DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (8506e87cec50)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef MOZILLA_GFX_BASERECT_H_
#define MOZILLA_GFX_BASERECT_H_

#include <algorithm>
#include <cmath>
#include <ostream>

#include "mozilla/Assertions.h"
#include "mozilla/FloatingPoint.h"
#include "mozilla/TypeTraits.h"
#include "Types.h"

namespace mozilla {
namespace gfx {

/**
 * Rectangles have two interpretations: a set of (zero-size) points,
 * and a rectangular area of the plane. Most rectangle operations behave
 * the same no matter what interpretation is being used, but some operations
 * differ:
 * -- Equality tests behave differently. When a rectangle represents an area,
 * all zero-width and zero-height rectangles are equal to each other since they
 * represent the empty area. But when a rectangle represents a set of
 * mathematical points, zero-width and zero-height rectangles can be unequal.
 * -- The union operation can behave differently. When rectangles represent
 * areas, taking the union of a zero-width or zero-height rectangle with
 * another rectangle can just ignore the empty rectangle. But when rectangles
 * represent sets of mathematical points, we may need to extend the latter
 * rectangle to include the points of a zero-width or zero-height rectangle.
 *
 * To ensure that these interpretations are explicitly disambiguated, we
 * deny access to the == and != operators and require use of IsEqualEdges and
 * IsEqualInterior instead. Similarly we provide separate Union and UnionEdges
 * methods.
 *
 * Do not use this class directly. Subclass it, pass that subclass as the
 * Sub parameter, and only use that subclass.
 */
template <class T, class Sub, class Point, class SizeT, class MarginT>
struct BaseRect {
  T x, y, width, height;

  // Constructors
  BaseRect() : x(0), y(0), width(0), height(0) {}
  BaseRect(const Point& aOrigin, const SizeT& aSize)
      : x(aOrigin.x), y(aOrigin.y), width(aSize.width), height(aSize.height) {}
  BaseRect(T aX, T aY, T aWidth, T aHeight)
      : x(aX), y(aY), width(aWidth), height(aHeight) {}

  // Emptiness. An empty rect is one that has no area, i.e. its height or width
  // is <= 0.  Zero rect is the one with height and width set to zero.  Note
  // that SetEmpty() may change a rectangle that identified as IsEmpty().
  MOZ_ALWAYS_INLINE bool IsZeroArea() const {
    return height == 0 || width == 0;
  }
  MOZ_ALWAYS_INLINE bool IsEmpty() const { return height <= 0 || width <= 0; }
  void SetEmpty() { width = height = 0; }

  // "Finite" means not inf and not NaN
  bool IsFinite() const {
    typedef typename mozilla::Conditional<mozilla::IsSame<T, float>::value,
                                          float, double>::Type FloatType;
    return (mozilla::IsFinite(FloatType(x)) &&
            mozilla::IsFinite(FloatType(y)) &&
            mozilla::IsFinite(FloatType(width)) &&
            mozilla::IsFinite(FloatType(height)));
  }

  // Returns true if this rectangle contains the interior of aRect. Always
  // returns true if aRect is empty, and always returns false is aRect is
  // nonempty but this rect is empty.
  bool Contains(const Sub& aRect) const {
    return aRect.IsEmpty() || (x <= aRect.x && aRect.XMost() <= XMost() &&
                               y <= aRect.y && aRect.YMost() <= YMost());
  }
  // Returns true if this rectangle contains the point. Points are considered
  // in the rectangle if they are on the left or top edge, but outside if they
  // are on the right or bottom edge.
  MOZ_ALWAYS_INLINE bool Contains(T aX, T aY) const {
    return x <= aX && aX < XMost() && y <= aY && aY < YMost();
  }
  MOZ_ALWAYS_INLINE bool ContainsX(T aX) const {
    return x <= aX && aX < XMost();
  }
  MOZ_ALWAYS_INLINE bool ContainsY(T aY) const {
    return y <= aY && aY < YMost();
  }
  // Returns true if this rectangle contains the point. Points are considered
  // in the rectangle if they are on the left or top edge, but outside if they
  // are on the right or bottom edge.
  bool Contains(const Point& aPoint) const {
    return Contains(aPoint.x, aPoint.y);
  }

  // Intersection. Returns TRUE if the receiver's area has non-empty
  // intersection with aRect's area, and FALSE otherwise.
  // Always returns false if aRect is empty or 'this' is empty.
  bool Intersects(const Sub& aRect) const {
    return !IsEmpty() && !aRect.IsEmpty() && x < aRect.XMost() &&
           aRect.x < XMost() && y < aRect.YMost() && aRect.y < YMost();
  }
  // Returns the rectangle containing the intersection of the points
  // (including edges) of *this and aRect. If there are no points in that
  // intersection, returns an empty rectangle with x/y set to the std::max of
  // the x/y of *this and aRect.
  MOZ_MUST_USE Sub Intersect(const Sub& aRect) const {
    Sub result;
    result.x = std::max<T>(x, aRect.x);
    result.y = std::max<T>(y, aRect.y);
    result.width =
        std::min<T>(x - result.x + width, aRect.x - result.x + aRect.width);
    result.height =
        std::min<T>(y - result.y + height, aRect.y - result.y + aRect.height);
    // See bug 1457110, this function expects to -only- size to 0,0 if the
    // width/height is explicitly negative.
    if (result.width < 0 || result.height < 0) {
      result.SizeTo(0, 0);
    }
    return result;
  }
  // Sets *this to be the rectangle containing the intersection of the points
  // (including edges) of *this and aRect. If there are no points in that
  // intersection, sets *this to be an empty rectangle with x/y set to the
  // std::max of the x/y of *this and aRect.
  //
  // 'this' can be the same object as either aRect1 or aRect2
  bool IntersectRect(const Sub& aRect1, const Sub& aRect2) {
    T newX = std::max<T>(aRect1.x, aRect2.x);
    T newY = std::max<T>(aRect1.y, aRect2.y);
    width = std::min<T>(aRect1.x - newX + aRect1.width,
                        aRect2.x - newX + aRect2.width);
    height = std::min<T>(aRect1.y - newY + aRect1.height,
                         aRect2.y - newY + aRect2.height);
    x = newX;
    y = newY;
    if (width <= 0 || height <= 0) {
      SizeTo(0, 0);
      return false;
    }
    return true;
  }

  // Returns the smallest rectangle that contains both the area of both
  // this and aRect2.
  // Thus, empty input rectangles are ignored.
  // If both rectangles are empty, returns this.
  // WARNING! This is not safe against overflow, prefer using SafeUnion instead
  // when dealing with int-based rects.
  MOZ_MUST_USE Sub Union(const Sub& aRect) const {
    if (IsEmpty()) {
      return aRect;
    } else if (aRect.IsEmpty()) {
      return *static_cast<const Sub*>(this);
    } else {
      return UnionEdges(aRect);
    }
  }
  // Returns the smallest rectangle that contains both the points (including
  // edges) of both aRect1 and aRect2.
  // Thus, empty input rectangles are allowed to affect the result.
  // WARNING! This is not safe against overflow, prefer using SafeUnionEdges
  // instead when dealing with int-based rects.
  MOZ_MUST_USE Sub UnionEdges(const Sub& aRect) const {
    Sub result;
    result.x = std::min(x, aRect.x);
    result.y = std::min(y, aRect.y);
    result.width = std::max(XMost(), aRect.XMost()) - result.x;
    result.height = std::max(YMost(), aRect.YMost()) - result.y;
    return result;
  }
  // Computes the smallest rectangle that contains both the area of both
  // aRect1 and aRect2, and fills 'this' with the result.
  // Thus, empty input rectangles are ignored.
  // If both rectangles are empty, sets 'this' to aRect2.
  //
  // 'this' can be the same object as either aRect1 or aRect2
  void UnionRect(const Sub& aRect1, const Sub& aRect2) {
    *static_cast<Sub*>(this) = aRect1.Union(aRect2);
  }

  void OrWith(const Sub& aRect1) {
    UnionRect(*static_cast<Sub*>(this), aRect1);
  }

  // Computes the smallest rectangle that contains both the points (including
  // edges) of both aRect1 and aRect2.
  // Thus, empty input rectangles are allowed to affect the result.
  //
  // 'this' can be the same object as either aRect1 or aRect2
  void UnionRectEdges(const Sub& aRect1, const Sub& aRect2) {
    *static_cast<Sub*>(this) = aRect1.UnionEdges(aRect2);
  }

  // Expands the rect to include the point
  void ExpandToEnclose(const Point& aPoint) {
    if (aPoint.x < x) {
      width = XMost() - aPoint.x;
      x = aPoint.x;
    } else if (aPoint.x > XMost()) {
      width = aPoint.x - x;
    }
    if (aPoint.y < y) {
      height = YMost() - aPoint.y;
      y = aPoint.y;
    } else if (aPoint.y > YMost()) {
      height = aPoint.y - y;
    }
  }

  MOZ_ALWAYS_INLINE void SetRect(T aX, T aY, T aWidth, T aHeight) {
    x = aX;
    y = aY;
    width = aWidth;
    height = aHeight;
  }
  MOZ_ALWAYS_INLINE void SetRectX(T aX, T aWidth) {
    x = aX;
    width = aWidth;
  }
  MOZ_ALWAYS_INLINE void SetRectY(T aY, T aHeight) {
    y = aY;
    height = aHeight;
  }
  MOZ_ALWAYS_INLINE void SetBox(T aX, T aY, T aXMost, T aYMost) {
    x = aX;
    y = aY;
    width = aXMost - aX;
    height = aYMost - aY;
  }
  MOZ_ALWAYS_INLINE void SetNonEmptyBox(T aX, T aY, T aXMost, T aYMost) {
    x = aX;
    y = aY;
    width = std::max(0, aXMost - aX);
    height = std::max(0, aYMost - aY);
  }
  MOZ_ALWAYS_INLINE void SetBoxX(T aX, T aXMost) {
    x = aX;
    width = aXMost - aX;
  }
  MOZ_ALWAYS_INLINE void SetBoxY(T aY, T aYMost) {
    y = aY;
    height = aYMost - aY;
  }
  void SetRect(const Point& aPt, const SizeT& aSize) {
    SetRect(aPt.x, aPt.y, aSize.width, aSize.height);
  }
  MOZ_ALWAYS_INLINE void GetRect(T* aX, T* aY, T* aWidth, T* aHeight) const {
    *aX = x;
    *aY = y;
    *aWidth = width;
    *aHeight = height;
  }

  MOZ_ALWAYS_INLINE void MoveTo(T aX, T aY) {
    x = aX;
    y = aY;
  }
  MOZ_ALWAYS_INLINE void MoveToX(T aX) { x = aX; }
  MOZ_ALWAYS_INLINE void MoveToY(T aY) { y = aY; }
  MOZ_ALWAYS_INLINE void MoveTo(const Point& aPoint) {
    x = aPoint.x;
    y = aPoint.y;
  }
  MOZ_ALWAYS_INLINE void MoveBy(T aDx, T aDy) {
    x += aDx;
    y += aDy;
  }
  MOZ_ALWAYS_INLINE void MoveByX(T aDx) { x += aDx; }
  MOZ_ALWAYS_INLINE void MoveByY(T aDy) { y += aDy; }
  MOZ_ALWAYS_INLINE void MoveBy(const Point& aPoint) {
    x += aPoint.x;
    y += aPoint.y;
  }
  MOZ_ALWAYS_INLINE void SizeTo(T aWidth, T aHeight) {
    width = aWidth;
    height = aHeight;
  }
  MOZ_ALWAYS_INLINE void SizeTo(const SizeT& aSize) {
    width = aSize.width;
    height = aSize.height;
  }

  void Inflate(T aD) { Inflate(aD, aD); }
  void Inflate(T aDx, T aDy) {
    x -= aDx;
    y -= aDy;
    width += 2 * aDx;
    height += 2 * aDy;
  }
  void Inflate(const MarginT& aMargin) {
    x -= aMargin.left;
    y -= aMargin.top;
    width += aMargin.LeftRight();
    height += aMargin.TopBottom();
  }
  void Inflate(const SizeT& aSize) { Inflate(aSize.width, aSize.height); }

  void Deflate(T aD) { Deflate(aD, aD); }
  void Deflate(T aDx, T aDy) {
    x += aDx;
    y += aDy;
    width = std::max(T(0), width - 2 * aDx);
    height = std::max(T(0), height - 2 * aDy);
  }
  void Deflate(const MarginT& aMargin) {
    x += aMargin.left;
    y += aMargin.top;
    width = std::max(T(0), width - aMargin.LeftRight());
    height = std::max(T(0), height - aMargin.TopBottom());
  }
  void Deflate(const SizeT& aSize) { Deflate(aSize.width, aSize.height); }

  // Return true if the rectangles contain the same set of points, including
  // points on the edges.
  // Use when we care about the exact x/y/width/height values being
  // equal (i.e. we care about differences in empty rectangles).
  bool IsEqualEdges(const Sub& aRect) const {
    return x == aRect.x && y == aRect.y && width == aRect.width &&
           height == aRect.height;
  }
  MOZ_ALWAYS_INLINE bool IsEqualRect(T aX, T aY, T aW, T aH) {
    return x == aX && y == aY && width == aW && height == aH;
  }
  MOZ_ALWAYS_INLINE bool IsEqualXY(T aX, T aY) { return x == aX && y == aY; }

  MOZ_ALWAYS_INLINE bool IsEqualSize(T aW, T aH) {
    return width == aW && height == aH;
  }

  // Return true if the rectangles contain the same area of the plane.
  // Use when we do not care about differences in empty rectangles.
  bool IsEqualInterior(const Sub& aRect) const {
    return IsEqualEdges(aRect) || (IsEmpty() && aRect.IsEmpty());
  }

  friend Sub operator+(Sub aSub, const Point& aPoint) {
    aSub += aPoint;
    return aSub;
  }
  friend Sub operator-(Sub aSub, const Point& aPoint) {
    aSub -= aPoint;
    return aSub;
  }
  friend Sub operator+(Sub aSub, const SizeT& aSize) {
    aSub += aSize;
    return aSub;
  }
  friend Sub operator-(Sub aSub, const SizeT& aSize) {
    aSub -= aSize;
    return aSub;
  }
  Sub& operator+=(const Point& aPoint) {
    MoveBy(aPoint);
    return *static_cast<Sub*>(this);
  }
  Sub& operator-=(const Point& aPoint) {
    MoveBy(-aPoint);
    return *static_cast<Sub*>(this);
  }
  Sub& operator+=(const SizeT& aSize) {
    width += aSize.width;
    height += aSize.height;
    return *static_cast<Sub*>(this);
  }
  Sub& operator-=(const SizeT& aSize) {
    width -= aSize.width;
    height -= aSize.height;
    return *static_cast<Sub*>(this);
  }
  // Find difference as a Margin
  MarginT operator-(const Sub& aRect) const {
    return MarginT(aRect.y - y, XMost() - aRect.XMost(),
                   YMost() - aRect.YMost(), aRect.x - x);
  }

  // Helpers for accessing the vertices
  Point TopLeft() const { return Point(x, y); }
  Point TopRight() const { return Point(XMost(), y); }
  Point BottomLeft() const { return Point(x, YMost()); }
  Point BottomRight() const { return Point(XMost(), YMost()); }
  Point AtCorner(Corner aCorner) const {
    switch (aCorner) {
      case eCornerTopLeft:
        return TopLeft();
      case eCornerTopRight:
        return TopRight();
      case eCornerBottomRight:
        return BottomRight();
      case eCornerBottomLeft:
        return BottomLeft();
    }
    MOZ_CRASH("GFX: Incomplete switch");
  }
  Point CCWCorner(mozilla::Side side) const {
    switch (side) {
      case eSideTop:
        return TopLeft();
      case eSideRight:
        return TopRight();
      case eSideBottom:
        return BottomRight();
      case eSideLeft:
        return BottomLeft();
    }
    MOZ_CRASH("GFX: Incomplete switch");
  }
  Point CWCorner(mozilla::Side side) const {
    switch (side) {
      case eSideTop:
        return TopRight();
      case eSideRight:
        return BottomRight();
      case eSideBottom:
        return BottomLeft();
      case eSideLeft:
        return TopLeft();
    }
    MOZ_CRASH("GFX: Incomplete switch");
  }
  Point Center() const { return Point(x, y) + Point(width, height) / 2; }
  SizeT Size() const { return SizeT(width, height); }

  T Area() const { return width * height; }

  // Helper methods for computing the extents
  MOZ_ALWAYS_INLINE T X() const { return x; }
  MOZ_ALWAYS_INLINE T Y() const { return y; }
  MOZ_ALWAYS_INLINE T Width() const { return width; }
  MOZ_ALWAYS_INLINE T Height() const { return height; }
  MOZ_ALWAYS_INLINE T XMost() const { return x + width; }
  MOZ_ALWAYS_INLINE T YMost() const { return y + height; }

  // Set width and height. SizeTo() sets them together.
  MOZ_ALWAYS_INLINE void SetWidth(T aWidth) { width = aWidth; }
  MOZ_ALWAYS_INLINE void SetHeight(T aHeight) { height = aHeight; }

  // Get the coordinate of the edge on the given side.
  T Edge(mozilla::Side aSide) const {
    switch (aSide) {
      case eSideTop:
        return Y();
      case eSideRight:
        return XMost();
      case eSideBottom:
        return YMost();
      case eSideLeft:
        return X();
    }
    MOZ_CRASH("GFX: Incomplete switch");
  }

  // Moves one edge of the rect without moving the opposite edge.
  void SetLeftEdge(T aX) {
    width = XMost() - aX;
    x = aX;
  }
  void SetRightEdge(T aXMost) { width = aXMost - x; }
  void SetTopEdge(T aY) {
    height = YMost() - aY;
    y = aY;
  }
  void SetBottomEdge(T aYMost) { height = aYMost - y; }
  void Swap() {
    std::swap(x, y);
    std::swap(width, height);
  }

  // Round the rectangle edges to integer coordinates, such that the rounded
  // rectangle has the same set of pixel centers as the original rectangle.
  // Edges at offset 0.5 round up.
  // Suitable for most places where integral device coordinates
  // are needed, but note that any translation should be applied first to
  // avoid pixel rounding errors.
  // Note that this is *not* rounding to nearest integer if the values are
  // negative. They are always rounding as floor(n + 0.5). See
  // https://bugzilla.mozilla.org/show_bug.cgi?id=410748#c14 If you need similar
  // method which is using NS_round(), you should create new
  // |RoundAwayFromZero()| method.
  void Round() {
    T x0 = static_cast<T>(std::floor(T(X()) + 0.5f));
    T y0 = static_cast<T>(std::floor(T(Y()) + 0.5f));
    T x1 = static_cast<T>(std::floor(T(XMost()) + 0.5f));
    T y1 = static_cast<T>(std::floor(T(YMost()) + 0.5f));

    x = x0;
    y = y0;

    width = x1 - x0;
    height = y1 - y0;
  }

  // Snap the rectangle edges to integer coordinates, such that the
  // original rectangle contains the resulting rectangle.
  void RoundIn() {
    T x0 = static_cast<T>(std::ceil(T(X())));
    T y0 = static_cast<T>(std::ceil(T(Y())));
    T x1 = static_cast<T>(std::floor(T(XMost())));
    T y1 = static_cast<T>(std::floor(T(YMost())));

    x = x0;
    y = y0;

    width = x1 - x0;
    height = y1 - y0;
  }

  // Snap the rectangle edges to integer coordinates, such that the
  // resulting rectangle contains the original rectangle.
  void RoundOut() {
    T x0 = static_cast<T>(std::floor(T(X())));
    T y0 = static_cast<T>(std::floor(T(Y())));
    T x1 = static_cast<T>(std::ceil(T(XMost())));
    T y1 = static_cast<T>(std::ceil(T(YMost())));

    x = x0;
    y = y0;

    width = x1 - x0;
    height = y1 - y0;
  }

  // Scale 'this' by aScale without doing any rounding.
  void Scale(T aScale) { Scale(aScale, aScale); }
  // Scale 'this' by aXScale and aYScale, without doing any rounding.
  void Scale(T aXScale, T aYScale) {
    T right = XMost() * aXScale;
    T bottom = YMost() * aYScale;
    x = x * aXScale;
    y = y * aYScale;
    width = right - x;
    height = bottom - y;
  }
  // Scale 'this' by aScale, converting coordinates to integers so that the
  // result is the smallest integer-coordinate rectangle containing the
  // unrounded result. Note: this can turn an empty rectangle into a non-empty
  // rectangle
  void ScaleRoundOut(double aScale) { ScaleRoundOut(aScale, aScale); }
  // Scale 'this' by aXScale and aYScale, converting coordinates to integers so
  // that the result is the smallest integer-coordinate rectangle containing the
  // unrounded result.
  // Note: this can turn an empty rectangle into a non-empty rectangle
  void ScaleRoundOut(double aXScale, double aYScale) {
    T right = static_cast<T>(ceil(double(XMost()) * aXScale));
    T bottom = static_cast<T>(ceil(double(YMost()) * aYScale));
    x = static_cast<T>(floor(double(x) * aXScale));
    y = static_cast<T>(floor(double(y) * aYScale));
    width = right - x;
    height = bottom - y;
  }
  // Scale 'this' by aScale, converting coordinates to integers so that the
  // result is the largest integer-coordinate rectangle contained by the
  // unrounded result.
  void ScaleRoundIn(double aScale) { ScaleRoundIn(aScale, aScale); }
  // Scale 'this' by aXScale and aYScale, converting coordinates to integers so
  // that the result is the largest integer-coordinate rectangle contained by
  // the unrounded result.
  void ScaleRoundIn(double aXScale, double aYScale) {
    T right = static_cast<T>(floor(double(XMost()) * aXScale));
    T bottom = static_cast<T>(floor(double(YMost()) * aYScale));
    x = static_cast<T>(ceil(double(x) * aXScale));
    y = static_cast<T>(ceil(double(y) * aYScale));
    width = std::max<T>(0, right - x);
    height = std::max<T>(0, bottom - y);
  }
  // Scale 'this' by 1/aScale, converting coordinates to integers so that the
  // result is the smallest integer-coordinate rectangle containing the
  // unrounded result. Note: this can turn an empty rectangle into a non-empty
  // rectangle
  void ScaleInverseRoundOut(double aScale) {
    ScaleInverseRoundOut(aScale, aScale);
  }
  // Scale 'this' by 1/aXScale and 1/aYScale, converting coordinates to integers
  // so that the result is the smallest integer-coordinate rectangle containing
  // the unrounded result. Note: this can turn an empty rectangle into a
  // non-empty rectangle
  void ScaleInverseRoundOut(double aXScale, double aYScale) {
    T right = static_cast<T>(ceil(double(XMost()) / aXScale));
    T bottom = static_cast<T>(ceil(double(YMost()) / aYScale));
    x = static_cast<T>(floor(double(x) / aXScale));
    y = static_cast<T>(floor(double(y) / aYScale));
    width = right - x;
    height = bottom - y;
  }
  // Scale 'this' by 1/aScale, converting coordinates to integers so that the
  // result is the largest integer-coordinate rectangle contained by the
  // unrounded result.
  void ScaleInverseRoundIn(double aScale) {
    ScaleInverseRoundIn(aScale, aScale);
  }
  // Scale 'this' by 1/aXScale and 1/aYScale, converting coordinates to integers
  // so that the result is the largest integer-coordinate rectangle contained by
  // the unrounded result.
  void ScaleInverseRoundIn(double aXScale, double aYScale) {
    T right = static_cast<T>(floor(double(XMost()) / aXScale));
    T bottom = static_cast<T>(floor(double(YMost()) / aYScale));
    x = static_cast<T>(ceil(double(x) / aXScale));
    y = static_cast<T>(ceil(double(y) / aYScale));
    width = std::max<T>(0, right - x);
    height = std::max<T>(0, bottom - y);
  }

  /**
   * Clamp aPoint to this rectangle. It is allowed to end up on any
   * edge of the rectangle.
   */
  MOZ_MUST_USE Point ClampPoint(const Point& aPoint) const {
    return Point(std::max(x, std::min(XMost(), aPoint.x)),
                 std::max(y, std::min(YMost(), aPoint.y)));
  }

  /**
   * Translate this rectangle to be inside aRect. If it doesn't fit inside
   * aRect then the dimensions that don't fit will be shrunk so that they
   * do fit. The resulting rect is returned.
   */
  MOZ_MUST_USE Sub MoveInsideAndClamp(const Sub& aRect) const {
    Sub rect(std::max(aRect.x, x), std::max(aRect.y, y),
             std::min(aRect.width, width), std::min(aRect.height, height));
    rect.x = std::min(rect.XMost(), aRect.XMost()) - rect.width;
    rect.y = std::min(rect.YMost(), aRect.YMost()) - rect.height;
    return rect;
  }

  // Returns the largest rectangle that can be represented with 32-bit
  // signed integers, centered around a point at 0,0.  As BaseRect's represent
  // the dimensions as a top-left point with a width and height, the width
  // and height will be the largest positive 32-bit value.  The top-left
  // position coordinate is divided by two to center the rectangle around a
  // point at 0,0.
  static Sub MaxIntRect() {
    return Sub(static_cast<T>(-std::numeric_limits<int32_t>::max() * 0.5),
               static_cast<T>(-std::numeric_limits<int32_t>::max() * 0.5),
               static_cast<T>(std::numeric_limits<int32_t>::max()),
               static_cast<T>(std::numeric_limits<int32_t>::max()));
  };

  // Returns a point representing the distance, along each dimension, of the
  // given point from this rectangle. The distance along a dimension is defined
  // as zero if the point is within the bounds of the rectangle in that
  // dimension; otherwise, it's the distance to the closer endpoint of the
  // rectangle in that dimension.
  Point DistanceTo(const Point& aPoint) const {
    return {DistanceFromInterval(aPoint.x, x, XMost()),
            DistanceFromInterval(aPoint.y, y, YMost())};
  }

  friend std::ostream& operator<<(
      std::ostream& stream,
      const BaseRect<T, Sub, Point, SizeT, MarginT>& aRect) {
    return stream << '(' << aRect.x << ',' << aRect.y << ',' << aRect.width
                  << ',' << aRect.height << ')';
  }

 private:
  // Do not use the default operator== or operator!= !
  // Use IsEqualEdges or IsEqualInterior explicitly.
  bool operator==(const Sub& aRect) const { return false; }
  bool operator!=(const Sub& aRect) const { return false; }

  // Helper function for DistanceTo() that computes the distance of a
  // coordinate along one dimension from an interval in that dimension.
  static T DistanceFromInterval(T aCoord, T aIntervalStart, T aIntervalEnd) {
    if (aCoord < aIntervalStart) {
      return aIntervalStart - aCoord;
    }
    if (aCoord > aIntervalEnd) {
      return aCoord - aIntervalEnd;
    }
    return 0;
  }
};

}  // namespace gfx
}  // namespace mozilla

#endif /* MOZILLA_GFX_BASERECT_H_ */