DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (426e37b06a75)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef mozilla_MultiWriterQueue_h_
#define mozilla_MultiWriterQueue_h_

#include "mozilla/Atomics.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/Move.h"
#include "mozilla/Mutex.h"
#include "prthread.h"
#include "RollingNumber.h"
#include <cstdint>

namespace mozilla {

// Default reader locking strategy, using a mutex to ensure that concurrent
// PopAll calls won't overlap.
class MultiWriterQueueReaderLocking_Mutex {
 public:
  MultiWriterQueueReaderLocking_Mutex()
      : mMutex("MultiWriterQueueReaderLocking_Mutex") {}
  void Lock() { mMutex.Lock(); };
  void Unlock() { mMutex.Unlock(); };

 private:
  Mutex mMutex;
};

// Reader non-locking strategy, trusting that PopAll will never be called
// concurrently (e.g., by only calling it from a specific thread).
class MultiWriterQueueReaderLocking_None {
 public:
#ifndef DEBUG
  void Lock(){};
  void Unlock(){};
#else
  // DEBUG-mode checks to catch concurrent misuses.
  void Lock() { MOZ_ASSERT(mLocked.compareExchange(false, true)); };
  void Unlock() { MOZ_ASSERT(mLocked.compareExchange(true, false)); };

 private:
  Atomic<bool> mLocked{false};
#endif
};

static constexpr uint32_t MultiWriterQueueDefaultBufferSize = 8192;

// Multi-writer, single-reader queue of elements of type `T`.
// Elements are bunched together in buffers of `BufferSize` elements.
//
// This queue is heavily optimized for pushing. In most cases pushes will only
// cost a couple of atomic reads and a few non-atomic reads. Worst cases:
// - Once per buffer, a push will allocate or reuse a buffer for later pushes;
// - During the above new-buffer push, other pushes will be blocked.
//
// By default, popping is protected by mutex; it may be disabled if popping is
// guaranteed never to be concurrent.
// In any case, popping will never negatively impact pushes.
// (However, *not* popping will add runtime costs, as unread buffers will not
// be freed, or made available to future pushes; Push functions provide
// feedback as to when popping would be most efficient.)
template <typename T, uint32_t BufferSize = MultiWriterQueueDefaultBufferSize,
          typename ReaderLocking = MultiWriterQueueReaderLocking_Mutex>
class MultiWriterQueue {
  static_assert(BufferSize > 0, "0-sized MultiWriterQueue buffer");

 public:
  // Constructor.
  // Allocates the initial buffer that will receive the first `BufferSize`
  // elements. Also allocates one reusable buffer, which will definitely be
  // needed after the first `BufferSize` elements have been pushed.
  // Ideally (if the reader can process each buffer quickly enough), there
  // won't be a need for more buffer allocations.
  MultiWriterQueue()
      : mBuffersCoverAtLeastUpTo(BufferSize - 1),
        mMostRecentBuffer(new Buffer{}),
        mReusableBuffers(new Buffer{}),
        mOldestBuffer(static_cast<Buffer*>(mMostRecentBuffer)),
        mLiveBuffersStats(1),
        mReusableBuffersStats(1),
        mAllocatedBuffersStats(2) {}

  ~MultiWriterQueue() {
    auto DestroyList = [](Buffer* aBuffer) {
      while (aBuffer) {
        Buffer* older = aBuffer->Older();
        delete aBuffer;
        aBuffer = older;
      }
    };
    DestroyList(mMostRecentBuffer);
    DestroyList(mReusableBuffers);
  }

  // We need the index to be order-resistant to overflow, i.e., numbers before
  // an overflow should test smaller-than numbers after the overflow.
  // This is because we keep pushing elements with increasing Index, and this
  // Index is used to find the appropriate buffer based on a range; and this
  // need to work smoothly when crossing the overflow boundary.
  using Index = RollingNumber<uint32_t>;

  // Pushes indicate whether they have just reached the end of a buffer.
  using DidReachEndOfBuffer = bool;

  // Push new element and call aF on it.
  // Element may be in just-created state, or recycled after a PopAll call.
  // Atomically thread-safe; in the worst case some pushes may be blocked
  // while a new buffer is created/reused for them.
  // Returns whether that push reached the end of a buffer; useful if caller
  // wants to trigger processing regularly at the most efficient time.
  template <typename F>
  DidReachEndOfBuffer PushF(F&& aF) {
    // Atomically claim ownership of the next available element.
    const Index index{mNextElementToWrite++};
    // And now go and set that element.
    for (;;) {
      Index lastIndex{mBuffersCoverAtLeastUpTo};

      if (MOZ_UNLIKELY(index == lastIndex)) {
        // We have claimed the last element in the current head -> Allocate a
        // new head in advance of more pushes. Make it point at the current
        // most-recent buffer.
        // This whole process is effectively guarded:
        // - Later pushes will wait until mBuffersCoverAtLeastUpTo changes to
        //   one that can accept their claimed index.
        // - Readers will stop until the last element is marked as valid.
        Buffer* ourBuffer = mMostRecentBuffer;
        Buffer* newBuffer = NewBuffer(ourBuffer, index + 1);
        // Because we have claimed this very specific index, we should be the
        // only one touching the most-recent buffer pointer.
        MOZ_ASSERT(mMostRecentBuffer == ourBuffer);
        // Just pivot the most-recent buffer pointer to our new buffer.
        mMostRecentBuffer = newBuffer;
        // Because we have claimed this very specific index, we should be the
        // only one touching the buffer coverage watermark.
        MOZ_ASSERT(mBuffersCoverAtLeastUpTo == lastIndex.Value());
        // Update it to include the just-added most-recent buffer.
        mBuffersCoverAtLeastUpTo = index.Value() + BufferSize;
        // We know for sure that `ourBuffer` is the correct one for this index.
        ourBuffer->SetAndValidateElement(aF, index);
        // And indicate that we have reached the end of a buffer.
        return true;
      }

      if (MOZ_UNLIKELY(index > lastIndex)) {
        // We have claimed an element in a yet-unavailable buffer, wait for our
        // target buffer to be created (see above).
        while (Index(mBuffersCoverAtLeastUpTo) < index) {
          PR_Sleep(PR_INTERVAL_NO_WAIT);  // Yield
        }
        // Then loop to examine the new situation.
        continue;
      }

      // Here, we have claimed a number that is covered by current buffers.
      // These buffers cannot be destroyed, because our buffer is not filled
      // yet (we haven't written in it yet), therefore the reader thread will
      // have to stop there (or before) and won't destroy our buffer or more
      // recent ones.
      MOZ_ASSERT(index < lastIndex);
      Buffer* ourBuffer = mMostRecentBuffer;

      // In rare situations, another thread may have had the time to create a
      // new more-recent buffer, in which case we need to find our older buffer.
      while (MOZ_UNLIKELY(index < ourBuffer->Origin())) {
        // We assume that older buffers with still-invalid elements (e.g., the
        // one we have just claimed) cannot be destroyed.
        MOZ_ASSERT(ourBuffer->Older());
        ourBuffer = ourBuffer->Older();
      }

      // Now we can set&validate the claimed element, and indicate that we have
      // not reached the end of a buffer.
      ourBuffer->SetAndValidateElement(aF, index);
      return false;
    }
  }

  // Push new element and assign it a value.
  // Atomically thread-safe; in the worst case some pushes may be blocked
  // while a new buffer is created/reused for them.
  // Returns whether that push reached the end of a buffer; useful if caller
  // wants to trigger processing regularly at the most efficient time.
  DidReachEndOfBuffer Push(const T& aT) {
    return PushF([&aT](T& aElement, Index) { aElement = aT; });
  }

  // Push new element and move-assign it a value.
  // Atomically thread-safe; in the worst case some pushes may be blocked
  // while a new buffer is created/reused for them.
  // Returns whether that push reached the end of a buffer; useful if caller
  // wants to trigger processing regularly at the most efficient time.
  DidReachEndOfBuffer Push(T&& aT) {
    return PushF([&aT](T& aElement, Index) { aElement = std::move(aT); });
  }

  // Pop all elements before the first invalid one, running aF on each of them
  // in FIFO order.
  // Thread-safety with other PopAll calls is controlled by the `Locking`
  // template argument.
  // Concurrent pushes are always allowed, because:
  // - PopAll won't read elements until valid,
  // - Pushes do not interfere with pop-related members -- except for
  //   mReusableBuffers, which is accessed atomically.
  template <typename F>
  void PopAll(F&& aF) {
    mReaderLocking.Lock();
    // Destroy every second fully-read buffer.
    // TODO: Research a better algorithm, probably based on stats.
    bool destroy = false;
    for (;;) {
      Buffer* b = mOldestBuffer;
      MOZ_ASSERT(!b->Older());
      // The next element to pop must be in that oldest buffer.
      MOZ_ASSERT(mNextElementToPop >= b->Origin());
      MOZ_ASSERT(mNextElementToPop < b->Origin() + BufferSize);

      // Start reading each element.
      if (!b->ReadAndInvalidateAll(aF, mNextElementToPop)) {
        // Found an invalid element, stop popping.
        mReaderLocking.Unlock();
        return;
      }

      // Reached the end of this oldest buffer
      MOZ_ASSERT(mNextElementToPop == b->Origin() + BufferSize);
      // Delete this oldest buffer.
      // Since the last element was valid, it must mean that there is a newer
      // buffer.
      MOZ_ASSERT(b->Newer());
      MOZ_ASSERT(mNextElementToPop == b->Newer()->Origin());
      StopUsing(b, destroy);
      destroy = !destroy;

      // We will loop and start reading the now-oldest buffer.
    }
  }

  // Size of all buffers (used, or recyclable), excluding external data.
  size_t ShallowSizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const {
    return mAllocatedBuffersStats.Count() * sizeof(Buffer);
  }

  struct CountAndWatermark {
    int mCount;
    int mWatermark;
  };

  CountAndWatermark LiveBuffersStats() const { return mLiveBuffersStats.Get(); }
  CountAndWatermark ReusableBuffersStats() const {
    return mReusableBuffersStats.Get();
  }
  CountAndWatermark AllocatedBuffersStats() const {
    return mAllocatedBuffersStats.Get();
  }

 private:
  // Structure containing the element to be stored, and a validity-marker.
  class BufferedElement {
   public:
    // Run aF on an invalid element, and mark it as valid.
    template <typename F>
    void SetAndValidate(F&& aF, Index aIndex) {
      MOZ_ASSERT(!mValid);
      aF(mT, aIndex);
      mValid = true;
    }

    // Run aF on a valid element and mark it as invalid, return true.
    // Return false if element was invalid.
    template <typename F>
    bool ReadAndInvalidate(F&& aF) {
      if (!mValid) {
        return false;
      }
      aF(mT);
      mValid = false;
      return true;
    }

   private:
    T mT;
    // mValid should be atomically changed to true *after* mT has been written,
    // so that the reader can only see valid data.
    // ReleaseAcquire, because when set to `true`, we want the just-written mT
    // to be visible to the thread reading this `true`; and when set to `false`,
    // we want the previous reads to have completed.
    Atomic<bool, ReleaseAcquire> mValid{false};
  };

  // Buffer contains a sequence of BufferedElements starting at a specific
  // index, and it points to the next-older buffer (if any).
  class Buffer {
   public:
    // Constructor of the very first buffer.
    Buffer() : mOlder(nullptr), mNewer(nullptr), mOrigin(0) {}

    // Constructor of later buffers.
    Buffer(Buffer* aOlder, Index aOrigin)
        : mOlder(aOlder), mNewer(nullptr), mOrigin(aOrigin) {
      MOZ_ASSERT(aOlder);
      aOlder->mNewer = this;
    }

    Buffer* Older() const { return mOlder; }
    void SetOlder(Buffer* aOlder) { mOlder = aOlder; }

    Buffer* Newer() const { return mNewer; }
    void SetNewer(Buffer* aNewer) { mNewer = aNewer; }

    Index Origin() const { return mOrigin; }
    void SetOrigin(Index aOrigin) { mOrigin = aOrigin; }

    // Run aF on a yet-invalid element.
    // Not thread-safe by itself, but nothing else should write this element,
    // and reader won't access it until after it becomes valid.
    template <typename F>
    void SetAndValidateElement(F&& aF, Index aIndex) {
      MOZ_ASSERT(aIndex >= Origin());
      MOZ_ASSERT(aIndex < Origin() + BufferSize);
      mElements[aIndex - Origin()].SetAndValidate(aF, aIndex);
    }

    using DidReadLastElement = bool;

    // Read all valid elements starting at aIndex, marking them invalid and
    // updating aIndex.
    // Returns true if we ended up reading the last element in this buffer.
    // Accessing the validity bit is thread-safe (as it's atomic), but once
    // an element is valid, the reading itself is not thread-safe and should be
    // guarded.
    template <typename F>
    DidReadLastElement ReadAndInvalidateAll(F&& aF, Index& aIndex) {
      MOZ_ASSERT(aIndex >= Origin());
      MOZ_ASSERT(aIndex < Origin() + BufferSize);
      for (; aIndex < Origin() + BufferSize; ++aIndex) {
        if (!mElements[aIndex - Origin()].ReadAndInvalidate(aF)) {
          // Found an invalid element, stop here. (aIndex will not be updated
          // past it, so we will start from here next time.)
          return false;
        }
      }
      return true;
    }

   private:
    Buffer* mOlder;
    Buffer* mNewer;
    Index mOrigin;
    BufferedElement mElements[BufferSize];
  };

  // Reuse a buffer, or create a new one.
  // All buffered elements will be invalid.
  Buffer* NewBuffer(Buffer* aOlder, Index aOrigin) {
    MOZ_ASSERT(aOlder);
    for (;;) {
      Buffer* head = mReusableBuffers;
      if (!head) {
        ++mAllocatedBuffersStats;
        ++mLiveBuffersStats;
        Buffer* buffer = new Buffer(aOlder, aOrigin);
        return buffer;
      }
      Buffer* older = head->Older();
      // Try to pivot the reusable-buffer pointer from the current head to the
      // next buffer in line.
      if (mReusableBuffers.compareExchange(head, older)) {
        // Success! The reusable-buffer pointer now points at the older buffer,
        // so we can recycle this ex-head.
        --mReusableBuffersStats;
        ++mLiveBuffersStats;
        head->SetOlder(aOlder);
        aOlder->SetNewer(head);
        // We will be the newest; newer-pointer should already be null.
        MOZ_ASSERT(!head->Newer());
        head->SetOrigin(aOrigin);
        return head;
      }
      // Failure, someone else must have touched the list, loop to try again.
    }
  }

  // Discard a fully-read buffer.
  // If aDestroy is true, delete it.
  // If aDestroy is false, move the buffer to a reusable-buffer stack.
  void StopUsing(Buffer* aBuffer, bool aDestroy) {
    --mLiveBuffersStats;

    // We should only stop using the oldest buffer.
    MOZ_ASSERT(!aBuffer->Older());
    // The newest buffer should not be modified here.
    MOZ_ASSERT(aBuffer->Newer());
    MOZ_ASSERT(aBuffer->Newer()->Older() == aBuffer);
    // Detach from the second-oldest buffer.
    aBuffer->Newer()->SetOlder(nullptr);
    // Make the second-oldest buffer the now-oldest buffer.
    mOldestBuffer = aBuffer->Newer();

    if (aDestroy) {
      --mAllocatedBuffersStats;
      delete aBuffer;
    } else {
      ++mReusableBuffersStats;
      // The recycling stack only uses mOlder; mNewer is not needed.
      aBuffer->SetNewer(nullptr);

      // Make the given buffer the new head of reusable buffers.
      for (;;) {
        Buffer* head = mReusableBuffers;
        aBuffer->SetOlder(head);
        if (mReusableBuffers.compareExchange(head, aBuffer)) {
          break;
        }
      }
    }
  }

  // Index of the next element to write. Modified when an element index is
  // claimed for a push. If the last element of a buffer is claimed, that push
  // will be responsible for adding a new head buffer.
  // Relaxed, because there is no synchronization based on this variable, each
  // thread just needs to get a different value, and will then write different
  // things (which themselves have some atomic validation before they may be
  // read elsewhere, independent of this `mNextElementToWrite`.)
  Atomic<Index::ValueType, Relaxed> mNextElementToWrite{0};

  // Index that a live recent buffer reaches. If a push claims a lesser-or-
  // equal number, the corresponding buffer is guaranteed to still be alive:
  // - It will have been created before this index was updated,
  // - It will not be destroyed until all its values have been written,
  //   including the one that just claimed a position within it.
  // Also, the push that claims this exact number is responsible for adding the
  // next buffer and updating this value accordingly.
  // ReleaseAcquire, because when set to a certain value, the just-created
  // buffer covering the new range must be visible to readers.
  Atomic<Index::ValueType, ReleaseAcquire> mBuffersCoverAtLeastUpTo;

  // Pointer to the most recent buffer. Never null.
  // This is the most recent of a deque of yet-unread buffers.
  // Only modified when adding a new head buffer.
  // ReleaseAcquire, because when modified, the just-created new buffer must be
  // visible to readers.
  Atomic<Buffer*, ReleaseAcquire> mMostRecentBuffer;

  // Stack of reusable buffers.
  // ReleaseAcquire, because when modified, the just-added buffer must be
  // visible to readers.
  Atomic<Buffer*, ReleaseAcquire> mReusableBuffers;

  // Template-provided locking mechanism to protect PopAll()-only member
  // variables below.
  ReaderLocking mReaderLocking;

  // Pointer to the oldest buffer, which contains the new element to be popped.
  // Never null.
  Buffer* mOldestBuffer;

  // Index of the next element to be popped.
  Index mNextElementToPop{0};

  // Stats.
  class AtomicCountAndWatermark {
   public:
    explicit AtomicCountAndWatermark(int aCount)
        : mCount(aCount), mWatermark(aCount) {}

    int Count() const { return int(mCount); }

    CountAndWatermark Get() const {
      return CountAndWatermark{int(mCount), int(mWatermark)};
    }

    int operator++() {
      int count = int(++mCount);
      // Update watermark.
      for (;;) {
        int watermark = int(mWatermark);
        if (watermark >= count) {
          // printf("++[%p] -=> %d-%d\n", this, count, watermark);
          break;
        }
        if (mWatermark.compareExchange(watermark, count)) {
          // printf("++[%p] -x> %d-(was %d now %d)\n", this, count, watermark,
          // count);
          break;
        }
      }
      return count;
    }

    int operator--() {
      int count = int(--mCount);
      // printf("--[%p] -> %d\n", this, count);
      return count;
    }

   private:
    // Relaxed, as these are just gathering stats, so consistency is not
    // critical.
    Atomic<int, Relaxed> mCount;
    Atomic<int, Relaxed> mWatermark;
  };
  // All buffers in the mMostRecentBuffer deque.
  AtomicCountAndWatermark mLiveBuffersStats;
  // All buffers in the mReusableBuffers stack.
  AtomicCountAndWatermark mReusableBuffersStats;
  // All allocated buffers (sum of above).
  AtomicCountAndWatermark mAllocatedBuffersStats;
};

}  // namespace mozilla

#endif  // mozilla_MultiWriterQueue_h_