DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (1aeaa33a64f9)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/* A vector of pointers space-optimized for a small number of elements. */
#ifndef mozilla_SmallPointerArray_h
#define mozilla_SmallPointerArray_h

#include "mozilla/Assertions.h"
#include <algorithm>
#include <iterator>
#include <vector>

namespace mozilla {

// Array class for situations where a small number of elements (<= 2) is
// expected, a large number of elements must be accomodated if necessary,
// and the size of the class must be minimal. Typical vector implementations
// will fulfill the first two requirements by simply adding inline storage
// alongside the rest of their member variables. While this strategy works,
// it brings unnecessary storage overhead for vectors with an expected small
// number of elements. This class is intended to deal with that problem.
//
// This class is similar in performance to a vector class. Accessing its
// elements when it has not grown over a size of 2 does not require an extra
// level of indirection and will therefore be faster.
//
// The minimum (inline) size is 2 * sizeof(void*).
//
// Any modification of the array invalidates any outstanding iterators.
template <typename T>
class SmallPointerArray {
 public:
  SmallPointerArray() {
    mInlineElements[0] = mInlineElements[1] = nullptr;
    static_assert(sizeof(SmallPointerArray<T>) == (2 * sizeof(void*)),
                  "SmallPointerArray must compile to the size of 2 pointers");
    static_assert(
        offsetof(SmallPointerArray<T>, mArray) ==
            offsetof(SmallPointerArray<T>, mInlineElements) + sizeof(T*),
        "mArray and mInlineElements[1] are expected to overlap in memory");
    static_assert(
        offsetof(SmallPointerArray<T>, mPadding) ==
            offsetof(SmallPointerArray<T>, mInlineElements),
        "mPadding and mInlineElements[0] are expected to overlap in memory");
  }
  ~SmallPointerArray() {
    if (!mInlineElements[0] && mArray) {
      delete mArray;
    }
  }

  void Clear() {
    if (!mInlineElements[0] && mArray) {
      delete mArray;
      mArray = nullptr;
      return;
    }
    mInlineElements[0] = mInlineElements[1] = nullptr;
  }

  void AppendElement(T* aElement) {
    // Storing nullptr as an element is not permitted, but we do check for it
    // to avoid corruption issues in non-debug builds.

    // In addition to this we assert in debug builds to point out mistakes to
    // users of the class.
    MOZ_ASSERT(aElement != nullptr);
    if (!mInlineElements[0]) {
      if (!mArray) {
        mInlineElements[0] = aElement;
        // Harmless if aElement == nullptr;
        return;
      }

      if (!aElement) {
        return;
      }

      mArray->push_back(aElement);
      return;
    }

    if (!aElement) {
      return;
    }

    if (!mInlineElements[1]) {
      mInlineElements[1] = aElement;
      return;
    }

    mArray =
        new std::vector<T*>({mInlineElements[0], mInlineElements[1], aElement});
    mInlineElements[0] = nullptr;
  }

  bool RemoveElement(T* aElement) {
    MOZ_ASSERT(aElement != nullptr);
    if (aElement == nullptr) {
      return false;
    }

    if (mInlineElements[0] == aElement) {
      // Expectected case.
      mInlineElements[0] = mInlineElements[1];
      mInlineElements[1] = nullptr;
      return true;
    }

    if (mInlineElements[0]) {
      if (mInlineElements[1] == aElement) {
        mInlineElements[1] = nullptr;
        return true;
      }
      return false;
    }

    if (mArray) {
      for (auto iter = mArray->begin(); iter != mArray->end(); iter++) {
        if (*iter == aElement) {
          mArray->erase(iter);
          return true;
        }
      }
    }
    return false;
  }

  bool Contains(T* aElement) const {
    MOZ_ASSERT(aElement != nullptr);
    if (aElement == nullptr) {
      return false;
    }

    if (mInlineElements[0] == aElement) {
      return true;
    }

    if (mInlineElements[0]) {
      if (mInlineElements[1] == aElement) {
        return true;
      }
      return false;
    }

    if (mArray) {
      return std::find(mArray->begin(), mArray->end(), aElement) !=
             mArray->end();
    }
    return false;
  }

  size_t Length() const {
    if (mInlineElements[0]) {
      if (!mInlineElements[1]) {
        return 1;
      }
      return 2;
    }

    if (mArray) {
      return mArray->size();
    }

    return 0;
  }

  T* ElementAt(size_t aIndex) const {
    MOZ_ASSERT(aIndex < Length());
    if (mInlineElements[0]) {
      return mInlineElements[aIndex];
    }

    return (*mArray)[aIndex];
  }

  T* operator[](size_t aIndex) const { return ElementAt(aIndex); }

  typedef T** iterator;
  typedef const T** const_iterator;

  // Methods for range-based for loops. Manipulation invalidates these.
  iterator begin() { return beginInternal(); }
  const_iterator begin() const { return beginInternal(); }
  const_iterator cbegin() const { return begin(); }
  iterator end() { return beginInternal() + Length(); }
  const_iterator end() const { return beginInternal() + Length(); }
  const_iterator cend() const { return end(); }

 private:
  T** beginInternal() const {
    if (mInlineElements[0] || !mArray) {
      return const_cast<T**>(&mInlineElements[0]);
    }

    if (mArray->empty()) {
      return nullptr;
    }

    return &(*mArray)[0];
  }

  // mArray and mInlineElements[1] share the same area in memory.
  //
  // When !mInlineElements[0] && !mInlineElements[1] the array is empty.
  //
  // When mInlineElements[0] && !mInlineElements[1], mInlineElements[0]
  // contains the first element. The array is of size 1.
  //
  // When mInlineElements[0] && mInlineElements[1], mInlineElements[0]
  // contains the first element and mInlineElements[1] the second. The
  // array is of size 2.
  //
  // When !mInlineElements[0] && mArray, mArray contains the full contents
  // of the array and is of arbitrary size.
  union {
    T* mInlineElements[2];
    struct {
      void* mPadding;
      std::vector<T*>* mArray;
    };
  };
};

}  // namespace mozilla

#endif  // mozilla_SmallPointerArray_h