DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (1aeaa33a64f9)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "mozilla/CPUUsageWatcher.h"

#include "prsystem.h"

#ifdef XP_MACOSX
#include <sys/resource.h>
#include <mach/clock.h>
#include <mach/mach_host.h>
#endif

namespace mozilla {

#ifdef CPU_USAGE_WATCHER_ACTIVE

// Even if the machine only has one processor, tolerate up to 50%
// external CPU usage.
static const float kTolerableExternalCPUUsageFloor = 0.5f;

struct CPUStats {
  // The average CPU usage time, which can be summed across all cores in the
  // system, or averaged between them. Whichever it is, it needs to be in the
  // same units as updateTime.
  uint64_t usageTime;
  // A monotonically increasing value in the same units as usageTime, which can
  // be used to determine the percentage of active vs idle time
  uint64_t updateTime;
};

#ifdef XP_MACOSX

static const uint64_t kMicrosecondsPerSecond = 1000000LL;
static const uint64_t kNanosecondsPerMicrosecond = 1000LL;
static const uint64_t kCPUCheckInterval = kMicrosecondsPerSecond / 2LL;

uint64_t GetMicroseconds(timeval time) {
  return ((uint64_t)time.tv_sec) * kMicrosecondsPerSecond +
         (uint64_t)time.tv_usec;
}

uint64_t GetMicroseconds(mach_timespec_t time) {
  return ((uint64_t)time.tv_sec) * kMicrosecondsPerSecond +
         ((uint64_t)time.tv_nsec) / kNanosecondsPerMicrosecond;
}

Result<CPUStats, CPUUsageWatcherError> GetProcessCPUStats(int32_t numCPUs) {
  CPUStats result = {};
  rusage usage;
  int32_t rusageResult = getrusage(RUSAGE_SELF, &usage);
  if (rusageResult == -1) {
    return Err(GetProcessTimesError);
  }
  result.usageTime =
      GetMicroseconds(usage.ru_utime) + GetMicroseconds(usage.ru_stime);

  clock_serv_t realtimeClock;
  kern_return_t errorResult =
      host_get_clock_service(mach_host_self(), REALTIME_CLOCK, &realtimeClock);
  if (errorResult != KERN_SUCCESS) {
    return Err(GetProcessTimesError);
  }
  mach_timespec_t time;
  errorResult = clock_get_time(realtimeClock, &time);
  if (errorResult != KERN_SUCCESS) {
    return Err(GetProcessTimesError);
  }
  result.updateTime = GetMicroseconds(time);

  // getrusage will give us the sum of the values across all
  // of our cores. Divide by the number of CPUs to get an average.
  result.usageTime /= numCPUs;
  return result;
}

Result<CPUStats, CPUUsageWatcherError> GetGlobalCPUStats() {
  CPUStats result = {};
  host_cpu_load_info_data_t loadInfo;
  mach_msg_type_number_t loadInfoCount = HOST_CPU_LOAD_INFO_COUNT;
  kern_return_t statsResult =
      host_statistics(mach_host_self(), HOST_CPU_LOAD_INFO,
                      (host_info_t)&loadInfo, &loadInfoCount);
  if (statsResult != KERN_SUCCESS) {
    return Err(HostStatisticsError);
  }

  result.usageTime = loadInfo.cpu_ticks[CPU_STATE_USER] +
                     loadInfo.cpu_ticks[CPU_STATE_NICE] +
                     loadInfo.cpu_ticks[CPU_STATE_SYSTEM];
  result.updateTime = result.usageTime + loadInfo.cpu_ticks[CPU_STATE_IDLE];
  return result;
}

#endif  // XP_MACOSX

#ifdef XP_WIN

// A FILETIME represents the number of 100-nanosecond ticks since 1/1/1601 UTC
static const uint64_t kFILETIMETicksPerSecond = 10000000;
static const uint64_t kCPUCheckInterval = kFILETIMETicksPerSecond / 2;

uint64_t FiletimeToInteger(FILETIME filetime) {
  return ((uint64_t)filetime.dwLowDateTime) | (uint64_t)filetime.dwHighDateTime
                                                  << 32;
}

Result<CPUStats, CPUUsageWatcherError> GetProcessCPUStats(int32_t numCPUs) {
  CPUStats result = {};
  FILETIME creationFiletime;
  FILETIME exitFiletime;
  FILETIME kernelFiletime;
  FILETIME userFiletime;
  bool success = GetProcessTimes(GetCurrentProcess(), &creationFiletime,
                                 &exitFiletime, &kernelFiletime, &userFiletime);
  if (!success) {
    return Err(GetProcessTimesError);
  }

  result.usageTime =
      FiletimeToInteger(kernelFiletime) + FiletimeToInteger(userFiletime);

  FILETIME nowFiletime;
  GetSystemTimeAsFileTime(&nowFiletime);
  result.updateTime = FiletimeToInteger(nowFiletime);

  result.usageTime /= numCPUs;

  return result;
}

Result<CPUStats, CPUUsageWatcherError> GetGlobalCPUStats() {
  CPUStats result = {};
  FILETIME idleFiletime;
  FILETIME kernelFiletime;
  FILETIME userFiletime;
  bool success = GetSystemTimes(&idleFiletime, &kernelFiletime, &userFiletime);

  if (!success) {
    return Err(GetSystemTimesError);
  }

  result.usageTime =
      FiletimeToInteger(kernelFiletime) + FiletimeToInteger(userFiletime);
  result.updateTime = result.usageTime + FiletimeToInteger(idleFiletime);

  return result;
}

#endif  // XP_WIN

Result<Ok, CPUUsageWatcherError> CPUUsageWatcher::Init() {
  mNumCPUs = PR_GetNumberOfProcessors();
  if (mNumCPUs <= 0) {
    mExternalUsageThreshold = 1.0f;
    return Err(GetNumberOfProcessorsError);
  }
  mExternalUsageThreshold =
      std::max(1.0f - 1.0f / (float)mNumCPUs, kTolerableExternalCPUUsageFloor);

  CPUStats processTimes;
  MOZ_TRY_VAR(processTimes, GetProcessCPUStats(mNumCPUs));
  mProcessUpdateTime = processTimes.updateTime;
  mProcessUsageTime = processTimes.usageTime;

  CPUStats globalTimes;
  MOZ_TRY_VAR(globalTimes, GetGlobalCPUStats());
  mGlobalUpdateTime = globalTimes.updateTime;
  mGlobalUsageTime = globalTimes.usageTime;

  mInitialized = true;

  CPUUsageWatcher* self = this;
  NS_DispatchToMainThread(
      NS_NewRunnableFunction("CPUUsageWatcher::Init",
                             [=]() { HangMonitor::RegisterAnnotator(*self); }));

  return Ok();
}

void CPUUsageWatcher::Uninit() {
  if (mInitialized) {
    HangMonitor::UnregisterAnnotator(*this);
  }
  mInitialized = false;
}

Result<Ok, CPUUsageWatcherError> CPUUsageWatcher::CollectCPUUsage() {
  if (!mInitialized) {
    return Ok();
  }

  mExternalUsageRatio = 0.0f;

  CPUStats processTimes;
  MOZ_TRY_VAR(processTimes, GetProcessCPUStats(mNumCPUs));
  CPUStats globalTimes;
  MOZ_TRY_VAR(globalTimes, GetGlobalCPUStats());

  uint64_t processUsageDelta = processTimes.usageTime - mProcessUsageTime;
  uint64_t processUpdateDelta = processTimes.updateTime - mProcessUpdateTime;
  float processUsageNormalized =
      processUsageDelta > 0
          ? (float)processUsageDelta / (float)processUpdateDelta
          : 0.0f;

  uint64_t globalUsageDelta = globalTimes.usageTime - mGlobalUsageTime;
  uint64_t globalUpdateDelta = globalTimes.updateTime - mGlobalUpdateTime;
  float globalUsageNormalized =
      globalUsageDelta > 0 ? (float)globalUsageDelta / (float)globalUpdateDelta
                           : 0.0f;

  mProcessUsageTime = processTimes.usageTime;
  mProcessUpdateTime = processTimes.updateTime;
  mGlobalUsageTime = globalTimes.usageTime;
  mGlobalUpdateTime = globalTimes.updateTime;

  mExternalUsageRatio =
      std::max(0.0f, globalUsageNormalized - processUsageNormalized);

  return Ok();
}

void CPUUsageWatcher::AnnotateHang(HangMonitor::HangAnnotations& aAnnotations) {
  if (!mInitialized) {
    return;
  }

  if (mExternalUsageRatio > mExternalUsageThreshold) {
    aAnnotations.AddAnnotation(NS_LITERAL_STRING("ExternalCPUHigh"), true);
  }
}

#else  // !CPU_USAGE_WATCHER_ACTIVE

Result<Ok, CPUUsageWatcherError> CPUUsageWatcher::Init() { return Ok(); }

void CPUUsageWatcher::Uninit() {}

Result<Ok, CPUUsageWatcherError> CPUUsageWatcher::CollectCPUUsage() {
  return Ok();
}

void CPUUsageWatcher::AnnotateHang(HangMonitor::HangAnnotations& aAnnotations) {
}

#endif  // CPU_USAGE_WATCHER_ACTIVE

}  // namespace mozilla