DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (1aeaa33a64f9)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/* struct containing the input to nsIFrame::Reflow */

#ifndef mozilla_ReflowInput_h
#define mozilla_ReflowInput_h

#include "nsMargin.h"
#include "nsStyleCoord.h"
#include "nsIFrame.h"
#include "mozilla/Assertions.h"
#include <algorithm>

class gfxContext;
class nsFloatManager;
struct nsHypotheticalPosition;
class nsIPercentBSizeObserver;
class nsLineLayout;
class nsPlaceholderFrame;
class nsPresContext;

/**
 * @return aValue clamped to [aMinValue, aMaxValue].
 *
 * @note This function needs to handle aMinValue > aMaxValue. In that case,
 *       aMinValue is returned.
 * @see http://www.w3.org/TR/CSS21/visudet.html#min-max-widths
 * @see http://www.w3.org/TR/CSS21/visudet.html#min-max-heights
 */
template <class NumericType>
NumericType NS_CSS_MINMAX(NumericType aValue, NumericType aMinValue,
                          NumericType aMaxValue) {
  NumericType result = aValue;
  if (aMaxValue < result) result = aMaxValue;
  if (aMinValue > result) result = aMinValue;
  return result;
}

/**
 * CSS Frame type. Included as part of the reflow state.
 */
typedef uint32_t nsCSSFrameType;

#define NS_CSS_FRAME_TYPE_UNKNOWN 0
#define NS_CSS_FRAME_TYPE_INLINE 1
#define NS_CSS_FRAME_TYPE_BLOCK 2 /* block-level in normal flow */
#define NS_CSS_FRAME_TYPE_FLOATING 3
#define NS_CSS_FRAME_TYPE_ABSOLUTE 4
#define NS_CSS_FRAME_TYPE_INTERNAL_TABLE \
  5 /* row group frame, row frame, cell frame, ... */

/**
 * Bit-flag that indicates whether the element is replaced. Applies to inline,
 * block-level, floating, and absolutely positioned elements
 */
#define NS_CSS_FRAME_TYPE_REPLACED 0x08000

/**
 * Bit-flag that indicates that the element is replaced and contains a block
 * (eg some form controls).  Applies to inline, block-level, floating, and
 * absolutely positioned elements.  Mutually exclusive with
 * NS_CSS_FRAME_TYPE_REPLACED.
 */
#define NS_CSS_FRAME_TYPE_REPLACED_CONTAINS_BLOCK 0x10000

/**
 * Helper macros for telling whether items are replaced
 */
#define NS_FRAME_IS_REPLACED_NOBLOCK(_ft) \
  (NS_CSS_FRAME_TYPE_REPLACED == ((_ft)&NS_CSS_FRAME_TYPE_REPLACED))

#define NS_FRAME_IS_REPLACED(_ft)       \
  (NS_FRAME_IS_REPLACED_NOBLOCK(_ft) || \
   NS_FRAME_IS_REPLACED_CONTAINS_BLOCK(_ft))

#define NS_FRAME_REPLACED(_ft) (NS_CSS_FRAME_TYPE_REPLACED | (_ft))

#define NS_FRAME_IS_REPLACED_CONTAINS_BLOCK(_ft) \
  (NS_CSS_FRAME_TYPE_REPLACED_CONTAINS_BLOCK ==  \
   ((_ft)&NS_CSS_FRAME_TYPE_REPLACED_CONTAINS_BLOCK))

#define NS_FRAME_REPLACED_CONTAINS_BLOCK(_ft) \
  (NS_CSS_FRAME_TYPE_REPLACED_CONTAINS_BLOCK | (_ft))

/**
 * A macro to extract the type. Masks off the 'replaced' bit-flag
 */
#define NS_FRAME_GET_TYPE(_ft) \
  ((_ft) &                     \
   ~(NS_CSS_FRAME_TYPE_REPLACED | NS_CSS_FRAME_TYPE_REPLACED_CONTAINS_BLOCK))

namespace mozilla {

// A base class of ReflowInput that computes only the padding,
// border, and margin, since those values are needed more often.
struct SizeComputationInput {
 public:
  typedef mozilla::WritingMode WritingMode;
  typedef mozilla::LogicalMargin LogicalMargin;

  // The frame being reflowed.
  nsIFrame* mFrame;

  // Rendering context to use for measurement.
  gfxContext* mRenderingContext;

  const nsMargin& ComputedPhysicalMargin() const { return mComputedMargin; }
  const nsMargin& ComputedPhysicalBorderPadding() const {
    return mComputedBorderPadding;
  }
  const nsMargin& ComputedPhysicalPadding() const { return mComputedPadding; }

  // We may need to eliminate the (few) users of these writable-reference
  // accessors as part of migrating to logical coordinates.
  nsMargin& ComputedPhysicalMargin() { return mComputedMargin; }
  nsMargin& ComputedPhysicalBorderPadding() { return mComputedBorderPadding; }
  nsMargin& ComputedPhysicalPadding() { return mComputedPadding; }

  const LogicalMargin ComputedLogicalMargin() const {
    return LogicalMargin(mWritingMode, mComputedMargin);
  }
  const LogicalMargin ComputedLogicalBorderPadding() const {
    return LogicalMargin(mWritingMode, mComputedBorderPadding);
  }
  const LogicalMargin ComputedLogicalPadding() const {
    return LogicalMargin(mWritingMode, mComputedPadding);
  }

  void SetComputedLogicalMargin(mozilla::WritingMode aWM,
                                const LogicalMargin& aMargin) {
    mComputedMargin = aMargin.GetPhysicalMargin(aWM);
  }
  void SetComputedLogicalMargin(const LogicalMargin& aMargin) {
    SetComputedLogicalMargin(mWritingMode, aMargin);
  }

  void SetComputedLogicalBorderPadding(mozilla::WritingMode aWM,
                                       const LogicalMargin& aMargin) {
    mComputedBorderPadding = aMargin.GetPhysicalMargin(aWM);
  }
  void SetComputedLogicalBorderPadding(const LogicalMargin& aMargin) {
    SetComputedLogicalBorderPadding(mWritingMode, aMargin);
  }

  void SetComputedLogicalPadding(mozilla::WritingMode aWM,
                                 const LogicalMargin& aMargin) {
    mComputedPadding = aMargin.GetPhysicalMargin(aWM);
  }
  void SetComputedLogicalPadding(const LogicalMargin& aMargin) {
    SetComputedLogicalPadding(mWritingMode, aMargin);
  }

  WritingMode GetWritingMode() const { return mWritingMode; }

 protected:
  // cached copy of the frame's writing-mode, for logical coordinates
  WritingMode mWritingMode;

  // These are PHYSICAL coordinates (for now).
  // Will probably become logical in due course.

  // Computed margin values
  nsMargin mComputedMargin;

  // Cached copy of the border + padding values
  nsMargin mComputedBorderPadding;

  // Computed padding values
  nsMargin mComputedPadding;

 public:
  // Callers using this constructor must call InitOffsets on their own.
  SizeComputationInput(nsIFrame* aFrame, gfxContext* aRenderingContext)
      : mFrame(aFrame),
        mRenderingContext(aRenderingContext),
        mWritingMode(aFrame->GetWritingMode()) {}

  SizeComputationInput(nsIFrame* aFrame, gfxContext* aRenderingContext,
                       mozilla::WritingMode aContainingBlockWritingMode,
                       nscoord aContainingBlockISize);

  struct ReflowInputFlags {
    ReflowInputFlags() { memset(this, 0, sizeof(*this)); }
    bool mSpecialBSizeReflow : 1;   // used by tables to communicate special
                                    // reflow (in process) to handle percent
                                    // bsize frames inside cells which may not
                                    // have computed bsizes
    bool mNextInFlowUntouched : 1;  // nothing in the frame's next-in-flow (or
                                    // its descendants) is changing
    bool mIsTopOfPage : 1;          // Is the current context at the top of a
                                    // page?  When true, we force something
                                    // that's too tall for a page/column to
                                    // fit anyway to avoid infinite loops.
    bool mAssumingHScrollbar : 1;   // parent frame is an nsIScrollableFrame and
                                    // it is assuming a horizontal scrollbar
    bool mAssumingVScrollbar : 1;   // parent frame is an nsIScrollableFrame and
                                    // it is assuming a vertical scrollbar

    bool mIsIResize : 1;  // Is frame (a) not dirty and (b) a
                          // different inline-size than before?

    bool mIsBResize : 1;          // Is frame (a) not dirty and (b) a
                                  // different block-size than before or
                                  // (potentially) in a context where
                                  // percent block-sizes have a different
                                  // basis?
    bool mTableIsSplittable : 1;  // tables are splittable, this should happen
                                  // only inside a page and never insider a
                                  // column frame
    bool mHeightDependsOnAncestorCell : 1;  // Does frame height depend on
                                            // an ancestor table-cell?
    bool mIsColumnBalancing : 1;  // nsColumnSetFrame is balancing columns
    bool mIsFlexContainerMeasuringBSize : 1;  // nsFlexContainerFrame is
                                              // reflowing this child to
                                              // measure its intrinsic BSize.
    bool mDummyParentReflowInput : 1;         // a "fake" reflow state made
                                              // in order to be the parent
                                              // of a real one
    bool mMustReflowPlaceholders : 1;  // Should this frame reflow its place-
                                       // holder children? If the available
                                       // height of this frame didn't change,
                                       // but its in a paginated environment
                                       // (e.g. columns), it should always
                                       // reflow its placeholder children.
    bool mShrinkWrap : 1;    // stores the COMPUTE_SIZE_SHRINK_WRAP ctor flag
    bool mUseAutoBSize : 1;  // stores the COMPUTE_SIZE_USE_AUTO_BSIZE ctor flag
    bool mStaticPosIsCBOrigin : 1;     // the STATIC_POS_IS_CB_ORIGIN ctor flag
    bool mIClampMarginBoxMinSize : 1;  // the I_CLAMP_MARGIN_BOX_MIN_SIZE ctor
                                       // flag
    bool mBClampMarginBoxMinSize : 1;  // the B_CLAMP_MARGIN_BOX_MIN_SIZE ctor
                                       // flag
    bool mApplyAutoMinSize : 1;        // the I_APPLY_AUTO_MIN_SIZE ctor flag

    // If set, the following two flags indicate that:
    // (1) this frame is absolutely-positioned (or fixed-positioned).
    // (2) this frame's static position depends on the CSS Box Alignment.
    // (3) we do need to compute the static position, because the frame's
    //     {Inline and/or Block} offsets actually depend on it.
    // When these bits are set, the offset values (IStart/IEnd, BStart/BEnd)
    // represent the "start" edge of the frame's CSS Box Alignment container
    // area, in that axis -- and these offsets need to be further-resolved
    // (with CSS Box Alignment) after we know the OOF frame's size.
    // NOTE: The "I" and "B" (for "Inline" and "Block") refer the axes of the
    // *containing block's writing-mode*, NOT mFrame's own writing-mode. This
    // is purely for convenience, since that's the writing-mode we're dealing
    // with when we set & react to these bits.
    bool mIOffsetsNeedCSSAlign : 1;
    bool mBOffsetsNeedCSSAlign : 1;
  };

#ifdef DEBUG
  // Reflow trace methods.  Defined in nsFrame.cpp so they have access
  // to the display-reflow infrastructure.
  static void* DisplayInitOffsetsEnter(nsIFrame* aFrame,
                                       SizeComputationInput* aState,
                                       nscoord aPercentBasis,
                                       WritingMode aCBWritingMode,
                                       const nsMargin* aBorder,
                                       const nsMargin* aPadding);
  static void DisplayInitOffsetsExit(nsIFrame* aFrame,
                                     SizeComputationInput* aState,
                                     void* aValue);
#endif

 private:
  /**
   * Computes margin values from the specified margin style information, and
   * fills in the mComputedMargin member.
   *
   * @param aWM Writing mode of the containing block
   * @param aPercentBasis
   *    Inline size of the containing block (in its own writing mode), to use
   *    for resolving percentage margin values in the inline and block axes.
   * @return true if the margin is dependent on the containing block size.
   */
  bool ComputeMargin(mozilla::WritingMode aWM, nscoord aPercentBasis);

  /**
   * Computes padding values from the specified padding style information, and
   * fills in the mComputedPadding member.
   *
   * @param aWM Writing mode of the containing block
   * @param aPercentBasis
   *    Inline size of the containing block (in its own writing mode), to use
   *    for resolving percentage padding values in the inline and block axes.
   * @return true if the padding is dependent on the containing block size.
   */
  bool ComputePadding(mozilla::WritingMode aWM, nscoord aPercentBasis,
                      mozilla::LayoutFrameType aFrameType);

 protected:
  void InitOffsets(mozilla::WritingMode aWM, nscoord aPercentBasis,
                   mozilla::LayoutFrameType aFrameType, ReflowInputFlags aFlags,
                   const nsMargin* aBorder = nullptr,
                   const nsMargin* aPadding = nullptr,
                   const nsStyleDisplay* aDisplay = nullptr);

  /*
   * Convert nsStyleCoord to nscoord when percentages depend on the
   * inline size of the containing block, and enumerated values are for
   * inline size, min-inline-size, or max-inline-size.  Does not handle
   * auto inline sizes.
   */
  inline nscoord ComputeISizeValue(nscoord aContainingBlockISize,
                                   nscoord aContentEdgeToBoxSizing,
                                   nscoord aBoxSizingToMarginEdge,
                                   const nsStyleCoord& aCoord) const;
  // same as previous, but using mComputedBorderPadding, mComputedPadding,
  // and mComputedMargin
  nscoord ComputeISizeValue(nscoord aContainingBlockISize,
                            mozilla::StyleBoxSizing aBoxSizing,
                            const nsStyleCoord& aCoord) const;

  nscoord ComputeBSizeValue(nscoord aContainingBlockBSize,
                            mozilla::StyleBoxSizing aBoxSizing,
                            const nsStyleCoord& aCoord) const;
};

/**
 * State passed to a frame during reflow or intrinsic size calculation.
 *
 * XXX Refactor so only a base class (nsSizingState?) is used for intrinsic
 * size calculation.
 *
 * @see nsIFrame#Reflow()
 */
struct ReflowInput : public SizeComputationInput {
  // the reflow states are linked together. this is the pointer to the
  // parent's reflow state
  const ReflowInput* mParentReflowInput;

  // A non-owning pointer to the float manager associated with this area,
  // which points to the object owned by nsAutoFloatManager::mNew.
  nsFloatManager* mFloatManager;

  // LineLayout object (only for inline reflow; set to nullptr otherwise)
  nsLineLayout* mLineLayout;

  // The appropriate reflow state for the containing block (for
  // percentage widths, etc.) of this reflow state's frame.
  MOZ_INIT_OUTSIDE_CTOR
  const ReflowInput* mCBReflowInput;

  // The type of frame, from css's perspective. This value is
  // initialized by the Init method below.
  MOZ_INIT_OUTSIDE_CTOR
  nsCSSFrameType mFrameType;

  // The amount the in-flow position of the block is moving vertically relative
  // to its previous in-flow position (i.e. the amount the line containing the
  // block is moving).
  // This should be zero for anything which is not a block outside, and it
  // should be zero for anything which has a non-block parent.
  // The intended use of this value is to allow the accurate determination
  // of the potential impact of a float
  // This takes on an arbitrary value the first time a block is reflowed
  nscoord mBlockDelta;

  // If an ReflowInput finds itself initialized with an unconstrained
  // inline-size, it will look up its parentReflowInput chain for a state
  // with an orthogonal writing mode and a non-NS_UNCONSTRAINEDSIZE value for
  // orthogonal limit; when it finds such a reflow-state, it will use its
  // orthogonal-limit value to constrain inline-size.
  // This is initialized to NS_UNCONSTRAINEDSIZE (so it will be ignored),
  // but reset to a suitable value for the reflow root by nsPresShell.
  nscoord mOrthogonalLimit;

  // Accessors for the private fields below. Forcing all callers to use these
  // will allow us to introduce logical-coordinate versions and gradually
  // change clients from physical to logical as needed; and potentially switch
  // the internal fields from physical to logical coordinates in due course,
  // while maintaining compatibility with not-yet-updated code.
  nscoord AvailableWidth() const { return mAvailableWidth; }
  nscoord AvailableHeight() const { return mAvailableHeight; }
  nscoord ComputedWidth() const { return mComputedWidth; }
  nscoord ComputedHeight() const { return mComputedHeight; }
  nscoord ComputedMinWidth() const { return mComputedMinWidth; }
  nscoord ComputedMaxWidth() const { return mComputedMaxWidth; }
  nscoord ComputedMinHeight() const { return mComputedMinHeight; }
  nscoord ComputedMaxHeight() const { return mComputedMaxHeight; }

  nscoord& AvailableWidth() { return mAvailableWidth; }
  nscoord& AvailableHeight() { return mAvailableHeight; }
  nscoord& ComputedWidth() { return mComputedWidth; }
  nscoord& ComputedHeight() { return mComputedHeight; }
  nscoord& ComputedMinWidth() { return mComputedMinWidth; }
  nscoord& ComputedMaxWidth() { return mComputedMaxWidth; }
  nscoord& ComputedMinHeight() { return mComputedMinHeight; }
  nscoord& ComputedMaxHeight() { return mComputedMaxHeight; }

  // ISize and BSize are logical-coordinate dimensions:
  // ISize is the size in the writing mode's inline direction (which equates to
  // width in horizontal writing modes, height in vertical ones), and BSize is
  // the size in the block-progression direction.
  nscoord AvailableISize() const {
    return mWritingMode.IsVertical() ? mAvailableHeight : mAvailableWidth;
  }
  nscoord AvailableBSize() const {
    return mWritingMode.IsVertical() ? mAvailableWidth : mAvailableHeight;
  }
  nscoord ComputedISize() const {
    return mWritingMode.IsVertical() ? mComputedHeight : mComputedWidth;
  }
  nscoord ComputedBSize() const {
    return mWritingMode.IsVertical() ? mComputedWidth : mComputedHeight;
  }
  nscoord ComputedMinISize() const {
    return mWritingMode.IsVertical() ? mComputedMinHeight : mComputedMinWidth;
  }
  nscoord ComputedMaxISize() const {
    return mWritingMode.IsVertical() ? mComputedMaxHeight : mComputedMaxWidth;
  }
  nscoord ComputedMinBSize() const {
    return mWritingMode.IsVertical() ? mComputedMinWidth : mComputedMinHeight;
  }
  nscoord ComputedMaxBSize() const {
    return mWritingMode.IsVertical() ? mComputedMaxWidth : mComputedMaxHeight;
  }

  nscoord& AvailableISize() {
    return mWritingMode.IsVertical() ? mAvailableHeight : mAvailableWidth;
  }
  nscoord& AvailableBSize() {
    return mWritingMode.IsVertical() ? mAvailableWidth : mAvailableHeight;
  }
  nscoord& ComputedISize() {
    return mWritingMode.IsVertical() ? mComputedHeight : mComputedWidth;
  }
  nscoord& ComputedBSize() {
    return mWritingMode.IsVertical() ? mComputedWidth : mComputedHeight;
  }
  nscoord& ComputedMinISize() {
    return mWritingMode.IsVertical() ? mComputedMinHeight : mComputedMinWidth;
  }
  nscoord& ComputedMaxISize() {
    return mWritingMode.IsVertical() ? mComputedMaxHeight : mComputedMaxWidth;
  }
  nscoord& ComputedMinBSize() {
    return mWritingMode.IsVertical() ? mComputedMinWidth : mComputedMinHeight;
  }
  nscoord& ComputedMaxBSize() {
    return mWritingMode.IsVertical() ? mComputedMaxWidth : mComputedMaxHeight;
  }

  mozilla::LogicalSize AvailableSize() const {
    return mozilla::LogicalSize(mWritingMode, AvailableISize(),
                                AvailableBSize());
  }
  mozilla::LogicalSize ComputedSize() const {
    return mozilla::LogicalSize(mWritingMode, ComputedISize(), ComputedBSize());
  }
  mozilla::LogicalSize ComputedMinSize() const {
    return mozilla::LogicalSize(mWritingMode, ComputedMinISize(),
                                ComputedMinBSize());
  }
  mozilla::LogicalSize ComputedMaxSize() const {
    return mozilla::LogicalSize(mWritingMode, ComputedMaxISize(),
                                ComputedMaxBSize());
  }

  mozilla::LogicalSize AvailableSize(mozilla::WritingMode aWM) const {
    return AvailableSize().ConvertTo(aWM, mWritingMode);
  }
  mozilla::LogicalSize ComputedSize(mozilla::WritingMode aWM) const {
    return ComputedSize().ConvertTo(aWM, mWritingMode);
  }
  mozilla::LogicalSize ComputedMinSize(mozilla::WritingMode aWM) const {
    return ComputedMinSize().ConvertTo(aWM, mWritingMode);
  }
  mozilla::LogicalSize ComputedMaxSize(mozilla::WritingMode aWM) const {
    return ComputedMaxSize().ConvertTo(aWM, mWritingMode);
  }

  mozilla::LogicalSize ComputedSizeWithPadding() const {
    mozilla::WritingMode wm = GetWritingMode();
    return mozilla::LogicalSize(
        wm, ComputedISize() + ComputedLogicalPadding().IStartEnd(wm),
        ComputedBSize() + ComputedLogicalPadding().BStartEnd(wm));
  }

  mozilla::LogicalSize ComputedSizeWithPadding(mozilla::WritingMode aWM) const {
    return ComputedSizeWithPadding().ConvertTo(aWM, GetWritingMode());
  }

  mozilla::LogicalSize ComputedSizeWithBorderPadding() const {
    mozilla::WritingMode wm = GetWritingMode();
    return mozilla::LogicalSize(
        wm, ComputedISize() + ComputedLogicalBorderPadding().IStartEnd(wm),
        ComputedBSize() + ComputedLogicalBorderPadding().BStartEnd(wm));
  }

  mozilla::LogicalSize ComputedSizeWithBorderPadding(
      mozilla::WritingMode aWM) const {
    return ComputedSizeWithBorderPadding().ConvertTo(aWM, GetWritingMode());
  }

  mozilla::LogicalSize ComputedSizeWithMarginBorderPadding() const {
    mozilla::WritingMode wm = GetWritingMode();
    return mozilla::LogicalSize(
        wm,
        ComputedISize() + ComputedLogicalMargin().IStartEnd(wm) +
            ComputedLogicalBorderPadding().IStartEnd(wm),
        ComputedBSize() + ComputedLogicalMargin().BStartEnd(wm) +
            ComputedLogicalBorderPadding().BStartEnd(wm));
  }

  mozilla::LogicalSize ComputedSizeWithMarginBorderPadding(
      mozilla::WritingMode aWM) const {
    return ComputedSizeWithMarginBorderPadding().ConvertTo(aWM,
                                                           GetWritingMode());
  }

  nsSize ComputedPhysicalSize() const {
    return nsSize(ComputedWidth(), ComputedHeight());
  }

  // XXX this will need to change when we make mComputedOffsets logical;
  // we won't be able to return a reference for the physical offsets
  const nsMargin& ComputedPhysicalOffsets() const { return mComputedOffsets; }
  nsMargin& ComputedPhysicalOffsets() { return mComputedOffsets; }

  const LogicalMargin ComputedLogicalOffsets() const {
    return LogicalMargin(mWritingMode, mComputedOffsets);
  }

  void SetComputedLogicalOffsets(const LogicalMargin& aOffsets) {
    mComputedOffsets = aOffsets.GetPhysicalMargin(mWritingMode);
  }

  // Return the state's computed size including border-padding, with
  // unconstrained dimensions replaced by zero.
  nsSize ComputedSizeAsContainerIfConstrained() const {
    const nscoord wd = ComputedWidth();
    const nscoord ht = ComputedHeight();
    return nsSize(wd == NS_UNCONSTRAINEDSIZE
                      ? 0
                      : wd + ComputedPhysicalBorderPadding().LeftRight(),
                  ht == NS_UNCONSTRAINEDSIZE
                      ? 0
                      : ht + ComputedPhysicalBorderPadding().TopBottom());
  }

 private:
  // the available width in which to reflow the frame. The space
  // represents the amount of room for the frame's margin, border,
  // padding, and content area. The frame size you choose should fit
  // within the available width.
  nscoord mAvailableWidth;

  // A value of NS_UNCONSTRAINEDSIZE for the available height means
  // you can choose whatever size you want. In galley mode the
  // available height is always NS_UNCONSTRAINEDSIZE, and only page
  // mode or multi-column layout involves a constrained height. The
  // element's the top border and padding, and content, must fit. If the
  // element is complete after reflow then its bottom border, padding
  // and margin (and similar for its complete ancestors) will need to
  // fit in this height.
  nscoord mAvailableHeight;

  // The computed width specifies the frame's content area width, and it does
  // not apply to inline non-replaced elements
  //
  // For replaced inline frames, a value of NS_INTRINSICSIZE means you should
  // use your intrinsic width as the computed width
  //
  // For block-level frames, the computed width is based on the width of the
  // containing block, the margin/border/padding areas, and the min/max width.
  MOZ_INIT_OUTSIDE_CTOR
  nscoord mComputedWidth;

  // The computed height specifies the frame's content height, and it does
  // not apply to inline non-replaced elements
  //
  // For replaced inline frames, a value of NS_INTRINSICSIZE means you should
  // use your intrinsic height as the computed height
  //
  // For non-replaced block-level frames in the flow and floated, a value of
  // NS_AUTOHEIGHT means you choose a height to shrink wrap around the normal
  // flow child frames. The height must be within the limit of the min/max
  // height if there is such a limit
  //
  // For replaced block-level frames, a value of NS_INTRINSICSIZE
  // means you use your intrinsic height as the computed height
  MOZ_INIT_OUTSIDE_CTOR
  nscoord mComputedHeight;

  // Computed values for 'left/top/right/bottom' offsets. Only applies to
  // 'positioned' elements. These are PHYSICAL coordinates (for now).
  nsMargin mComputedOffsets;

  // Computed values for 'min-width/max-width' and 'min-height/max-height'
  // XXXldb The width ones here should go; they should be needed only
  // internally.
  MOZ_INIT_OUTSIDE_CTOR
  nscoord mComputedMinWidth, mComputedMaxWidth;
  MOZ_INIT_OUTSIDE_CTOR
  nscoord mComputedMinHeight, mComputedMaxHeight;

 public:
  // Our saved containing block dimensions.
  MOZ_INIT_OUTSIDE_CTOR
  LogicalSize mContainingBlockSize;

  // Cached pointers to the various style structs used during intialization
  MOZ_INIT_OUTSIDE_CTOR
  const nsStyleDisplay* mStyleDisplay;
  MOZ_INIT_OUTSIDE_CTOR
  const nsStyleVisibility* mStyleVisibility;
  MOZ_INIT_OUTSIDE_CTOR
  const nsStylePosition* mStylePosition;
  MOZ_INIT_OUTSIDE_CTOR
  const nsStyleBorder* mStyleBorder;
  MOZ_INIT_OUTSIDE_CTOR
  const nsStyleMargin* mStyleMargin;
  MOZ_INIT_OUTSIDE_CTOR
  const nsStylePadding* mStylePadding;
  MOZ_INIT_OUTSIDE_CTOR
  const nsStyleText* mStyleText;

  bool IsFloating() const;

  mozilla::StyleDisplay GetDisplay() const;

  // a frame (e.g. nsTableCellFrame) which may need to generate a special
  // reflow for percent bsize calculations
  nsIPercentBSizeObserver* mPercentBSizeObserver;

  // CSS margin collapsing sometimes requires us to reflow
  // optimistically assuming that margins collapse to see if clearance
  // is required. When we discover that clearance is required, we
  // store the frame in which clearance was discovered to the location
  // requested here.
  nsIFrame** mDiscoveredClearance;

  ReflowInputFlags mFlags;

  // This value keeps track of how deeply nested a given reflow state
  // is from the top of the frame tree.
  int16_t mReflowDepth;

  // Logical and physical accessors for the resize flags. All users should go
  // via these accessors, so that in due course we can change the storage from
  // physical to logical.
  bool IsHResize() const {
    return mWritingMode.IsVertical() ? mFlags.mIsBResize : mFlags.mIsIResize;
  }
  bool IsVResize() const {
    return mWritingMode.IsVertical() ? mFlags.mIsIResize : mFlags.mIsBResize;
  }
  bool IsIResize() const { return mFlags.mIsIResize; }
  bool IsBResize() const { return mFlags.mIsBResize; }
  bool IsBResizeForWM(mozilla::WritingMode aWM) const {
    return aWM.IsOrthogonalTo(mWritingMode) ? mFlags.mIsIResize
                                            : mFlags.mIsBResize;
  }
  void SetHResize(bool aValue) {
    if (mWritingMode.IsVertical()) {
      mFlags.mIsBResize = aValue;
    } else {
      mFlags.mIsIResize = aValue;
    }
  }
  void SetVResize(bool aValue) {
    if (mWritingMode.IsVertical()) {
      mFlags.mIsIResize = aValue;
    } else {
      mFlags.mIsBResize = aValue;
    }
  }
  void SetIResize(bool aValue) { mFlags.mIsIResize = aValue; }
  void SetBResize(bool aValue) { mFlags.mIsBResize = aValue; }

  // Note: The copy constructor is written by the compiler automatically. You
  // can use that and then override specific values if you want, or you can
  // call Init as desired...

  /**
   * Initialize a ROOT reflow state.
   *
   * @param aPresContext Must be equal to aFrame->PresContext().
   * @param aFrame The frame for whose reflow state is being constructed.
   * @param aRenderingContext The rendering context to be used for measurements.
   * @param aAvailableSpace See comments for availableHeight and availableWidth
   *        members.
   * @param aFlags A set of flags used for additional boolean parameters (see
   *        below).
   */
  ReflowInput(nsPresContext* aPresContext, nsIFrame* aFrame,
              gfxContext* aRenderingContext,
              const mozilla::LogicalSize& aAvailableSpace, uint32_t aFlags = 0);

  /**
   * Initialize a reflow state for a child frame's reflow. Some parts of the
   * state are copied from the parent's reflow state. The remainder is computed.
   *
   * @param aPresContext Must be equal to aFrame->PresContext().
   * @param aParentReflowInput A reference to an ReflowInput object that
   *        is to be the parent of this object.
   * @param aFrame The frame for whose reflow state is being constructed.
   * @param aAvailableSpace See comments for availableHeight and availableWidth
   *        members.
   * @param aContainingBlockSize An optional size, in app units, specifying
   *        the containing block size to use instead of the default which is
   *        to use the aAvailableSpace.
   * @param aFlags A set of flags used for additional boolean parameters (see
   *        below).
   */
  ReflowInput(nsPresContext* aPresContext,
              const ReflowInput& aParentReflowInput, nsIFrame* aFrame,
              const mozilla::LogicalSize& aAvailableSpace,
              const mozilla::LogicalSize* aContainingBlockSize = nullptr,
              uint32_t aFlags = 0);

  // Values for |aFlags| passed to constructor
  enum {
    // Indicates that the parent of this reflow state is "fake" (see
    // mDummyParentReflowInput in mFlags).
    DUMMY_PARENT_REFLOW_STATE = (1 << 0),

    // Indicates that the calling function will initialize the reflow state, and
    // that the constructor should not call Init().
    CALLER_WILL_INIT = (1 << 1),

    // The caller wants shrink-wrap behavior (i.e. ComputeSizeFlags::eShrinkWrap
    // will be passed to ComputeSize()).
    COMPUTE_SIZE_SHRINK_WRAP = (1 << 2),

    // The caller wants 'auto' bsize behavior (ComputeSizeFlags::eUseAutoBSize
    // will be be passed to ComputeSize()).
    COMPUTE_SIZE_USE_AUTO_BSIZE = (1 << 3),

    // The caller wants the abs.pos. static-position resolved at the origin of
    // the containing block, i.e. at LogicalPoint(0, 0). (Note that this
    // doesn't necessarily mean that (0, 0) is the *correct* static position
    // for the frame in question.)
    STATIC_POS_IS_CB_ORIGIN = (1 << 4),

    // Pass ComputeSizeFlags::eIClampMarginBoxMinSize to ComputeSize().
    I_CLAMP_MARGIN_BOX_MIN_SIZE = (1 << 5),

    // Pass ComputeSizeFlags::eBClampMarginBoxMinSize to ComputeSize().
    B_CLAMP_MARGIN_BOX_MIN_SIZE = (1 << 6),

    // Pass ComputeSizeFlags::eIApplyAutoMinSize to ComputeSize().
    I_APPLY_AUTO_MIN_SIZE = (1 << 7),
  };

  // This method initializes various data members. It is automatically
  // called by the various constructors
  void Init(nsPresContext* aPresContext,
            const mozilla::LogicalSize* aContainingBlockSize = nullptr,
            const nsMargin* aBorder = nullptr,
            const nsMargin* aPadding = nullptr);

  /**
   * Find the content isize of our containing block for the given writing mode,
   * which need not be the same as the reflow state's mode.
   */
  nscoord GetContainingBlockContentISize(
      mozilla::WritingMode aWritingMode) const;

  /**
   * Calculate the used line-height property. The return value will be >= 0.
   */
  nscoord CalcLineHeight() const;

  /**
   * Same as CalcLineHeight() above, but doesn't need a reflow state.
   *
   * @param aBlockBSize The computed block size of the content rect of the block
   *                     that the line should fill.
   *                     Only used with line-height:-moz-block-height.
   *                     NS_AUTOHEIGHT results in a normal line-height for
   *                     line-height:-moz-block-height.
   * @param aFontSizeInflation The result of the appropriate
   *                           nsLayoutUtils::FontSizeInflationFor call,
   *                           or 1.0 if during intrinsic size
   *                           calculation.
   */
  static nscoord CalcLineHeight(nsIContent* aContent,
                                nsStyleContext* aStyleContext,
                                nscoord aBlockBSize, float aFontSizeInflation);

  mozilla::LogicalSize ComputeContainingBlockRectangle(
      nsPresContext* aPresContext, const ReflowInput* aContainingBlockRI) const;

  /**
   * Apply the mComputed(Min/Max)Width constraints to the content
   * size computed so far.
   */
  nscoord ApplyMinMaxWidth(nscoord aWidth) const {
    if (NS_UNCONSTRAINEDSIZE != ComputedMaxWidth()) {
      aWidth = std::min(aWidth, ComputedMaxWidth());
    }
    return std::max(aWidth, ComputedMinWidth());
  }

  /**
   * Apply the mComputed(Min/Max)ISize constraints to the content
   * size computed so far.
   */
  nscoord ApplyMinMaxISize(nscoord aISize) const {
    if (NS_UNCONSTRAINEDSIZE != ComputedMaxISize()) {
      aISize = std::min(aISize, ComputedMaxISize());
    }
    return std::max(aISize, ComputedMinISize());
  }

  /**
   * Apply the mComputed(Min/Max)Height constraints to the content
   * size computed so far.
   *
   * @param aHeight The height that we've computed an to which we want to apply
   *        min/max constraints.
   * @param aConsumed The amount of the computed height that was consumed by
   *        our prev-in-flows.
   */
  nscoord ApplyMinMaxHeight(nscoord aHeight, nscoord aConsumed = 0) const {
    aHeight += aConsumed;

    if (NS_UNCONSTRAINEDSIZE != ComputedMaxHeight()) {
      aHeight = std::min(aHeight, ComputedMaxHeight());
    }

    if (NS_UNCONSTRAINEDSIZE != ComputedMinHeight()) {
      aHeight = std::max(aHeight, ComputedMinHeight());
    }

    return aHeight - aConsumed;
  }

  /**
   * Apply the mComputed(Min/Max)BSize constraints to the content
   * size computed so far.
   *
   * @param aBSize The block-size that we've computed an to which we want to
   * apply min/max constraints.
   * @param aConsumed The amount of the computed block-size that was consumed by
   *        our prev-in-flows.
   */
  nscoord ApplyMinMaxBSize(nscoord aBSize, nscoord aConsumed = 0) const {
    aBSize += aConsumed;

    if (NS_UNCONSTRAINEDSIZE != ComputedMaxBSize()) {
      aBSize = std::min(aBSize, ComputedMaxBSize());
    }

    if (NS_UNCONSTRAINEDSIZE != ComputedMinBSize()) {
      aBSize = std::max(aBSize, ComputedMinBSize());
    }

    return aBSize - aConsumed;
  }

  bool ShouldReflowAllKids() const {
    // Note that we could make a stronger optimization for IsBResize if
    // we use it in a ShouldReflowChild test that replaces the current
    // checks of NS_FRAME_IS_DIRTY | NS_FRAME_HAS_DIRTY_CHILDREN, if it
    // were tested there along with NS_FRAME_CONTAINS_RELATIVE_BSIZE.
    // This would need to be combined with a slight change in which
    // frames NS_FRAME_CONTAINS_RELATIVE_BSIZE is marked on.
    return (mFrame->GetStateBits() & NS_FRAME_IS_DIRTY) || IsIResize() ||
           (IsBResize() &&
            (mFrame->GetStateBits() & NS_FRAME_CONTAINS_RELATIVE_BSIZE));
  }

  // This method doesn't apply min/max computed widths to the value passed in.
  void SetComputedWidth(nscoord aComputedWidth);

  // This method doesn't apply min/max computed heights to the value passed in.
  void SetComputedHeight(nscoord aComputedHeight);

  void SetComputedISize(nscoord aComputedISize) {
    if (mWritingMode.IsVertical()) {
      SetComputedHeight(aComputedISize);
    } else {
      SetComputedWidth(aComputedISize);
    }
  }

  void SetComputedBSize(nscoord aComputedBSize) {
    if (mWritingMode.IsVertical()) {
      SetComputedWidth(aComputedBSize);
    } else {
      SetComputedHeight(aComputedBSize);
    }
  }

  void SetComputedBSizeWithoutResettingResizeFlags(nscoord aComputedBSize) {
    // Viewport frames reset the computed block size on a copy of their reflow
    // state when reflowing fixed-pos kids.  In that case we actually don't
    // want to mess with the resize flags, because comparing the frame's rect
    // to the munged computed isize is pointless.
    ComputedBSize() = aComputedBSize;
  }

  void SetTruncated(const ReflowOutput& aMetrics,
                    nsReflowStatus* aStatus) const;

  bool WillReflowAgainForClearance() const {
    return mDiscoveredClearance && *mDiscoveredClearance;
  }

  // Compute the offsets for a relative position element
  static void ComputeRelativeOffsets(mozilla::WritingMode aWM, nsIFrame* aFrame,
                                     const mozilla::LogicalSize& aCBSize,
                                     nsMargin& aComputedOffsets);

  // If a relatively positioned element, adjust the position appropriately.
  static void ApplyRelativePositioning(nsIFrame* aFrame,
                                       const nsMargin& aComputedOffsets,
                                       nsPoint* aPosition);

  void ApplyRelativePositioning(nsPoint* aPosition) const {
    ApplyRelativePositioning(mFrame, ComputedPhysicalOffsets(), aPosition);
  }

  static void ApplyRelativePositioning(
      nsIFrame* aFrame, mozilla::WritingMode aWritingMode,
      const mozilla::LogicalMargin& aComputedOffsets,
      mozilla::LogicalPoint* aPosition, const nsSize& aContainerSize) {
    // Subtract the size of the frame from the container size that we
    // use for converting between the logical and physical origins of
    // the frame. This accounts for the fact that logical origins in RTL
    // coordinate systems are at the top right of the frame instead of
    // the top left.
    nsSize frameSize = aFrame->GetSize();
    nsPoint pos =
        aPosition->GetPhysicalPoint(aWritingMode, aContainerSize - frameSize);
    ApplyRelativePositioning(
        aFrame, aComputedOffsets.GetPhysicalMargin(aWritingMode), &pos);
    *aPosition =
        mozilla::LogicalPoint(aWritingMode, pos, aContainerSize - frameSize);
  }

  void ApplyRelativePositioning(mozilla::LogicalPoint* aPosition,
                                const nsSize& aContainerSize) const {
    ApplyRelativePositioning(mFrame, mWritingMode, ComputedLogicalOffsets(),
                             aPosition, aContainerSize);
  }

#ifdef DEBUG
  // Reflow trace methods.  Defined in nsFrame.cpp so they have access
  // to the display-reflow infrastructure.
  static void* DisplayInitConstraintsEnter(nsIFrame* aFrame,
                                           ReflowInput* aState,
                                           nscoord aCBISize, nscoord aCBBSize,
                                           const nsMargin* aBorder,
                                           const nsMargin* aPadding);
  static void DisplayInitConstraintsExit(nsIFrame* aFrame, ReflowInput* aState,
                                         void* aValue);
  static void* DisplayInitFrameTypeEnter(nsIFrame* aFrame, ReflowInput* aState);
  static void DisplayInitFrameTypeExit(nsIFrame* aFrame, ReflowInput* aState,
                                       void* aValue);
#endif

 protected:
  void InitFrameType(LayoutFrameType aFrameType);
  void InitCBReflowInput();
  void InitResizeFlags(nsPresContext* aPresContext,
                       mozilla::LayoutFrameType aFrameType);

  void InitConstraints(nsPresContext* aPresContext,
                       const mozilla::LogicalSize& aContainingBlockSize,
                       const nsMargin* aBorder, const nsMargin* aPadding,
                       mozilla::LayoutFrameType aFrameType);

  // Returns the nearest containing block or block frame (whether or not
  // it is a containing block) for the specified frame.  Also returns
  // the inline-start edge and logical size of the containing block's
  // content area.
  // These are returned in the coordinate space of the containing block.
  nsIFrame* GetHypotheticalBoxContainer(nsIFrame* aFrame,
                                        nscoord& aCBIStartEdge,
                                        mozilla::LogicalSize& aCBSize) const;

  // Calculate a "hypothetical box" position where the placeholder frame
  // (for a position:fixed/absolute element) would have been placed if it were
  // positioned statically. The hypothetical box position will have a writing
  // mode with the same block direction as the absolute containing block
  // (aReflowInput->frame), though it may differ in inline direction.
  void CalculateHypotheticalPosition(nsPresContext* aPresContext,
                                     nsPlaceholderFrame* aPlaceholderFrame,
                                     const ReflowInput* aReflowInput,
                                     nsHypotheticalPosition& aHypotheticalPos,
                                     mozilla::LayoutFrameType aFrameType) const;

  void InitAbsoluteConstraints(nsPresContext* aPresContext,
                               const ReflowInput* aReflowInput,
                               const mozilla::LogicalSize& aContainingBlockSize,
                               mozilla::LayoutFrameType aFrameType);

  // Calculates the computed values for the 'min-Width', 'max-Width',
  // 'min-Height', and 'max-Height' properties, and stores them in the assorted
  // data members
  void ComputeMinMaxValues(const mozilla::LogicalSize& aContainingBlockSize);

  // aInsideBoxSizing returns the part of the padding, border, and margin
  // in the aAxis dimension that goes inside the edge given by box-sizing;
  // aOutsideBoxSizing returns the rest.
  void CalculateBorderPaddingMargin(mozilla::LogicalAxis aAxis,
                                    nscoord aContainingBlockSize,
                                    nscoord* aInsideBoxSizing,
                                    nscoord* aOutsideBoxSizing) const;

  void CalculateBlockSideMargins(LayoutFrameType aFrameType);
};

}  // namespace mozilla

#endif  // mozilla_ReflowInput_h