DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (e67641c2e4cc)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "gfxPattern.h"

#include "gfxUtils.h"
#include "gfxTypes.h"
#include "gfxASurface.h"
#include "gfxPlatform.h"
#include "gfx2DGlue.h"
#include "gfxGradientCache.h"
#include "mozilla/gfx/2D.h"

#include "cairo.h"

#include <vector>

using namespace mozilla::gfx;

gfxPattern::gfxPattern(const Color& aColor) : mExtend(ExtendMode::CLAMP) {
  mGfxPattern.InitColorPattern(ToDeviceColor(aColor));
}

// linear
gfxPattern::gfxPattern(gfxFloat x0, gfxFloat y0, gfxFloat x1, gfxFloat y1)
    : mExtend(ExtendMode::CLAMP) {
  mGfxPattern.InitLinearGradientPattern(Point(x0, y0), Point(x1, y1), nullptr);
}

// radial
gfxPattern::gfxPattern(gfxFloat cx0, gfxFloat cy0, gfxFloat radius0,
                       gfxFloat cx1, gfxFloat cy1, gfxFloat radius1)
    : mExtend(ExtendMode::CLAMP) {
  mGfxPattern.InitRadialGradientPattern(Point(cx0, cy0), Point(cx1, cy1),
                                        radius0, radius1, nullptr);
}

// Azure
gfxPattern::gfxPattern(SourceSurface* aSurface,
                       const Matrix& aPatternToUserSpace)
    : mPatternToUserSpace(aPatternToUserSpace), mExtend(ExtendMode::CLAMP) {
  mGfxPattern.InitSurfacePattern(
      aSurface, mExtend, Matrix(),  // matrix is overridden in GetPattern()
      mozilla::gfx::SamplingFilter::GOOD);
}

void gfxPattern::AddColorStop(gfxFloat offset, const Color& c) {
  if (mGfxPattern.GetPattern()->GetType() != PatternType::LINEAR_GRADIENT &&
      mGfxPattern.GetPattern()->GetType() != PatternType::RADIAL_GRADIENT) {
    return;
  }

  mStops = nullptr;

  GradientStop stop;
  stop.offset = offset;
  stop.color = ToDeviceColor(c);
  mStopsList.AppendElement(stop);
}

void gfxPattern::SetColorStops(GradientStops* aStops) { mStops = aStops; }

void gfxPattern::CacheColorStops(const DrawTarget* aDT) {
  mStops = gfxGradientCache::GetOrCreateGradientStops(aDT, mStopsList, mExtend);
}

void gfxPattern::SetMatrix(const gfxMatrix& aPatternToUserSpace) {
  mPatternToUserSpace = ToMatrix(aPatternToUserSpace);
  // Cairo-pattern matrices specify the conversion from DrawTarget to pattern
  // space. Azure pattern matrices specify the conversion from pattern to
  // DrawTarget space.
  mPatternToUserSpace.Invert();
}

gfxMatrix gfxPattern::GetMatrix() const {
  // invert at the higher precision of gfxMatrix
  // cause we need to convert at some point anyways
  gfxMatrix mat = ThebesMatrix(mPatternToUserSpace);
  mat.Invert();
  return mat;
}

gfxMatrix gfxPattern::GetInverseMatrix() const {
  return ThebesMatrix(mPatternToUserSpace);
}

Pattern* gfxPattern::GetPattern(const DrawTarget* aTarget,
                                const Matrix* aOriginalUserToDevice) {
  Matrix patternToUser = mPatternToUserSpace;

  if (aOriginalUserToDevice &&
      !aOriginalUserToDevice->FuzzyEquals(aTarget->GetTransform())) {
    // mPatternToUserSpace maps from pattern space to the original user space,
    // but aTarget now has a transform to a different user space.  In order for
    // the Pattern* that we return to be usable in aTarget's new user space we
    // need the Pattern's mMatrix to be the transform from pattern space to
    // aTarget's -new- user space.  That transform is equivalent to the
    // transform from pattern space to original user space (patternToUser),
    // multiplied by the transform from original user space to device space,
    // multiplied by the transform from device space to current user space.

    Matrix deviceToCurrentUser = aTarget->GetTransform();
    deviceToCurrentUser.Invert();

    patternToUser =
        patternToUser * *aOriginalUserToDevice * deviceToCurrentUser;
  }
  patternToUser.NudgeToIntegers();

  if (!mStops && !mStopsList.IsEmpty()) {
    mStops = aTarget->CreateGradientStops(mStopsList.Elements(),
                                          mStopsList.Length(), mExtend);
  }

  switch (mGfxPattern.GetPattern()->GetType()) {
    case PatternType::SURFACE: {
      SurfacePattern* surfacePattern =
          static_cast<SurfacePattern*>(mGfxPattern.GetPattern());
      surfacePattern->mMatrix = patternToUser;
      surfacePattern->mExtendMode = mExtend;
      break;
    }
    case PatternType::LINEAR_GRADIENT: {
      LinearGradientPattern* linearGradientPattern =
          static_cast<LinearGradientPattern*>(mGfxPattern.GetPattern());
      linearGradientPattern->mMatrix = patternToUser;
      linearGradientPattern->mStops = mStops;
      break;
    }
    case PatternType::RADIAL_GRADIENT: {
      RadialGradientPattern* radialGradientPattern =
          static_cast<RadialGradientPattern*>(mGfxPattern.GetPattern());
      radialGradientPattern->mMatrix = patternToUser;
      radialGradientPattern->mStops = mStops;
      break;
    }
    default:
      /* Reassure the compiler we are handling all the enum values.  */
      break;
  }

  return mGfxPattern.GetPattern();
}

void gfxPattern::SetExtend(ExtendMode aExtend) {
  mExtend = aExtend;
  mStops = nullptr;
}

bool gfxPattern::IsOpaque() {
  if (mGfxPattern.GetPattern()->GetType() != PatternType::SURFACE) {
    return false;
  }

  if (static_cast<SurfacePattern*>(mGfxPattern.GetPattern())
          ->mSurface->GetFormat() == SurfaceFormat::B8G8R8X8) {
    return true;
  }
  return false;
}

void gfxPattern::SetSamplingFilter(gfx::SamplingFilter filter) {
  if (mGfxPattern.GetPattern()->GetType() != PatternType::SURFACE) {
    return;
  }

  static_cast<SurfacePattern*>(mGfxPattern.GetPattern())->mSamplingFilter =
      filter;
}

SamplingFilter gfxPattern::SamplingFilter() const {
  if (mGfxPattern.GetPattern()->GetType() != PatternType::SURFACE) {
    return gfx::SamplingFilter::GOOD;
  }
  return static_cast<const SurfacePattern*>(mGfxPattern.GetPattern())
      ->mSamplingFilter;
}

bool gfxPattern::GetSolidColor(Color& aColorOut) {
  if (mGfxPattern.GetPattern()->GetType() == PatternType::COLOR) {
    aColorOut = static_cast<ColorPattern*>(mGfxPattern.GetPattern())->mColor;
    return true;
  }

  return false;
}