DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (1aeaa33a64f9)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

// Portions of this file were originally under the following license:
//
// Copyright (C) 2008 Jason Evans <jasone@FreeBSD.org>.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
//    notice(s), this list of conditions and the following disclaimer
//    unmodified other than the allowable addition of one or more
//    copyright notices.
// 2. Redistributions in binary form must reproduce the above copyright
//    notice(s), this list of conditions and the following disclaimer in
//    the documentation and/or other materials provided with the
//    distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
// OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
// EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// ****************************************************************************
//
// C++ template implementation of left-leaning red-black trees.
//
// All operations are done non-recursively.  Parent pointers are not used, and
// color bits are stored in the least significant bit of right-child pointers,
// thus making node linkage as compact as is possible for red-black trees.
//
// The RedBlackTree template expects two type arguments: the type of the nodes,
// containing a RedBlackTreeNode, and a trait providing two methods:
//  - a GetTreeNode method that returns a reference to the RedBlackTreeNode
//    corresponding to a given node with the following signature:
//      static RedBlackTreeNode<T>& GetTreeNode(T*)
//  - a Compare function with the following signature:
//      static Order Compare(T* aNode, T* aOther)
//                              ^^^^^
//                           or aKey
//
// Interpretation of comparision function return values:
//
//   Order::eLess: aNode <  aOther
//   Order::eEqual: aNode == aOther
//   Order::eGreater: aNode >  aOther
//
// In all cases, the aNode or aKey argument is the first argument to the
// comparison function, which makes it possible to write comparison functions
// that treat the first argument specially.
//
// ***************************************************************************

#ifndef RB_H_
#define RB_H_

#include "mozilla/Alignment.h"
#include "mozilla/Assertions.h"
#include "Utils.h"

enum NodeColor {
  Black = 0,
  Red = 1,
};

// Node structure.
template <typename T>
class RedBlackTreeNode {
  T* mLeft;
  // The lowest bit is the color
  T* mRightAndColor;

 public:
  T* Left() { return mLeft; }

  void SetLeft(T* aValue) { mLeft = aValue; }

  T* Right() {
    return reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(mRightAndColor) &
                                uintptr_t(~1));
  }

  void SetRight(T* aValue) {
    mRightAndColor = reinterpret_cast<T*>(
        (reinterpret_cast<uintptr_t>(aValue) & uintptr_t(~1)) | Color());
  }

  NodeColor Color() {
    return static_cast<NodeColor>(reinterpret_cast<uintptr_t>(mRightAndColor) &
                                  1);
  }

  bool IsBlack() { return Color() == NodeColor::Black; }

  bool IsRed() { return Color() == NodeColor::Red; }

  void SetColor(NodeColor aColor) {
    mRightAndColor = reinterpret_cast<T*>(
        (reinterpret_cast<uintptr_t>(mRightAndColor) & uintptr_t(~1)) | aColor);
  }
};

// Tree structure.
template <typename T, typename Trait>
class RedBlackTree {
 public:
  void Init() { mRoot = nullptr; }

  T* First(T* aStart = nullptr) { return First(TreeNode(aStart)).Get(); }

  T* Last(T* aStart = nullptr) { return Last(TreeNode(aStart)).Get(); }

  T* Next(T* aNode) { return Next(TreeNode(aNode)).Get(); }

  T* Prev(T* aNode) { return Prev(TreeNode(aNode)).Get(); }

  T* Search(T* aKey) { return Search(TreeNode(aKey)).Get(); }

  // Find a match if it exists. Otherwise, find the next greater node, if one
  // exists.
  T* SearchOrNext(T* aKey) { return SearchOrNext(TreeNode(aKey)).Get(); }

  void Insert(T* aNode) { Insert(TreeNode(aNode)); }

  void Remove(T* aNode) { Remove(TreeNode(aNode)); }

  // Helper class to avoid having all the tree traversal code further below
  // have to use Trait::GetTreeNode and do manual null pointer checks, adding
  // visual noise. Practically speaking TreeNode(nullptr) acts as a virtual
  // sentinel, that loops back to itself for Left() and Right() and is always
  // black.
  class TreeNode {
   public:
    constexpr TreeNode() : mNode(nullptr) {}

    MOZ_IMPLICIT TreeNode(T* aNode) : mNode(aNode) {}

    TreeNode& operator=(TreeNode aOther) {
      mNode = aOther.mNode;
      return *this;
    }

    TreeNode Left() {
      return TreeNode(mNode ? Trait::GetTreeNode(mNode).Left() : nullptr);
    }

    void SetLeft(TreeNode aNode) {
      MOZ_RELEASE_ASSERT(mNode);
      Trait::GetTreeNode(mNode).SetLeft(aNode.mNode);
    }

    TreeNode Right() {
      return TreeNode(mNode ? Trait::GetTreeNode(mNode).Right() : nullptr);
    }

    void SetRight(TreeNode aNode) {
      MOZ_RELEASE_ASSERT(mNode);
      Trait::GetTreeNode(mNode).SetRight(aNode.mNode);
    }

    NodeColor Color() {
      return mNode ? Trait::GetTreeNode(mNode).Color() : NodeColor::Black;
    }

    bool IsRed() { return Color() == NodeColor::Red; }

    bool IsBlack() { return Color() == NodeColor::Black; }

    void SetColor(NodeColor aColor) {
      MOZ_RELEASE_ASSERT(mNode);
      Trait::GetTreeNode(mNode).SetColor(aColor);
    }

    T* Get() { return mNode; }

    MOZ_IMPLICIT operator bool() { return !!mNode; }

    bool operator==(TreeNode& aOther) { return mNode == aOther.mNode; }

   private:
    T* mNode;
  };

 private:
  // Ideally we'd use a TreeNode for mRoot, but we need RedBlackTree to stay
  // a POD type to avoid a static initializer for gArenas.
  T* mRoot;

  TreeNode First(TreeNode aStart) {
    TreeNode ret;
    for (ret = aStart ? aStart : mRoot; ret.Left(); ret = ret.Left()) {
    }
    return ret;
  }

  TreeNode Last(TreeNode aStart) {
    TreeNode ret;
    for (ret = aStart ? aStart : mRoot; ret.Right(); ret = ret.Right()) {
    }
    return ret;
  }

  TreeNode Next(TreeNode aNode) {
    TreeNode ret;
    if (aNode.Right()) {
      ret = First(aNode.Right());
    } else {
      TreeNode rbp_n_t = mRoot;
      MOZ_ASSERT(rbp_n_t);
      ret = nullptr;
      while (true) {
        Order rbp_n_cmp = Trait::Compare(aNode.Get(), rbp_n_t.Get());
        if (rbp_n_cmp == Order::eLess) {
          ret = rbp_n_t;
          rbp_n_t = rbp_n_t.Left();
        } else if (rbp_n_cmp == Order::eGreater) {
          rbp_n_t = rbp_n_t.Right();
        } else {
          break;
        }
        MOZ_ASSERT(rbp_n_t);
      }
    }
    return ret;
  }

  TreeNode Prev(TreeNode aNode) {
    TreeNode ret;
    if (aNode.Left()) {
      ret = Last(aNode.Left());
    } else {
      TreeNode rbp_p_t = mRoot;
      MOZ_ASSERT(rbp_p_t);
      ret = nullptr;
      while (true) {
        Order rbp_p_cmp = Trait::Compare(aNode.Get(), rbp_p_t.Get());
        if (rbp_p_cmp == Order::eLess) {
          rbp_p_t = rbp_p_t.Left();
        } else if (rbp_p_cmp == Order::eGreater) {
          ret = rbp_p_t;
          rbp_p_t = rbp_p_t.Right();
        } else {
          break;
        }
        MOZ_ASSERT(rbp_p_t);
      }
    }
    return ret;
  }

  TreeNode Search(TreeNode aKey) {
    TreeNode ret = mRoot;
    Order rbp_se_cmp;
    while (ret && (rbp_se_cmp = Trait::Compare(aKey.Get(), ret.Get())) !=
                      Order::eEqual) {
      if (rbp_se_cmp == Order::eLess) {
        ret = ret.Left();
      } else {
        ret = ret.Right();
      }
    }
    return ret;
  }

  TreeNode SearchOrNext(TreeNode aKey) {
    TreeNode ret = nullptr;
    TreeNode rbp_ns_t = mRoot;
    while (rbp_ns_t) {
      Order rbp_ns_cmp = Trait::Compare(aKey.Get(), rbp_ns_t.Get());
      if (rbp_ns_cmp == Order::eLess) {
        ret = rbp_ns_t;
        rbp_ns_t = rbp_ns_t.Left();
      } else if (rbp_ns_cmp == Order::eGreater) {
        rbp_ns_t = rbp_ns_t.Right();
      } else {
        ret = rbp_ns_t;
        break;
      }
    }
    return ret;
  }

  void Insert(TreeNode aNode) {
    // rbp_i_s is only used as a placeholder for its RedBlackTreeNode. Use
    // AlignedStorage2 to avoid running the TreeNode base class constructor.
    mozilla::AlignedStorage2<T> rbp_i_s;
    TreeNode rbp_i_g, rbp_i_p, rbp_i_c, rbp_i_t, rbp_i_u;
    Order rbp_i_cmp = Order::eEqual;
    rbp_i_g = nullptr;
    rbp_i_p = rbp_i_s.addr();
    rbp_i_p.SetLeft(mRoot);
    rbp_i_p.SetRight(nullptr);
    rbp_i_p.SetColor(NodeColor::Black);
    rbp_i_c = mRoot;
    // Iteratively search down the tree for the insertion point,
    // splitting 4-nodes as they are encountered. At the end of each
    // iteration, rbp_i_g->rbp_i_p->rbp_i_c is a 3-level path down
    // the tree, assuming a sufficiently deep tree.
    while (rbp_i_c) {
      rbp_i_t = rbp_i_c.Left();
      rbp_i_u = rbp_i_t.Left();
      if (rbp_i_t.IsRed() && rbp_i_u.IsRed()) {
        // rbp_i_c is the top of a logical 4-node, so split it.
        // This iteration does not move down the tree, due to the
        // disruptiveness of node splitting.
        //
        // Rotate right.
        rbp_i_t = RotateRight(rbp_i_c);
        // Pass red links up one level.
        rbp_i_u = rbp_i_t.Left();
        rbp_i_u.SetColor(NodeColor::Black);
        if (rbp_i_p.Left() == rbp_i_c) {
          rbp_i_p.SetLeft(rbp_i_t);
          rbp_i_c = rbp_i_t;
        } else {
          // rbp_i_c was the right child of rbp_i_p, so rotate
          // left in order to maintain the left-leaning invariant.
          MOZ_ASSERT(rbp_i_p.Right() == rbp_i_c);
          rbp_i_p.SetRight(rbp_i_t);
          rbp_i_u = LeanLeft(rbp_i_p);
          if (rbp_i_g.Left() == rbp_i_p) {
            rbp_i_g.SetLeft(rbp_i_u);
          } else {
            MOZ_ASSERT(rbp_i_g.Right() == rbp_i_p);
            rbp_i_g.SetRight(rbp_i_u);
          }
          rbp_i_p = rbp_i_u;
          rbp_i_cmp = Trait::Compare(aNode.Get(), rbp_i_p.Get());
          if (rbp_i_cmp == Order::eLess) {
            rbp_i_c = rbp_i_p.Left();
          } else {
            MOZ_ASSERT(rbp_i_cmp == Order::eGreater);
            rbp_i_c = rbp_i_p.Right();
          }
          continue;
        }
      }
      rbp_i_g = rbp_i_p;
      rbp_i_p = rbp_i_c;
      rbp_i_cmp = Trait::Compare(aNode.Get(), rbp_i_c.Get());
      if (rbp_i_cmp == Order::eLess) {
        rbp_i_c = rbp_i_c.Left();
      } else {
        MOZ_ASSERT(rbp_i_cmp == Order::eGreater);
        rbp_i_c = rbp_i_c.Right();
      }
    }
    // rbp_i_p now refers to the node under which to insert.
    aNode.SetLeft(nullptr);
    aNode.SetRight(nullptr);
    aNode.SetColor(NodeColor::Red);
    if (rbp_i_cmp == Order::eGreater) {
      rbp_i_p.SetRight(aNode);
      rbp_i_t = LeanLeft(rbp_i_p);
      if (rbp_i_g.Left() == rbp_i_p) {
        rbp_i_g.SetLeft(rbp_i_t);
      } else if (rbp_i_g.Right() == rbp_i_p) {
        rbp_i_g.SetRight(rbp_i_t);
      }
    } else {
      rbp_i_p.SetLeft(aNode);
    }
    // Update the root and make sure that it is black.
    TreeNode root = TreeNode(rbp_i_s.addr()).Left();
    root.SetColor(NodeColor::Black);
    mRoot = root.Get();
  }

  void Remove(TreeNode aNode) {
    // rbp_r_s is only used as a placeholder for its RedBlackTreeNode. Use
    // AlignedStorage2 to avoid running the TreeNode base class constructor.
    mozilla::AlignedStorage2<T> rbp_r_s;
    TreeNode rbp_r_p, rbp_r_c, rbp_r_xp, rbp_r_t, rbp_r_u;
    Order rbp_r_cmp;
    rbp_r_p = TreeNode(rbp_r_s.addr());
    rbp_r_p.SetLeft(mRoot);
    rbp_r_p.SetRight(nullptr);
    rbp_r_p.SetColor(NodeColor::Black);
    rbp_r_c = mRoot;
    rbp_r_xp = nullptr;
    // Iterate down the tree, but always transform 2-nodes to 3- or
    // 4-nodes in order to maintain the invariant that the current
    // node is not a 2-node. This allows simple deletion once a leaf
    // is reached. Handle the root specially though, since there may
    // be no way to convert it from a 2-node to a 3-node.
    rbp_r_cmp = Trait::Compare(aNode.Get(), rbp_r_c.Get());
    if (rbp_r_cmp == Order::eLess) {
      rbp_r_t = rbp_r_c.Left();
      rbp_r_u = rbp_r_t.Left();
      if (rbp_r_t.IsBlack() && rbp_r_u.IsBlack()) {
        // Apply standard transform to prepare for left move.
        rbp_r_t = MoveRedLeft(rbp_r_c);
        rbp_r_t.SetColor(NodeColor::Black);
        rbp_r_p.SetLeft(rbp_r_t);
        rbp_r_c = rbp_r_t;
      } else {
        // Move left.
        rbp_r_p = rbp_r_c;
        rbp_r_c = rbp_r_c.Left();
      }
    } else {
      if (rbp_r_cmp == Order::eEqual) {
        MOZ_ASSERT(aNode == rbp_r_c);
        if (!rbp_r_c.Right()) {
          // Delete root node (which is also a leaf node).
          if (rbp_r_c.Left()) {
            rbp_r_t = LeanRight(rbp_r_c);
            rbp_r_t.SetRight(nullptr);
          } else {
            rbp_r_t = nullptr;
          }
          rbp_r_p.SetLeft(rbp_r_t);
        } else {
          // This is the node we want to delete, but we will
          // instead swap it with its successor and delete the
          // successor. Record enough information to do the
          // swap later. rbp_r_xp is the aNode's parent.
          rbp_r_xp = rbp_r_p;
          rbp_r_cmp = Order::eGreater;  // Note that deletion is incomplete.
        }
      }
      if (rbp_r_cmp == Order::eGreater) {
        if (rbp_r_c.Right().Left().IsBlack()) {
          rbp_r_t = rbp_r_c.Left();
          if (rbp_r_t.IsRed()) {
            // Standard transform.
            rbp_r_t = MoveRedRight(rbp_r_c);
          } else {
            // Root-specific transform.
            rbp_r_c.SetColor(NodeColor::Red);
            rbp_r_u = rbp_r_t.Left();
            if (rbp_r_u.IsRed()) {
              rbp_r_u.SetColor(NodeColor::Black);
              rbp_r_t = RotateRight(rbp_r_c);
              rbp_r_u = RotateLeft(rbp_r_c);
              rbp_r_t.SetRight(rbp_r_u);
            } else {
              rbp_r_t.SetColor(NodeColor::Red);
              rbp_r_t = RotateLeft(rbp_r_c);
            }
          }
          rbp_r_p.SetLeft(rbp_r_t);
          rbp_r_c = rbp_r_t;
        } else {
          // Move right.
          rbp_r_p = rbp_r_c;
          rbp_r_c = rbp_r_c.Right();
        }
      }
    }
    if (rbp_r_cmp != Order::eEqual) {
      while (true) {
        MOZ_ASSERT(rbp_r_p);
        rbp_r_cmp = Trait::Compare(aNode.Get(), rbp_r_c.Get());
        if (rbp_r_cmp == Order::eLess) {
          rbp_r_t = rbp_r_c.Left();
          if (!rbp_r_t) {
            // rbp_r_c now refers to the successor node to
            // relocate, and rbp_r_xp/aNode refer to the
            // context for the relocation.
            if (rbp_r_xp.Left() == aNode) {
              rbp_r_xp.SetLeft(rbp_r_c);
            } else {
              MOZ_ASSERT(rbp_r_xp.Right() == (aNode));
              rbp_r_xp.SetRight(rbp_r_c);
            }
            rbp_r_c.SetLeft(aNode.Left());
            rbp_r_c.SetRight(aNode.Right());
            rbp_r_c.SetColor(aNode.Color());
            if (rbp_r_p.Left() == rbp_r_c) {
              rbp_r_p.SetLeft(nullptr);
            } else {
              MOZ_ASSERT(rbp_r_p.Right() == rbp_r_c);
              rbp_r_p.SetRight(nullptr);
            }
            break;
          }
          rbp_r_u = rbp_r_t.Left();
          if (rbp_r_t.IsBlack() && rbp_r_u.IsBlack()) {
            rbp_r_t = MoveRedLeft(rbp_r_c);
            if (rbp_r_p.Left() == rbp_r_c) {
              rbp_r_p.SetLeft(rbp_r_t);
            } else {
              rbp_r_p.SetRight(rbp_r_t);
            }
            rbp_r_c = rbp_r_t;
          } else {
            rbp_r_p = rbp_r_c;
            rbp_r_c = rbp_r_c.Left();
          }
        } else {
          // Check whether to delete this node (it has to be
          // the correct node and a leaf node).
          if (rbp_r_cmp == Order::eEqual) {
            MOZ_ASSERT(aNode == rbp_r_c);
            if (!rbp_r_c.Right()) {
              // Delete leaf node.
              if (rbp_r_c.Left()) {
                rbp_r_t = LeanRight(rbp_r_c);
                rbp_r_t.SetRight(nullptr);
              } else {
                rbp_r_t = nullptr;
              }
              if (rbp_r_p.Left() == rbp_r_c) {
                rbp_r_p.SetLeft(rbp_r_t);
              } else {
                rbp_r_p.SetRight(rbp_r_t);
              }
              break;
            }
            // This is the node we want to delete, but we
            // will instead swap it with its successor
            // and delete the successor. Record enough
            // information to do the swap later.
            // rbp_r_xp is aNode's parent.
            rbp_r_xp = rbp_r_p;
          }
          rbp_r_t = rbp_r_c.Right();
          rbp_r_u = rbp_r_t.Left();
          if (rbp_r_u.IsBlack()) {
            rbp_r_t = MoveRedRight(rbp_r_c);
            if (rbp_r_p.Left() == rbp_r_c) {
              rbp_r_p.SetLeft(rbp_r_t);
            } else {
              rbp_r_p.SetRight(rbp_r_t);
            }
            rbp_r_c = rbp_r_t;
          } else {
            rbp_r_p = rbp_r_c;
            rbp_r_c = rbp_r_c.Right();
          }
        }
      }
    }
    // Update root.
    mRoot = TreeNode(rbp_r_s.addr()).Left().Get();
  }

  TreeNode RotateLeft(TreeNode aNode) {
    TreeNode node = aNode.Right();
    aNode.SetRight(node.Left());
    node.SetLeft(aNode);
    return node;
  }

  TreeNode RotateRight(TreeNode aNode) {
    TreeNode node = aNode.Left();
    aNode.SetLeft(node.Right());
    node.SetRight(aNode);
    return node;
  }

  TreeNode LeanLeft(TreeNode aNode) {
    TreeNode node = RotateLeft(aNode);
    NodeColor color = aNode.Color();
    node.SetColor(color);
    aNode.SetColor(NodeColor::Red);
    return node;
  }

  TreeNode LeanRight(TreeNode aNode) {
    TreeNode node = RotateRight(aNode);
    NodeColor color = aNode.Color();
    node.SetColor(color);
    aNode.SetColor(NodeColor::Red);
    return node;
  }

  TreeNode MoveRedLeft(TreeNode aNode) {
    TreeNode node;
    TreeNode rbp_mrl_t, rbp_mrl_u;
    rbp_mrl_t = aNode.Left();
    rbp_mrl_t.SetColor(NodeColor::Red);
    rbp_mrl_t = aNode.Right();
    rbp_mrl_u = rbp_mrl_t.Left();
    if (rbp_mrl_u.IsRed()) {
      rbp_mrl_u = RotateRight(rbp_mrl_t);
      aNode.SetRight(rbp_mrl_u);
      node = RotateLeft(aNode);
      rbp_mrl_t = aNode.Right();
      if (rbp_mrl_t.IsRed()) {
        rbp_mrl_t.SetColor(NodeColor::Black);
        aNode.SetColor(NodeColor::Red);
        rbp_mrl_t = RotateLeft(aNode);
        node.SetLeft(rbp_mrl_t);
      } else {
        aNode.SetColor(NodeColor::Black);
      }
    } else {
      aNode.SetColor(NodeColor::Red);
      node = RotateLeft(aNode);
    }
    return node;
  }

  TreeNode MoveRedRight(TreeNode aNode) {
    TreeNode node;
    TreeNode rbp_mrr_t;
    rbp_mrr_t = aNode.Left();
    if (rbp_mrr_t.IsRed()) {
      TreeNode rbp_mrr_u, rbp_mrr_v;
      rbp_mrr_u = rbp_mrr_t.Right();
      rbp_mrr_v = rbp_mrr_u.Left();
      if (rbp_mrr_v.IsRed()) {
        rbp_mrr_u.SetColor(aNode.Color());
        rbp_mrr_v.SetColor(NodeColor::Black);
        rbp_mrr_u = RotateLeft(rbp_mrr_t);
        aNode.SetLeft(rbp_mrr_u);
        node = RotateRight(aNode);
        rbp_mrr_t = RotateLeft(aNode);
        node.SetRight(rbp_mrr_t);
      } else {
        rbp_mrr_t.SetColor(aNode.Color());
        rbp_mrr_u.SetColor(NodeColor::Red);
        node = RotateRight(aNode);
        rbp_mrr_t = RotateLeft(aNode);
        node.SetRight(rbp_mrr_t);
      }
      aNode.SetColor(NodeColor::Red);
    } else {
      rbp_mrr_t.SetColor(NodeColor::Red);
      rbp_mrr_t = rbp_mrr_t.Left();
      if (rbp_mrr_t.IsRed()) {
        rbp_mrr_t.SetColor(NodeColor::Black);
        node = RotateRight(aNode);
        rbp_mrr_t = RotateLeft(aNode);
        node.SetRight(rbp_mrr_t);
      } else {
        node = RotateLeft(aNode);
      }
    }
    return node;
  }

  // The iterator simulates recursion via an array of pointers that store the
  // current path.  This is critical to performance, since a series of calls to
  // rb_{next,prev}() would require time proportional to (n lg n), whereas this
  // implementation only requires time proportional to (n).
  //
  // Since the iterator caches a path down the tree, any tree modification may
  // cause the cached path to become invalid. Don't modify the tree during an
  // iteration.

  // Size the path arrays such that they are always large enough, even if a
  // tree consumes all of memory.  Since each node must contain a minimum of
  // two pointers, there can never be more nodes than:
  //
  //   1 << ((sizeof(void*)<<3) - (log2(sizeof(void*))+1))
  //
  // Since the depth of a tree is limited to 3*lg(#nodes), the maximum depth
  // is:
  //
  //   (3 * ((sizeof(void*)<<3) - (log2(sizeof(void*))+1)))
  //
  // This works out to a maximum depth of 87 and 180 for 32- and 64-bit
  // systems, respectively (approximately 348 and 1440 bytes, respectively).
 public:
  class Iterator {
    TreeNode mPath[3 * ((sizeof(void*) << 3) - (LOG2(sizeof(void*)) + 1))];
    unsigned mDepth;

   public:
    explicit Iterator(RedBlackTree<T, Trait>* aTree) : mDepth(0) {
      // Initialize the path to contain the left spine.
      if (aTree->mRoot) {
        TreeNode node;
        mPath[mDepth++] = aTree->mRoot;
        while ((node = mPath[mDepth - 1].Left())) {
          mPath[mDepth++] = node;
        }
      }
    }

    template <typename Iterator>
    class Item {
      Iterator* mIterator;
      T* mItem;

     public:
      Item(Iterator* aIterator, T* aItem)
          : mIterator(aIterator), mItem(aItem) {}

      bool operator!=(const Item& aOther) const {
        return (mIterator != aOther.mIterator) || (mItem != aOther.mItem);
      }

      T* operator*() const { return mItem; }

      const Item& operator++() {
        mItem = mIterator->Next();
        return *this;
      }
    };

    Item<Iterator> begin() {
      return Item<Iterator>(this,
                            mDepth > 0 ? mPath[mDepth - 1].Get() : nullptr);
    }

    Item<Iterator> end() { return Item<Iterator>(this, nullptr); }

    T* Next() {
      TreeNode node;
      if ((node = mPath[mDepth - 1].Right())) {
        // The successor is the left-most node in the right subtree.
        mPath[mDepth++] = node;
        while ((node = mPath[mDepth - 1].Left())) {
          mPath[mDepth++] = node;
        }
      } else {
        // The successor is above the current node.  Unwind until a
        // left-leaning edge is removed from the path, of the path is empty.
        for (mDepth--; mDepth > 0; mDepth--) {
          if (mPath[mDepth - 1].Left() == mPath[mDepth]) {
            break;
          }
        }
      }
      return mDepth > 0 ? mPath[mDepth - 1].Get() : nullptr;
    }
  };

  Iterator iter() { return Iterator(this); }
};

#endif  // RB_H_