DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (803daa1cbd9b)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "BezierUtils.h"

#include "PathHelpers.h"

namespace mozilla {
namespace gfx {

Point GetBezierPoint(const Bezier& aBezier, Float t) {
  Float s = 1.0f - t;

  return Point(aBezier.mPoints[0].x * s * s * s +
                   3.0f * aBezier.mPoints[1].x * t * s * s +
                   3.0f * aBezier.mPoints[2].x * t * t * s +
                   aBezier.mPoints[3].x * t * t * t,
               aBezier.mPoints[0].y * s * s * s +
                   3.0f * aBezier.mPoints[1].y * t * s * s +
                   3.0f * aBezier.mPoints[2].y * t * t * s +
                   aBezier.mPoints[3].y * t * t * t);
}

Point GetBezierDifferential(const Bezier& aBezier, Float t) {
  // Return P'(t).

  Float s = 1.0f - t;

  return Point(
      -3.0f * ((aBezier.mPoints[0].x - aBezier.mPoints[1].x) * s * s +
               2.0f * (aBezier.mPoints[1].x - aBezier.mPoints[2].x) * t * s +
               (aBezier.mPoints[2].x - aBezier.mPoints[3].x) * t * t),
      -3.0f * ((aBezier.mPoints[0].y - aBezier.mPoints[1].y) * s * s +
               2.0f * (aBezier.mPoints[1].y - aBezier.mPoints[2].y) * t * s +
               (aBezier.mPoints[2].y - aBezier.mPoints[3].y) * t * t));
}

Point GetBezierDifferential2(const Bezier& aBezier, Float t) {
  // Return P''(t).

  Float s = 1.0f - t;

  return Point(6.0f * ((aBezier.mPoints[0].x - aBezier.mPoints[1].x) * s -
                       (aBezier.mPoints[1].x - aBezier.mPoints[2].x) * (s - t) -
                       (aBezier.mPoints[2].x - aBezier.mPoints[3].x) * t),
               6.0f * ((aBezier.mPoints[0].y - aBezier.mPoints[1].y) * s -
                       (aBezier.mPoints[1].y - aBezier.mPoints[2].y) * (s - t) -
                       (aBezier.mPoints[2].y - aBezier.mPoints[3].y) * t));
}

Float GetBezierLength(const Bezier& aBezier, Float a, Float b) {
  if (a < 0.5f && b > 0.5f) {
    // To increase the accuracy, split into two parts.
    return GetBezierLength(aBezier, a, 0.5f) +
           GetBezierLength(aBezier, 0.5f, b);
  }

  // Calculate length of simple bezier curve with Simpson's rule.
  //            _
  //           /  b
  // length =  |    |P'(x)| dx
  //          _/  a
  //
  //          b - a                   a + b
  //        = ----- [ |P'(a)| + 4 |P'(-----)| + |P'(b)| ]
  //            6                       2

  Float fa = GetBezierDifferential(aBezier, a).Length();
  Float fab = GetBezierDifferential(aBezier, (a + b) / 2.0f).Length();
  Float fb = GetBezierDifferential(aBezier, b).Length();

  return (b - a) / 6.0f * (fa + 4.0f * fab + fb);
}

static void SplitBezierA(Bezier* aSubBezier, const Bezier& aBezier, Float t) {
  // Split bezier curve into [0,t] and [t,1] parts, and return [0,t] part.

  Float s = 1.0f - t;

  Point tmp1;
  Point tmp2;

  aSubBezier->mPoints[0] = aBezier.mPoints[0];

  aSubBezier->mPoints[1] = aBezier.mPoints[0] * s + aBezier.mPoints[1] * t;
  tmp1 = aBezier.mPoints[1] * s + aBezier.mPoints[2] * t;
  tmp2 = aBezier.mPoints[2] * s + aBezier.mPoints[3] * t;

  aSubBezier->mPoints[2] = aSubBezier->mPoints[1] * s + tmp1 * t;
  tmp1 = tmp1 * s + tmp2 * t;

  aSubBezier->mPoints[3] = aSubBezier->mPoints[2] * s + tmp1 * t;
}

static void SplitBezierB(Bezier* aSubBezier, const Bezier& aBezier, Float t) {
  // Split bezier curve into [0,t] and [t,1] parts, and return [t,1] part.

  Float s = 1.0f - t;

  Point tmp1;
  Point tmp2;

  aSubBezier->mPoints[3] = aBezier.mPoints[3];

  aSubBezier->mPoints[2] = aBezier.mPoints[2] * s + aBezier.mPoints[3] * t;
  tmp1 = aBezier.mPoints[1] * s + aBezier.mPoints[2] * t;
  tmp2 = aBezier.mPoints[0] * s + aBezier.mPoints[1] * t;

  aSubBezier->mPoints[1] = tmp1 * s + aSubBezier->mPoints[2] * t;
  tmp1 = tmp2 * s + tmp1 * t;

  aSubBezier->mPoints[0] = tmp1 * s + aSubBezier->mPoints[1] * t;
}

void GetSubBezier(Bezier* aSubBezier, const Bezier& aBezier, Float t1,
                  Float t2) {
  Bezier tmp;
  SplitBezierB(&tmp, aBezier, t1);

  Float range = 1.0f - t1;
  if (range == 0.0f) {
    *aSubBezier = tmp;
  } else {
    SplitBezierA(aSubBezier, tmp, (t2 - t1) / range);
  }
}

static Point BisectBezierNearestPoint(const Bezier& aBezier,
                                      const Point& aTarget, Float* aT) {
  // Find a nearest point on bezier curve with Binary search.
  // Called from FindBezierNearestPoint.

  Float lower = 0.0f;
  Float upper = 1.0f;
  Float t;

  Point P, lastP;
  const size_t MAX_LOOP = 32;
  const Float DIST_MARGIN = 0.1f;
  const Float DIST_MARGIN_SQUARE = DIST_MARGIN * DIST_MARGIN;
  const Float DIFF = 0.0001f;
  for (size_t i = 0; i < MAX_LOOP; i++) {
    t = (upper + lower) / 2.0f;
    P = GetBezierPoint(aBezier, t);

    // Check if it converged.
    if (i > 0 && (lastP - P).LengthSquare() < DIST_MARGIN_SQUARE) {
      break;
    }

    Float distSquare = (P - aTarget).LengthSquare();
    if ((GetBezierPoint(aBezier, t + DIFF) - aTarget).LengthSquare() <
        distSquare) {
      lower = t;
    } else if ((GetBezierPoint(aBezier, t - DIFF) - aTarget).LengthSquare() <
               distSquare) {
      upper = t;
    } else {
      break;
    }

    lastP = P;
  }

  if (aT) {
    *aT = t;
  }

  return P;
}

Point FindBezierNearestPoint(const Bezier& aBezier, const Point& aTarget,
                             Float aInitialT, Float* aT) {
  // Find a nearest point on bezier curve with Newton's method.
  // It converges within 4 iterations in most cases.
  //
  //                   f(t_n)
  //  t_{n+1} = t_n - ---------
  //                   f'(t_n)
  //
  //             d                     2
  //     f(t) = ---- | P(t) - aTarget |
  //             dt

  Float t = aInitialT;
  Point P;
  Point lastP = GetBezierPoint(aBezier, t);

  const size_t MAX_LOOP = 4;
  const Float DIST_MARGIN = 0.1f;
  const Float DIST_MARGIN_SQUARE = DIST_MARGIN * DIST_MARGIN;
  for (size_t i = 0; i <= MAX_LOOP; i++) {
    Point dP = GetBezierDifferential(aBezier, t);
    Point ddP = GetBezierDifferential2(aBezier, t);
    Float f = 2.0f * (lastP.DotProduct(dP) - aTarget.DotProduct(dP));
    Float df = 2.0f * (dP.DotProduct(dP) + lastP.DotProduct(ddP) -
                       aTarget.DotProduct(ddP));
    t = t - f / df;
    P = GetBezierPoint(aBezier, t);
    if ((P - lastP).LengthSquare() < DIST_MARGIN_SQUARE) {
      break;
    }
    lastP = P;

    if (i == MAX_LOOP) {
      // If aInitialT is too bad, it won't converge in a few iterations,
      // fallback to binary search.
      return BisectBezierNearestPoint(aBezier, aTarget, aT);
    }
  }

  if (aT) {
    *aT = t;
  }

  return P;
}

void GetBezierPointsForCorner(Bezier* aBezier, Corner aCorner,
                              const Point& aCornerPoint,
                              const Size& aCornerSize) {
  // Calculate bezier control points for elliptic arc.

  const Float signsList[4][2] = {
      {+1.0f, +1.0f}, {-1.0f, +1.0f}, {-1.0f, -1.0f}, {+1.0f, -1.0f}};
  const Float(&signs)[2] = signsList[aCorner];

  aBezier->mPoints[0] = aCornerPoint;
  aBezier->mPoints[0].x += signs[0] * aCornerSize.width;

  aBezier->mPoints[1] = aBezier->mPoints[0];
  aBezier->mPoints[1].x -= signs[0] * aCornerSize.width * kKappaFactor;

  aBezier->mPoints[3] = aCornerPoint;
  aBezier->mPoints[3].y += signs[1] * aCornerSize.height;

  aBezier->mPoints[2] = aBezier->mPoints[3];
  aBezier->mPoints[2].y -= signs[1] * aCornerSize.height * kKappaFactor;
}

Float GetQuarterEllipticArcLength(Float a, Float b) {
  // Calculate the approximate length of a quarter elliptic arc formed by radii
  // (a, b), by Ramanujan's approximation of the perimeter p of an ellipse.
  //           _                                                     _
  //          |                                      2                |
  //          |                           3 * (a - b)                 |
  //  p =  PI | (a + b) + ------------------------------------------- |
  //          |                                 2                 2   |
  //          |_           10 * (a + b) + sqrt(a  + 14 * a * b + b ) _|
  //
  //           _                                                            _
  //          |                                         2                    |
  //          |                              3 * (a - b)                     |
  //    =  PI | (a + b) + -------------------------------------------------- |
  //          |                                           2              2   |
  //          |_           10 * (a + b) + sqrt(4 * (a + b)  - 3 * (a - b) ) _|
  //
  //           _                                          _
  //          |                          2                 |
  //          |                     3 * S                  |
  //    =  PI | A + -------------------------------------- |
  //          |                               2        2   |
  //          |_           10 * A + sqrt(4 * A  - 3 * S ) _|
  //
  // where A = a + b, S = a - b

  Float A = a + b, S = a - b;
  Float A2 = A * A, S2 = S * S;
  Float p = M_PI * (A + 3.0f * S2 / (10.0f * A + sqrt(4.0f * A2 - 3.0f * S2)));
  return p / 4.0f;
}

Float CalculateDistanceToEllipticArc(const Point& P, const Point& normal,
                                     const Point& origin, Float width,
                                     Float height) {
  // Solve following equations with n and return smaller n.
  //
  // /  (x, y) = P + n * normal
  // |
  // <   _            _ 2   _            _ 2
  // |  | x - origin.x |   | y - origin.y |
  // |  | ------------ | + | ------------ | = 1
  // \  |_   width    _|   |_   height   _|

  Float a = (P.x - origin.x) / width;
  Float b = normal.x / width;
  Float c = (P.y - origin.y) / height;
  Float d = normal.y / height;

  Float A = b * b + d * d;
  Float B = a * b + c * d;
  Float C = a * a + c * c - 1;

  Float S = sqrt(B * B - A * C);

  Float n1 = -B + S;
  Float n2 = -B - S;

#ifdef DEBUG
  Float epsilon = (Float)0.001;
  MOZ_ASSERT(n1 >= -epsilon);
  MOZ_ASSERT(n2 >= -epsilon);
#endif

  return std::max((n1 < n2 ? n1 : n2) / A, (Float)0.0);
}

}  // namespace gfx
}  // namespace mozilla