avg_epu8(_mm_not_si128(a), _mm_not_si128(b)));
}

MOZ_ALWAYS_INLINE __m128i avg_sse2_8x1_4x1(__m128i a, __m128i b) {
  __m128i t = _mm_castps_si128(_mm_shuffle_ps(
      _mm_castsi128_ps(a), _mm_castsi128_ps(b), _MM_SHUFFLE(3, 1, 3, 1)));
  b = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(a), _mm_castsi128_ps(b),
                                      _MM_SHUFFLE(2, 0, 2, 0)));
  a = t;

  return _mm_not_si128(_mm_avg_epu8(_mm_not_si128(a), _mm_not_si128(b)));
}

MOZ_ALWAYS_INLINE uint32_t Avg2x2(uint32_t a, uint32_t b, uint32_t c,
                                  uint32_t d) {
  uint32_t sum = a ^ b ^ c;
  uint32_t carry = (a & b) | (a & c) | (b & c);

  uint32_t mask = 0xfefefefe;

  // Not having a byte based average instruction means we should mask to avoid
  // underflow.
  sum = (((sum ^ d) & mask) >> 1) + (sum & d);

  return (((sum ^ carry) & mask) >> 1) + (sum & carry);
}

// Simple 2 pixel average version of the function above.
MOZ_ALWAYS_INLINE uint32_t Avg2(uint32_t a, uint32_t b) {
  uint32_t sum = a ^ b;
  uint32_t carry = (a & b);

  uint32_t mask = 0xfefefefe;

  return ((sum & mask) >> 1) + carry;
}

namespace mozilla {
namespace gfx {

void ImageHalfScaler::HalfImage2D_SSE2(uint8_t* aSource, int32_t aSourceStride,
                                       const IntSize& aSourceSize,
                                       uint8_t* aDest, uint32_t aDestStride) {
  const int Bpp = 4;

  for (int y = 0; y < aSourceSize.height; y += 2) {
    __m128i* storage = (__m128i*)(aDest + (y / 2) * aDestStride);
    int x = 0;
    // Run a loop depending on alignment.
    if (!(uintptr_t(aSource + (y * aSourceStride)) % 16) &&
        !(uintptr_t(aSource + ((y + 1) * aSourceStride)) % 16)) {
      for (; x < (aSourceSize.width - 7); x += 8) {
        __m128i* upperRow = (__m128i*)(aSource + (y * aSourceStride + x * Bpp));
        __m128i* lowerRow =
            (__m128i*)(aSource + ((y + 1) * aSourceStride + x * Bpp));

        __m128i a = _mm_load_si128(upperRow);
        __m128i b = _mm_load_si128(upperRow + 1);
        __m128i c = _mm_load_si128(lowerRow);
        __m128i d = _mm_load_si128(lowerRow + 1);

        *storage++ = avg_sse2_8x2(&a, &b, &c, &d);
      }
    } else if (!(uintptr_t(aSource + (y * aSourceStride)) % 16)) {
      for (; x < (aSourceSize.width - 7); x += 8) {
        __m128i* upperRow = (__m128i*)(aSource + (y * aSourceStride + x * Bpp));
        __m128i* lowerRow =
            (__m128i*)(aSource + ((y + 1) * aSourceStride + x * Bpp));

        __m128i a = _mm_load_si128(upperRow);
        __m128i b = _mm_load_si128(upperRow + 1);
        __m128i c = loadUnaligned128(lowerRow);
        __m128i d = loadUnaligned128(lowerRow + 1);

        *storage++ = avg_sse2_8x2(&a, &b, &c, &d);
      }
    } else if (!(uintptr_t(aSource + ((y + 1) * aSourceStride)) % 16)) {
      for (; x < (aSourceSize.width - 7); x += 8) {
        __m128i* upperRow = (__m128i*)(aSource + (y * aSourceStride + x * Bpp));
        __m128i* lowerRow =
            (__m128i*)(aSource + ((y + 1) * aSourceStride + x * Bpp));

        __m128i a = loadUnaligned128((__m128i*)upperRow);
        __m128i b = loadUnaligned128((__m128i*)upperRow + 1);
        __m128i c = _mm_load_si128((__m128i*)lowerRow);
        __m128i d = _mm_load_si128((__m128i*)lowerRow + 1);

        *storage++ = avg_sse2_8x2(&a, &b, &c, &d);
      }
    } else {
      for (; x < (aSourceSize.width - 7); x += 8) {
        __m128i* upperRow = (__m128i*)(aSource + (y * aSourceStride + x * Bpp));
        __m128i* lowerRow =
            (__m128i*)(aSource + ((y + 1) * aSourceStride + x * Bpp));

        __m128i a = loadUnaligned128(upperRow);
        __m128i b = loadUnaligned128(upperRow + 1);
        __m128i c = loadUnaligned128(lowerRow);
        __m128i d = loadUnaligned128(lowerRow + 1);

        *storage++ = avg_sse2_8x2(&a, &b, &c, &d);
      }
    }

    uint32_t* unalignedStorage = (uint32_t*)storage;
    // Take care of the final pixels, we know there's an even number of pixels
    // in the source rectangle. We use a 2x2 'simd' implementation for this.
    //
    // Potentially we only have to do this in the last row since overflowing
    // 8 pixels in an earlier row would appear to be harmless as it doesn't
    // touch invalid memory. Even when reading and writing to the same surface.
    // in practice we only do this when doing an additional downscale pass, and
    // in this situation we have unused stride to write into harmlessly.
    // I do not believe the additional code complexity would be worth it though.
    for (; x < aSourceSize.width; x += 2) {
      uint8_t* upperRow = aSource + (y * aSourceStride + x * Bpp);
      uint8_t* lowerRow = aSource + ((y + 1) * aSourceStride + x * Bpp);

      *unalignedStorage++ =
          Avg2x2(*(uint32_t*)upperRow, *((uint32_t*)upperRow + 1),
                 *(uint32_t*)lowerRow, *((uint32_t*)lowerRow + 1));
    }
  }
}

void ImageHalfScaler::HalfImageVertical_SSE2(uint8_t* aSource,
                                             int32_t aSourceStride,
                                             const IntSize& aSourceSize,
                                             uint8_t* aDest,
                                             uint32_t aDestStride) {
  for (int y = 0; y < aSourceSize.height; y += 2) {
    __m128i* storage = (__m128i*)(aDest + (y / 2) * aDestStride);
    int x = 0;
    // Run a loop depending on alignment.
    if (!(uintptr_t(aSource + (y * aSourceStride)) % 16) &&
        !(uintptr_t(aSource + ((y + 1) * aSourceStride)) % 16)) {
      for (; x < (aSourceSize.width - 3); x += 4) {
        uint8_t* upperRow = aSource + (y * aSourceStride + x * 4);
        uint8_t* lowerRow = aSource + ((y + 1) * aSourceStride + x * 4);

        __m128i a = _mm_load_si128((__m128i*)upperRow);
        __m128i b = _mm_load_si128((__m128i*)lowerRow);

        *storage++ = avg_sse2_4x2_4x1(a, b);
      }
    } else if (!(uintptr_t(aSource + (y * aSourceStride)) % 16)) {
      // This line doesn't align well.
      for (; x < (aSourceSize.width - 3); x += 4) {
        uint8_t* upperRow = aSource + (y * aSourceStride + x * 4);
        uint8_t* lowerRow = aSource + ((y + 1) * aSourceStride + x * 4);

        __m128i a = _mm_load_si128((__m128i*)upperRow);
        __m128i b = loadUnaligned128((__m128i*)lowerRow);

        *storage++ = avg_sse2_4x2_4x1(a, b);
      }
    } else if (!(uintptr_t(aSource + ((y + 1) * aSourceStride)) % 16)) {
      for (; x < (aSourceSize.width - 3); x += 4) {
        uint8_t* upperRow = aSource + (y * aSourceStride + x * 4);
        uint8_t* lowerRow = aSource + ((y + 1) * aSourceStride + x * 4);

        __m128i a = loadUnaligned128((__m128i*)upperRow);
        __m128i b = _mm_load_si128((__m128i*)lowerRow);

        *storage++ = avg_sse2_4x2_4x1(a, b);
      }
    } else {
      for (; x < (aSourceSize.width - 3); x += 4) {
        uint8_t* upperRow = aSource + (y * aSourceStride + x * 4);
        uint8_t* lowerRow = aSource + ((y + 1) * aSourceStride + x * 4);

        __m128i a = loadUnaligned128((__m128i*)upperRow);
        __m128i b = loadUnaligned128((__m128i*)lowerRow);

        *storage++ = avg_sse2_4x2_4x1(a, b);
      }
    }

    uint32_t* unalignedStorage = (uint32_t*)storage;
    // Take care of the final pixels, we know there's an even number of pixels
    // in the source rectangle.
    //
    // Similar overflow considerations are valid as in the previous function.
    for (; x < aSourceSize.width; x++) {
      uint8_t* upperRow = aSource + (y * aSourceStride + x * 4);
      uint8_t* lowerRow = aSource + ((y + 1) * aSourceStride + x * 4);

      *unalignedStorage++ = Avg2(*(uint32_t*)upperRow, *(uint32_t*)lowerRow);
    }
  }
}

void ImageHalfScaler::HalfImageHorizontal_SSE2(uint8_t* aSource,
                                               int32_t aSourceStride,
                                               const IntSize& aSourceSize,
                                               uint8_t* aDest,
                                               uint32_t aDestStride) {
  for (int y = 0; y < aSourceSize.height; y++) {
    __m128i* storage = (__m128i*)(aDest + (y * aDestStride));
    int x = 0;
    // Run a loop depending on alignment.
    if (!(uintptr_t(aSource + (y * aSourceStride)) % 16)) {
      for (; x < (aSourceSize.width - 7); x += 8) {
        __m128i* pixels = (__m128i*)(aSource + (y * aSourceStride + x * 4));

        __m128i a = _mm_load_si128(pixels);
        __m128i b = _mm_load_si128(pixels + 1);

        *storage++ = avg_sse2_8x1_4x1(a, b);
      }
    } else {
      for (; x < (aSourceSize.width - 7); x += 8) {
        __m128i* pixels = (__m128i*)(aSource + (y * aSourceStride + x * 4));

        __m128i a = loadUnaligned128(pixels);
        __m128i b = loadUnaligned128(pixels + 1);

        *storage++ = avg_sse2_8x1_4x1(a, b);
      }
    }

    uint32_t* unalignedStorage = (uint32_t*)storage;
    // Take care of the final pixels, we know there's an even number of pixels
    // in the source rectangle.
    //
    // Similar overflow considerations are valid as in the previous function.
    for (; x < aSourceSize.width; x += 2) {
      uint32_t* pixels = (uint32_t*)(aSource + (y * aSourceStride + x * 4));

      *unalignedStorage++ = Avg2(*pixels, *(pixels + 1));
    }
  }
}

}  // namespace gfx
}  // namespace mozilla