DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (1aeaa33a64f9)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef js_ProfilingStack_h
#define js_ProfilingStack_h

#include <algorithm>
#include <stdint.h>

#include "jstypes.h"

#include "js/TypeDecls.h"
#include "js/Utility.h"

class JSTracer;
class PseudoStack;

// This file defines the classes PseudoStack and ProfileEntry.
// The PseudoStack manages an array of ProfileEntries.
// Usage:
//
//  PseudoStack* pseudoStack = ...;
//
//  // For CPP stack frames:
//  pseudoStack->pushCppFrame(...);
//  // Execute some code. When finished, pop the entry:
//  pseudoStack->pop();
//
//  // For JS stack frames:
//  pseudoStack->pushJSFrame(...);
//  // Execute some code. When finished, pop the entry:
//  pseudoStack->pop();
//
//
// Concurrency considerations
//
// A thread's pseudo stack (and the entries inside it) is only modified by
// that thread. However, the pseudo stack can be *read* by a different thread,
// the sampler thread: Whenever the profiler wants to sample a given thread A,
// the following happens:
//  (1) Thread A is suspended.
//  (2) The sampler thread (thread S) reads the PseudoStack of thread A,
//      including all ProfileEntries that are currently in that stack
//      (pseudoStack->entries[0..pseudoStack->stackSize()]).
//  (3) Thread A is resumed.
//
// Thread suspension is achieved using platform-specific APIs; refer to each
// platform's Sampler::SuspendAndSampleAndResumeThread implementation in
// platform-*.cpp for details.
//
// When the thread is suspended, the values in pseudoStack->stackPointer and in
// the entry range pseudoStack->entries[0..pseudoStack->stackPointer] need to
// be in a consistent state, so that thread S does not read partially-
// constructed profile entries. More specifically, we have two requirements:
//  (1) When adding a new entry at the top of the stack, its ProfileEntry data
//      needs to be put in place *before* the stackPointer is incremented, and
//      the compiler + CPU need to know that this order matters.
//  (2) When popping an entry from the stack and then preparing the
//      ProfileEntry data for the next frame that is about to be pushed, the
//      decrement of the stackPointer in pop() needs to happen *before* the
//      ProfileEntry for the new frame is being popuplated, and the compiler +
//      CPU need to know that this order matters.
//
// We can express the relevance of these orderings in multiple ways.
// Option A is to make stackPointer an atomic with SequentiallyConsistent
// memory ordering. This would ensure that no writes in thread A would be
// reordered across any writes to stackPointer, which satisfies requirements
// (1) and (2) at the same time. Option A is the simplest.
// Option B is to use ReleaseAcquire memory ordering both for writes to
// stackPointer *and* for writes to ProfileEntry fields. Release-stores ensure
// that all writes that happened *before this write in program order* are not
// reordered to happen after this write. ReleaseAcquire ordering places no
// requirements on the ordering of writes that happen *after* this write in
// program order.
// Using release-stores for writes to stackPointer expresses requirement (1),
// and using release-stores for writes to the ProfileEntry fields expresses
// requirement (2).
//
// Option B is more complicated than option A, but has much better performance
// on x86/64: In a microbenchmark run on a Macbook Pro from 2017, switching
// from option A to option B reduced the overhead of pushing+popping a
// ProfileEntry by 10 nanoseconds.
// On x86/64, release-stores require no explicit hardware barriers or lock
// instructions.
// On ARM/64, option B may be slower than option A, because the compiler will
// generate hardware barriers for every single release-store instead of just
// for the writes to stackPointer. However, the actual performance impact of
// this has not yet been measured on ARM, so we're currently using option B
// everywhere. This is something that we may want to change in the future once
// we've done measurements.

namespace js {

// A call stack can be specified to the JS engine such that all JS entry/exits
// to functions push/pop an entry to/from the specified stack.
//
// For more detailed information, see vm/GeckoProfiler.h.
//
class ProfileEntry {
  // A ProfileEntry represents either a C++ profile entry or a JS one.

  // WARNING WARNING WARNING
  //
  // All the fields below are Atomic<...,ReleaseAcquire>. This is needed so
  // that writes to these fields are release-writes, which ensures that
  // earlier writes in this thread don't get reordered after the writes to
  // these fields. In particular, the decrement of the stack pointer in
  // PseudoStack::pop() is a write that *must* happen before the values in
  // this ProfileEntry are changed. Otherwise, the sampler thread might see
  // an inconsistent state where the stack pointer still points to a
  // ProfileEntry which has already been popped off the stack and whose
  // fields have now been partially repopulated with new values.
  // See the "Concurrency considerations" paragraph at the top of this file
  // for more details.

  // Descriptive label for this entry. Must be a static string! Can be an
  // empty string, but not a null pointer.
  mozilla::Atomic<const char*, mozilla::ReleaseAcquire> label_;

  // An additional descriptive string of this entry which is combined with
  // |label_| in profiler output. Need not be (and usually isn't) static. Can
  // be null.
  mozilla::Atomic<const char*, mozilla::ReleaseAcquire> dynamicString_;

  // Stack pointer for non-JS entries, the script pointer otherwise.
  mozilla::Atomic<void*, mozilla::ReleaseAcquire> spOrScript;

  // Line number for non-JS entries, the bytecode offset otherwise.
  mozilla::Atomic<int32_t, mozilla::ReleaseAcquire> lineOrPcOffset;

  // Bits 0...1 hold the Kind. Bits 2...3 are unused. Bits 4...12 hold the
  // Category.
  mozilla::Atomic<uint32_t, mozilla::ReleaseAcquire> kindAndCategory_;

  static int32_t pcToOffset(JSScript* aScript, jsbytecode* aPc);

 public:
  enum class Kind : uint32_t {
    // A normal C++ frame.
    CPP_NORMAL = 0,

    // A special C++ frame indicating the start of a run of JS pseudostack
    // entries. CPP_MARKER_FOR_JS frames are ignored, except for the sp
    // field.
    CPP_MARKER_FOR_JS = 1,

    // A normal JS frame.
    JS_NORMAL = 2,

    // An interpreter JS frame that has OSR-ed into baseline. JS_NORMAL
    // frames can be converted to JS_OSR and back. JS_OSR frames are
    // ignored.
    JS_OSR = 3,

    KIND_MASK = 0x3,
  };

  // Keep these in sync with devtools/client/performance/modules/categories.js
  enum class Category : uint32_t {
    OTHER = 1u << 4,
    CSS = 1u << 5,
    JS = 1u << 6,
    GC = 1u << 7,
    CC = 1u << 8,
    NETWORK = 1u << 9,
    GRAPHICS = 1u << 10,
    STORAGE = 1u << 11,
    EVENTS = 1u << 12,

    FIRST = OTHER,
    LAST = EVENTS,

    CATEGORY_MASK = ~uint32_t(Kind::KIND_MASK),
  };

  static_assert((uint32_t(Category::FIRST) & uint32_t(Kind::KIND_MASK)) == 0,
                "Category overlaps with Kind");

  bool isCpp() const {
    Kind k = kind();
    return k == Kind::CPP_NORMAL || k == Kind::CPP_MARKER_FOR_JS;
  }

  bool isJs() const {
    Kind k = kind();
    return k == Kind::JS_NORMAL || k == Kind::JS_OSR;
  }

  void setLabel(const char* aLabel) { label_ = aLabel; }
  const char* label() const { return label_; }

  const char* dynamicString() const { return dynamicString_; }

  void initCppFrame(const char* aLabel, const char* aDynamicString, void* sp,
                    uint32_t aLine, Kind aKind, Category aCategory) {
    label_ = aLabel;
    dynamicString_ = aDynamicString;
    spOrScript = sp;
    lineOrPcOffset = static_cast<int32_t>(aLine);
    kindAndCategory_ = uint32_t(aKind) | uint32_t(aCategory);
    MOZ_ASSERT(isCpp());
  }

  void initJsFrame(const char* aLabel, const char* aDynamicString,
                   JSScript* aScript, jsbytecode* aPc) {
    label_ = aLabel;
    dynamicString_ = aDynamicString;
    spOrScript = aScript;
    lineOrPcOffset = pcToOffset(aScript, aPc);
    kindAndCategory_ = uint32_t(Kind::JS_NORMAL) | uint32_t(Category::JS);
    MOZ_ASSERT(isJs());
  }

  void setKind(Kind aKind) {
    kindAndCategory_ = uint32_t(aKind) | uint32_t(category());
  }

  Kind kind() const {
    return Kind(kindAndCategory_ & uint32_t(Kind::KIND_MASK));
  }

  Category category() const {
    return Category(kindAndCategory_ & uint32_t(Category::CATEGORY_MASK));
  }

  void* stackAddress() const {
    MOZ_ASSERT(!isJs());
    return spOrScript;
  }

  JS_PUBLIC_API JSScript* script() const;

  uint32_t line() const {
    MOZ_ASSERT(!isJs());
    return static_cast<uint32_t>(lineOrPcOffset);
  }

  // Note that the pointer returned might be invalid.
  JSScript* rawScript() const {
    MOZ_ASSERT(isJs());
    void* script = spOrScript;
    return static_cast<JSScript*>(script);
  }

  // We can't know the layout of JSScript, so look in vm/GeckoProfiler.cpp.
  JS_FRIEND_API jsbytecode* pc() const;
  void setPC(jsbytecode* pc);

  void trace(JSTracer* trc);

  // The offset of a pc into a script's code can actually be 0, so to
  // signify a nullptr pc, use a -1 index. This is checked against in
  // pc() and setPC() to set/get the right pc.
  static const int32_t NullPCOffset = -1;
};

JS_FRIEND_API void SetContextProfilingStack(JSContext* cx,
                                            PseudoStack* pseudoStack);

// GetContextProfilingStack also exists, but it's defined in RootingAPI.h.

JS_FRIEND_API void EnableContextProfilingStack(JSContext* cx, bool enabled);

JS_FRIEND_API void RegisterContextProfilingEventMarker(JSContext* cx,
                                                       void (*fn)(const char*));

}  // namespace js

// Each thread has its own PseudoStack. That thread modifies the PseudoStack,
// pushing and popping elements as necessary.
//
// The PseudoStack is also read periodically by the profiler's sampler thread.
// This happens only when the thread that owns the PseudoStack is suspended. So
// there are no genuine parallel accesses.
//
// However, it is possible for pushing/popping to be interrupted by a periodic
// sample. Because of this, we need pushing/popping to be effectively atomic.
//
// - When pushing a new entry, we increment the stack pointer -- making the new
//   entry visible to the sampler thread -- only after the new entry has been
//   fully written. The stack pointer is Atomic<uint32_t,ReleaseAcquire>, so
//   the increment is a release-store, which ensures that this store is not
//   reordered before the writes of the entry.
//
// - When popping an old entry, the only operation is the decrementing of the
//   stack pointer, which is obviously atomic.
//
class PseudoStack final {
 public:
  PseudoStack() : stackPointer(0) {}

  ~PseudoStack() {
    // The label macros keep a reference to the PseudoStack to avoid a TLS
    // access. If these are somehow not all cleared we will get a
    // use-after-free so better to crash now.
    MOZ_RELEASE_ASSERT(stackPointer == 0);
  }

  void pushCppFrame(const char* label, const char* dynamicString, void* sp,
                    uint32_t line, js::ProfileEntry::Kind kind,
                    js::ProfileEntry::Category category) {
    if (stackPointer < MaxEntries) {
      entries[stackPointer].initCppFrame(label, dynamicString, sp, line, kind,
                                         category);
    }

    // This must happen at the end! The compiler will not reorder this
    // update because stackPointer is Atomic<..., ReleaseAcquire>, so any
    // the writes above will not be reordered below the stackPointer store.
    // Do the read and the write as two separate statements, in order to
    // make it clear that we don't need an atomic increment, which would be
    // more expensive on x86 than the separate operations done here.
    // This thread is the only one that ever changes the value of
    // stackPointer.
    uint32_t oldStackPointer = stackPointer;
    stackPointer = oldStackPointer + 1;
  }

  void pushJsFrame(const char* label, const char* dynamicString,
                   JSScript* script, jsbytecode* pc) {
    if (stackPointer < MaxEntries) {
      entries[stackPointer].initJsFrame(label, dynamicString, script, pc);
    }

    // This must happen at the end! The compiler will not reorder this
    // update because stackPointer is Atomic<..., ReleaseAcquire>, which
    // makes this assignment a release-store, so the writes above will not
    // be reordered to occur after the stackPointer store.
    // Do the read and the write as two separate statements, in order to
    // make it clear that we don't need an atomic increment, which would be
    // more expensive on x86 than the separate operations done here.
    // This thread is the only one that ever changes the value of
    // stackPointer.
    uint32_t oldStackPointer = stackPointer;
    stackPointer = oldStackPointer + 1;
  }

  void pop() {
    MOZ_ASSERT(stackPointer > 0);
    // Do the read and the write as two separate statements, in order to
    // make it clear that we don't need an atomic decrement, which would be
    // more expensive on x86 than the separate operations done here.
    // This thread is the only one that ever changes the value of
    // stackPointer.
    uint32_t oldStackPointer = stackPointer;
    stackPointer = oldStackPointer - 1;
  }

  uint32_t stackSize() const {
    return std::min(uint32_t(stackPointer), uint32_t(MaxEntries));
  }

 private:
  // No copying.
  PseudoStack(const PseudoStack&) = delete;
  void operator=(const PseudoStack&) = delete;

 public:
  static const uint32_t MaxEntries = 1024;

  // The stack entries.
  js::ProfileEntry entries[MaxEntries];

  // This may exceed MaxEntries, so instead use the stackSize() method to
  // determine the number of valid samples in entries. When this is less
  // than MaxEntries, it refers to the first free entry past the top of the
  // in-use stack (i.e. entries[stackPointer - 1] is the top stack entry).
  //
  // WARNING WARNING WARNING
  //
  // This is an atomic variable that uses ReleaseAcquire memory ordering.
  // See the "Concurrency considerations" paragraph at the top of this file
  // for more details.
  mozilla::Atomic<uint32_t, mozilla::ReleaseAcquire> stackPointer;
};

namespace js {

class AutoGeckoProfilerEntry;
class GeckoProfilerEntryMarker;
class GeckoProfilerBaselineOSRMarker;

class GeckoProfilerThread {
  friend class AutoGeckoProfilerEntry;
  friend class GeckoProfilerEntryMarker;
  friend class GeckoProfilerBaselineOSRMarker;

  PseudoStack* pseudoStack_;

 public:
  GeckoProfilerThread();

  uint32_t stackPointer() {
    MOZ_ASSERT(installed());
    return pseudoStack_->stackPointer;
  }
  ProfileEntry* stack() { return pseudoStack_->entries; }
  PseudoStack* getPseudoStack() { return pseudoStack_; }

  /* management of whether instrumentation is on or off */
  bool installed() { return pseudoStack_ != nullptr; }

  void setProfilingStack(PseudoStack* pseudoStack);
  void trace(JSTracer* trc);

  /*
   * Functions which are the actual instrumentation to track run information
   *
   *   - enter: a function has started to execute
   *   - updatePC: updates the pc information about where a function
   *               is currently executing
   *   - exit: this function has ceased execution, and no further
   *           entries/exits will be made
   */
  bool enter(JSContext* cx, JSScript* script, JSFunction* maybeFun);
  void exit(JSScript* script, JSFunction* maybeFun);
  inline void updatePC(JSContext* cx, JSScript* script, jsbytecode* pc);
};

}  // namespace js

#endif /* js_ProfilingStack_h */