DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (1aeaa33a64f9)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/* ECMAScript conversion operations. */

#ifndef js_Conversions_h
#define js_Conversions_h

#include "mozilla/Casting.h"
#include "mozilla/FloatingPoint.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/TypeTraits.h"
#include "mozilla/WrappingOperations.h"

#include <math.h>

#include "jspubtd.h"

#include "js/RootingAPI.h"
#include "js/Value.h"

namespace js {

/* DO NOT CALL THIS. Use JS::ToBoolean. */
extern JS_PUBLIC_API bool ToBooleanSlow(JS::HandleValue v);

/* DO NOT CALL THIS.  Use JS::ToNumber. */
extern JS_PUBLIC_API bool ToNumberSlow(JSContext* cx, JS::HandleValue v,
                                       double* dp);

/* DO NOT CALL THIS. Use JS::ToInt8. */
extern JS_PUBLIC_API bool ToInt8Slow(JSContext* cx, JS::HandleValue v,
                                     int8_t* out);

/* DO NOT CALL THIS. Use JS::ToUint8. */
extern JS_PUBLIC_API bool ToUint8Slow(JSContext* cx, JS::HandleValue v,
                                      uint8_t* out);

/* DO NOT CALL THIS. Use JS::ToInt16. */
extern JS_PUBLIC_API bool ToInt16Slow(JSContext* cx, JS::HandleValue v,
                                      int16_t* out);

/* DO NOT CALL THIS. Use JS::ToInt32. */
extern JS_PUBLIC_API bool ToInt32Slow(JSContext* cx, JS::HandleValue v,
                                      int32_t* out);

/* DO NOT CALL THIS. Use JS::ToUint32. */
extern JS_PUBLIC_API bool ToUint32Slow(JSContext* cx, JS::HandleValue v,
                                       uint32_t* out);

/* DO NOT CALL THIS. Use JS::ToUint16. */
extern JS_PUBLIC_API bool ToUint16Slow(JSContext* cx, JS::HandleValue v,
                                       uint16_t* out);

/* DO NOT CALL THIS. Use JS::ToInt64. */
extern JS_PUBLIC_API bool ToInt64Slow(JSContext* cx, JS::HandleValue v,
                                      int64_t* out);

/* DO NOT CALL THIS. Use JS::ToUint64. */
extern JS_PUBLIC_API bool ToUint64Slow(JSContext* cx, JS::HandleValue v,
                                       uint64_t* out);

/* DO NOT CALL THIS. Use JS::ToString. */
extern JS_PUBLIC_API JSString* ToStringSlow(JSContext* cx, JS::HandleValue v);

/* DO NOT CALL THIS. Use JS::ToObject. */
extern JS_PUBLIC_API JSObject* ToObjectSlow(JSContext* cx, JS::HandleValue v,
                                            bool reportScanStack);

}  // namespace js

namespace JS {

namespace detail {

#ifdef JS_DEBUG
/**
 * Assert that we're not doing GC on cx, that we're in a request as
 * needed, and that the compartments for cx and v are correct.
 * Also check that GC would be safe at this point.
 */
extern JS_PUBLIC_API void AssertArgumentsAreSane(JSContext* cx, HandleValue v);
#else
inline void AssertArgumentsAreSane(JSContext* cx, HandleValue v) {}
#endif /* JS_DEBUG */

}  // namespace detail

/**
 * ES6 draft 20141224, 7.1.1, second algorithm.
 *
 * Most users shouldn't call this -- use JS::ToBoolean, ToNumber, or ToString
 * instead.  This will typically only be called from custom convert hooks that
 * wish to fall back to the ES6 default conversion behavior shared by most
 * objects in JS, codified as OrdinaryToPrimitive.
 */
extern JS_PUBLIC_API bool OrdinaryToPrimitive(JSContext* cx, HandleObject obj,
                                              JSType type,
                                              MutableHandleValue vp);

/* ES6 draft 20141224, 7.1.2. */
MOZ_ALWAYS_INLINE bool ToBoolean(HandleValue v) {
  if (v.isBoolean()) return v.toBoolean();
  if (v.isInt32()) return v.toInt32() != 0;
  if (v.isNullOrUndefined()) return false;
  if (v.isDouble()) {
    double d = v.toDouble();
    return !mozilla::IsNaN(d) && d != 0;
  }
  if (v.isSymbol()) return true;

  /* The slow path handles strings and objects. */
  return js::ToBooleanSlow(v);
}

/* ES6 draft 20141224, 7.1.3. */
MOZ_ALWAYS_INLINE bool ToNumber(JSContext* cx, HandleValue v, double* out) {
  detail::AssertArgumentsAreSane(cx, v);

  if (v.isNumber()) {
    *out = v.toNumber();
    return true;
  }
  return js::ToNumberSlow(cx, v, out);
}

/* ES6 draft 20141224, ToInteger (specialized for doubles). */
inline double ToInteger(double d) {
  if (d == 0) return d;

  if (!mozilla::IsFinite(d)) {
    if (mozilla::IsNaN(d)) return 0;
    return d;
  }

  return d < 0 ? ceil(d) : floor(d);
}

/* ES6 draft 20141224, 7.1.5. */
MOZ_ALWAYS_INLINE bool ToInt32(JSContext* cx, JS::HandleValue v, int32_t* out) {
  detail::AssertArgumentsAreSane(cx, v);

  if (v.isInt32()) {
    *out = v.toInt32();
    return true;
  }
  return js::ToInt32Slow(cx, v, out);
}

/* ES6 draft 20141224, 7.1.6. */
MOZ_ALWAYS_INLINE bool ToUint32(JSContext* cx, HandleValue v, uint32_t* out) {
  detail::AssertArgumentsAreSane(cx, v);

  if (v.isInt32()) {
    *out = uint32_t(v.toInt32());
    return true;
  }
  return js::ToUint32Slow(cx, v, out);
}

/* ES6 draft 20141224, 7.1.7. */
MOZ_ALWAYS_INLINE bool ToInt16(JSContext* cx, JS::HandleValue v, int16_t* out) {
  detail::AssertArgumentsAreSane(cx, v);

  if (v.isInt32()) {
    *out = int16_t(v.toInt32());
    return true;
  }
  return js::ToInt16Slow(cx, v, out);
}

/* ES6 draft 20141224, 7.1.8. */
MOZ_ALWAYS_INLINE bool ToUint16(JSContext* cx, HandleValue v, uint16_t* out) {
  detail::AssertArgumentsAreSane(cx, v);

  if (v.isInt32()) {
    *out = uint16_t(v.toInt32());
    return true;
  }
  return js::ToUint16Slow(cx, v, out);
}

/* ES6 draft 20141224, 7.1.9 */
MOZ_ALWAYS_INLINE bool ToInt8(JSContext* cx, JS::HandleValue v, int8_t* out) {
  detail::AssertArgumentsAreSane(cx, v);

  if (v.isInt32()) {
    *out = int8_t(v.toInt32());
    return true;
  }
  return js::ToInt8Slow(cx, v, out);
}

/* ES6 ECMA-262, 7.1.10 */
MOZ_ALWAYS_INLINE bool ToUint8(JSContext* cx, JS::HandleValue v, uint8_t* out) {
  detail::AssertArgumentsAreSane(cx, v);

  if (v.isInt32()) {
    *out = uint8_t(v.toInt32());
    return true;
  }
  return js::ToUint8Slow(cx, v, out);
}

/*
 * Non-standard, with behavior similar to that of ToInt32, except in its
 * producing an int64_t.
 */
MOZ_ALWAYS_INLINE bool ToInt64(JSContext* cx, HandleValue v, int64_t* out) {
  detail::AssertArgumentsAreSane(cx, v);

  if (v.isInt32()) {
    *out = int64_t(v.toInt32());
    return true;
  }
  return js::ToInt64Slow(cx, v, out);
}

/*
 * Non-standard, with behavior similar to that of ToUint32, except in its
 * producing a uint64_t.
 */
MOZ_ALWAYS_INLINE bool ToUint64(JSContext* cx, HandleValue v, uint64_t* out) {
  detail::AssertArgumentsAreSane(cx, v);

  if (v.isInt32()) {
    *out = uint64_t(v.toInt32());
    return true;
  }
  return js::ToUint64Slow(cx, v, out);
}

/* ES6 draft 20141224, 7.1.12. */
MOZ_ALWAYS_INLINE JSString* ToString(JSContext* cx, HandleValue v) {
  detail::AssertArgumentsAreSane(cx, v);

  if (v.isString()) return v.toString();
  return js::ToStringSlow(cx, v);
}

/* ES6 draft 20141224, 7.1.13. */
inline JSObject* ToObject(JSContext* cx, HandleValue v) {
  detail::AssertArgumentsAreSane(cx, v);

  if (v.isObject()) return &v.toObject();
  return js::ToObjectSlow(cx, v, false);
}

namespace detail {

/*
 * Convert a double value to ResultType (an unsigned integral type) using
 * ECMAScript-style semantics (that is, in like manner to how ECMAScript's
 * ToInt32 converts to int32_t).
 *
 *   If d is infinite or NaN, return 0.
 *   Otherwise compute d2 = sign(d) * floor(abs(d)), and return the ResultType
 *   value congruent to d2 mod 2**(bit width of ResultType).
 *
 * The algorithm below is inspired by that found in
 * <http://trac.webkit.org/changeset/67825/trunk/JavaScriptCore/runtime/JSValue.cpp>
 * but has been generalized to all integer widths.
 */
template <typename ResultType>
inline ResultType ToUintWidth(double d) {
  static_assert(mozilla::IsUnsigned<ResultType>::value,
                "ResultType must be an unsigned type");

  uint64_t bits = mozilla::BitwiseCast<uint64_t>(d);
  unsigned DoubleExponentShift = mozilla::FloatingPoint<double>::kExponentShift;

  // Extract the exponent component.  (Be careful here!  It's not technically
  // the exponent in NaN, infinities, and subnormals.)
  int_fast16_t exp =
      int_fast16_t((bits & mozilla::FloatingPoint<double>::kExponentBits) >>
                   DoubleExponentShift) -
      int_fast16_t(mozilla::FloatingPoint<double>::kExponentBias);

  // If the exponent's less than zero, abs(d) < 1, so the result is 0.  (This
  // also handles subnormals.)
  if (exp < 0) return 0;

  uint_fast16_t exponent = mozilla::AssertedCast<uint_fast16_t>(exp);

  // If the exponent is greater than or equal to the bits of precision of a
  // double plus ResultType's width, the number is either infinite, NaN, or
  // too large to have lower-order bits in the congruent value.  (Example:
  // 2**84 is exactly representable as a double.  The next exact double is
  // 2**84 + 2**32.  Thus if ResultType is int32_t, an exponent >= 84 implies
  // floor(abs(d)) == 0 mod 2**32.)  Return 0 in all these cases.
  const size_t ResultWidth = CHAR_BIT * sizeof(ResultType);
  if (exponent >= DoubleExponentShift + ResultWidth) return 0;

  // The significand contains the bits that will determine the final result.
  // Shift those bits left or right, according to the exponent, to their
  // locations in the unsigned binary representation of floor(abs(d)).
  static_assert(sizeof(ResultType) <= sizeof(uint64_t),
                "Left-shifting below would lose upper bits");
  ResultType result =
      (exponent > DoubleExponentShift)
          ? ResultType(bits << (exponent - DoubleExponentShift))
          : ResultType(bits >> (DoubleExponentShift - exponent));

  // Two further complications remain.  First, |result| may contain bogus
  // sign/exponent bits.  Second, IEEE-754 numbers' significands (excluding
  // subnormals, but we already handled those) have an implicit leading 1
  // which may affect the final result.
  //
  // It may appear that there's complexity here depending on how ResultWidth
  // and DoubleExponentShift relate, but it turns out there's not.
  //
  // Assume ResultWidth < DoubleExponentShift:
  //   Only right-shifts leave bogus bits in |result|.  For this to happen,
  //   we must right-shift by > |DoubleExponentShift - ResultWidth|, implying
  //   |exponent < ResultWidth|.
  //   The implicit leading bit only matters if it appears in the final
  //   result -- if |2**exponent mod 2**ResultWidth != 0|.  This implies
  //   |exponent < ResultWidth|.
  // Otherwise assume ResultWidth >= DoubleExponentShift:
  //   Any left-shift less than |ResultWidth - DoubleExponentShift| leaves
  //   bogus bits in |result|.  This implies |exponent < ResultWidth|.  Any
  //   right-shift less than |ResultWidth| does too, which implies
  //   |DoubleExponentShift - ResultWidth < exponent|.  By assumption, then,
  //   |exponent| is negative, but we excluded that above.  So bogus bits
  //   need only |exponent < ResultWidth|.
  //   The implicit leading bit matters identically to the other case, so
  //   again, |exponent < ResultWidth|.
  if (exponent < ResultWidth) {
    ResultType implicitOne = ResultType(1) << exponent;
    result &= implicitOne - 1;  // remove bogus bits
    result += implicitOne;      // add the implicit bit
  }

  // Compute the congruent value in the signed range.
  return (bits & mozilla::FloatingPoint<double>::kSignBit) ? ~result + 1
                                                           : result;
}

template <typename ResultType>
inline ResultType ToIntWidth(double d) {
  static_assert(mozilla::IsSigned<ResultType>::value,
                "ResultType must be a signed type");

  using UnsignedResult = typename mozilla::MakeUnsigned<ResultType>::Type;
  UnsignedResult u = ToUintWidth<UnsignedResult>(d);

  return mozilla::WrapToSigned(u);
}

}  // namespace detail

/* ES5 9.5 ToInt32 (specialized for doubles). */
inline int32_t ToInt32(double d) {
// clang crashes compiling this when targeting arm:
// https://llvm.org/bugs/show_bug.cgi?id=22974
#if defined(__arm__) && defined(__GNUC__) && !defined(__clang__)
  int32_t i;
  uint32_t tmp0;
  uint32_t tmp1;
  uint32_t tmp2;
  asm(
      // We use a pure integer solution here. In the 'softfp' ABI, the argument
      // will start in r0 and r1, and VFP can't do all of the necessary ECMA
      // conversions by itself so some integer code will be required anyway. A
      // hybrid solution is faster on A9, but this pure integer solution is
      // notably faster for A8.

      // %0 is the result register, and may alias either of the %[QR]1
      //    registers.
      // %Q4 holds the lower part of the mantissa.
      // %R4 holds the sign, exponent, and the upper part of the mantissa.
      // %1, %2 and %3 are used as temporary values.

      // Extract the exponent.
      "   mov     %1, %R4, LSR #20\n"
      "   bic     %1, %1, #(1 << 11)\n"  // Clear the sign.

      // Set the implicit top bit of the mantissa. This clobbers a bit of the
      // exponent, but we have already extracted that.
      "   orr     %R4, %R4, #(1 << 20)\n"

      // Special Cases
      //   We should return zero in the following special cases:
      //    - Exponent is 0x000 - 1023: +/-0 or subnormal.
      //    - Exponent is 0x7ff - 1023: +/-INFINITY or NaN
      //      - This case is implicitly handled by the standard code path
      //        anyway, as shifting the mantissa up by the exponent will
      //        result in '0'.
      //
      // The result is composed of the mantissa, prepended with '1' and
      // bit-shifted left by the (decoded) exponent. Note that because the
      // r1[20] is the bit with value '1', r1 is effectively already shifted
      // (left) by 20 bits, and r0 is already shifted by 52 bits.

      // Adjust the exponent to remove the encoding offset. If the decoded
      // exponent is negative, quickly bail out with '0' as such values round to
      // zero anyway. This also catches +/-0 and subnormals.
      "   sub     %1, %1, #0xff\n"
      "   subs    %1, %1, #0x300\n"
      "   bmi     8f\n"

      //  %1 = (decoded) exponent >= 0
      //  %R4 = upper mantissa and sign

      // ---- Lower Mantissa ----
      "   subs    %3, %1, #52\n"  // Calculate exp-52
      "   bmi     1f\n"

      // Shift r0 left by exp-52.
      // Ensure that we don't overflow ARM's 8-bit shift operand range.
      // We need to handle anything up to an 11-bit value here as we know that
      // 52 <= exp <= 1024 (0x400). Any shift beyond 31 bits results in zero
      // anyway, so as long as we don't touch the bottom 5 bits, we can use
      // a logical OR to push long shifts into the 32 <= (exp&0xff) <= 255
      // range.
      "   bic     %2, %3, #0xff\n"
      "   orr     %3, %3, %2, LSR #3\n"
      // We can now perform a straight shift, avoiding the need for any
      // conditional instructions or extra branches.
      "   mov     %Q4, %Q4, LSL %3\n"
      "   b       2f\n"
      "1:\n"  // Shift r0 right by 52-exp.
              // We know that 0 <= exp < 52, and we can shift up to 255 bits so
              // 52-exp will always be a valid shift and we can sk%3 the range
              // check for this case.
      "   rsb     %3, %1, #52\n"
      "   mov     %Q4, %Q4, LSR %3\n"

      //  %1 = (decoded) exponent
      //  %R4 = upper mantissa and sign
      //  %Q4 = partially-converted integer

      "2:\n"
      // ---- Upper Mantissa ----
      // This is much the same as the lower mantissa, with a few different
      // boundary checks and some masking to hide the exponent & sign bit in the
      // upper word.
      // Note that the upper mantissa is pre-shifted by 20 in %R4, but we shift
      // it left more to remove the sign and exponent so it is effectively
      // pre-shifted by 31 bits.
      "   subs    %3, %1, #31\n"       // Calculate exp-31
      "   mov     %1, %R4, LSL #11\n"  // Re-use %1 as a temporary register.
      "   bmi     3f\n"

      // Shift %R4 left by exp-31.
      // Avoid overflowing the 8-bit shift range, as before.
      "   bic     %2, %3, #0xff\n"
      "   orr     %3, %3, %2, LSR #3\n"
      // Perform the shift.
      "   mov     %2, %1, LSL %3\n"
      "   b       4f\n"
      "3:\n"  // Shift r1 right by 31-exp.
              // We know that 0 <= exp < 31, and we can shift up to 255 bits so
              // 31-exp will always be a valid shift and we can skip the range
              // check for this case.
      "   rsb     %3, %3, #0\n"      // Calculate 31-exp from -(exp-31)
      "   mov     %2, %1, LSR %3\n"  // Thumb-2 can't do "LSR %3" in "orr".

      //  %Q4 = partially-converted integer (lower)
      //  %R4 = upper mantissa and sign
      //  %2 = partially-converted integer (upper)

      "4:\n"
      // Combine the converted parts.
      "   orr     %Q4, %Q4, %2\n"
      // Negate the result if we have to, and move it to %0 in the process. To
      // avoid conditionals, we can do this by inverting on %R4[31], then adding
      // %R4[31]>>31.
      "   eor     %Q4, %Q4, %R4, ASR #31\n"
      "   add     %0, %Q4, %R4, LSR #31\n"
      "   b       9f\n"
      "8:\n"
      // +/-INFINITY, +/-0, subnormals, NaNs, and anything else out-of-range
      // that will result in a conversion of '0'.
      "   mov     %0, #0\n"
      "9:\n"
      : "=r"(i), "=&r"(tmp0), "=&r"(tmp1), "=&r"(tmp2), "=&r"(d)
      : "4"(d)
      : "cc");
  return i;
#else
  return detail::ToIntWidth<int32_t>(d);
#endif
}

/* ES5 9.6 (specialized for doubles). */
inline uint32_t ToUint32(double d) { return detail::ToUintWidth<uint32_t>(d); }

/* WEBIDL 4.2.4 */
inline int8_t ToInt8(double d) { return detail::ToIntWidth<int8_t>(d); }

/* ECMA-262 7.1.10 ToUInt8() specialized for doubles. */
inline int8_t ToUint8(double d) { return detail::ToUintWidth<uint8_t>(d); }

/* WEBIDL 4.2.6 */
inline int16_t ToInt16(double d) { return detail::ToIntWidth<int16_t>(d); }

inline uint16_t ToUint16(double d) { return detail::ToUintWidth<uint16_t>(d); }

/* WEBIDL 4.2.10 */
inline int64_t ToInt64(double d) { return detail::ToIntWidth<int64_t>(d); }

/* WEBIDL 4.2.11 */
inline uint64_t ToUint64(double d) { return detail::ToUintWidth<uint64_t>(d); }

}  // namespace JS

#endif /* js_Conversions_h */