DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (2658e3d7a2b2)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "2D.h"
#include "ConvolutionFilter.h"
#include "skia/src/core/SkBitmapFilter.h"
#include "skia/src/core/SkConvolver.h"
#include "skia/src/core/SkOpts.h"
#include <algorithm>
#include <cmath>
#include "mozilla/Vector.h"

namespace mozilla {
namespace gfx {

ConvolutionFilter::ConvolutionFilter()
    : mFilter(MakeUnique<SkConvolutionFilter1D>()) {}

ConvolutionFilter::~ConvolutionFilter() {}

int32_t ConvolutionFilter::MaxFilter() const { return mFilter->maxFilter(); }

int32_t ConvolutionFilter::NumValues() const { return mFilter->numValues(); }

bool ConvolutionFilter::GetFilterOffsetAndLength(int32_t aRowIndex,
                                                 int32_t* aResultOffset,
                                                 int32_t* aResultLength) {
  if (aRowIndex >= mFilter->numValues()) {
    return false;
  }
  mFilter->FilterForValue(aRowIndex, aResultOffset, aResultLength);
  return true;
}

void ConvolutionFilter::ConvolveHorizontally(const uint8_t* aSrc, uint8_t* aDst,
                                             bool aHasAlpha) {
  SkOpts::convolve_horizontally(aSrc, *mFilter, aDst, aHasAlpha);
}

void ConvolutionFilter::ConvolveVertically(uint8_t* const* aSrc, uint8_t* aDst,
                                           int32_t aRowIndex, int32_t aRowSize,
                                           bool aHasAlpha) {
  MOZ_ASSERT(aRowIndex < mFilter->numValues());

  int32_t filterOffset;
  int32_t filterLength;
  auto filterValues =
      mFilter->FilterForValue(aRowIndex, &filterOffset, &filterLength);
  SkOpts::convolve_vertically(filterValues, filterLength, aSrc, aRowSize, aDst,
                              aHasAlpha);
}

/* ConvolutionFilter::ComputeResizeFactor is derived from Skia's
 * SkBitmapScaler/SkResizeFilter::computeFactors. It is governed by Skia's
 * BSD-style license (see gfx/skia/LICENSE) and the following copyright:
 * Copyright (c) 2015 Google Inc.
 */
bool ConvolutionFilter::ComputeResizeFilter(ResizeMethod aResizeMethod,
                                            int32_t aSrcSize,
                                            int32_t aDstSize) {
  typedef SkConvolutionFilter1D::ConvolutionFixed Fixed;

  UniquePtr<SkBitmapFilter> bitmapFilter;
  switch (aResizeMethod) {
    case ResizeMethod::BOX:
      bitmapFilter = MakeUnique<SkBoxFilter>();
      break;
    case ResizeMethod::TRIANGLE:
      bitmapFilter = MakeUnique<SkTriangleFilter>();
      break;
    case ResizeMethod::LANCZOS3:
      bitmapFilter = MakeUnique<SkLanczosFilter>();
      break;
    case ResizeMethod::HAMMING:
      bitmapFilter = MakeUnique<SkHammingFilter>();
      break;
    case ResizeMethod::MITCHELL:
      bitmapFilter = MakeUnique<SkMitchellFilter>();
      break;
    default:
      return false;
  }

  // When we're doing a magnification, the scale will be larger than one. This
  // means the destination pixels are much smaller than the source pixels, and
  // that the range covered by the filter won't necessarily cover any source
  // pixel boundaries. Therefore, we use these clamped values (max of 1) for
  // some computations.
  float scale = float(aDstSize) / float(aSrcSize);
  float clampedScale = std::min(1.0f, scale);
  // This is how many source pixels from the center we need to count
  // to support the filtering function.
  float srcSupport = bitmapFilter->width() / clampedScale;
  float invScale = 1.0f / scale;

  Vector<float, 64> filterValues;
  Vector<Fixed, 64> fixedFilterValues;

  // Loop over all pixels in the output range. We will generate one set of
  // filter values for each one. Those values will tell us how to blend the
  // source pixels to compute the destination pixel.

  mFilter->reserveAdditional(aDstSize,
                             int32_t(ceil(aDstSize * srcSupport * 2)));
  for (int32_t destI = 0; destI < aDstSize; destI++) {
    // This is the pixel in the source directly under the pixel in the dest.
    // Note that we base computations on the "center" of the pixels. To see
    // why, observe that the destination pixel at coordinates (0, 0) in a 5.0x
    // downscale should "cover" the pixels around the pixel with *its center*
    // at coordinates (2.5, 2.5) in the source, not those around (0, 0).
    // Hence we need to scale coordinates (0.5, 0.5), not (0, 0).
    float srcPixel = (static_cast<float>(destI) + 0.5f) * invScale;

    // Compute the (inclusive) range of source pixels the filter covers.
    float srcBegin = std::max(0.0f, floorf(srcPixel - srcSupport));
    float srcEnd = std::min(aSrcSize - 1.0f, ceilf(srcPixel + srcSupport));

    // Compute the unnormalized filter value at each location of the source
    // it covers.

    // Sum of the filter values for normalizing.
    // Distance from the center of the filter, this is the filter coordinate
    // in source space. We also need to consider the center of the pixel
    // when comparing distance against 'srcPixel'. In the 5x downscale
    // example used above the distance from the center of the filter to
    // the pixel with coordinates (2, 2) should be 0, because its center
    // is at (2.5, 2.5).
    float destFilterDist = (srcBegin + 0.5f - srcPixel) * clampedScale;
    int32_t filterCount = int32_t(srcEnd - srcBegin) + 1;
    if (filterCount <= 0 || !filterValues.resize(filterCount) ||
        !fixedFilterValues.resize(filterCount)) {
      return false;
    }
    float filterSum = bitmapFilter->evaluate_n(
        destFilterDist, clampedScale, filterCount, filterValues.begin());

    // The filter must be normalized so that we don't affect the brightness of
    // the image. Convert to normalized fixed point.
    Fixed fixedSum = 0;
    float invFilterSum = 1.0f / filterSum;
    for (int32_t fixedI = 0; fixedI < filterCount; fixedI++) {
      Fixed curFixed = SkConvolutionFilter1D::FloatToFixed(
          filterValues[fixedI] * invFilterSum);
      fixedSum += curFixed;
      fixedFilterValues[fixedI] = curFixed;
    }

    // The conversion to fixed point will leave some rounding errors, which
    // we add back in to avoid affecting the brightness of the image. We
    // arbitrarily add this to the center of the filter array (this won't always
    // be the center of the filter function since it could get clipped on the
    // edges, but it doesn't matter enough to worry about that case).
    Fixed leftovers = SkConvolutionFilter1D::FloatToFixed(1) - fixedSum;
    fixedFilterValues[filterCount / 2] += leftovers;

    mFilter->AddFilter(int32_t(srcBegin), fixedFilterValues.begin(),
                       filterCount);
  }

  return mFilter->maxFilter() > 0 && mFilter->numValues() == aDstSize;
}

}  // namespace gfx
}  // namespace mozilla