DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (1aeaa33a64f9)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
/* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */
/* glitter-paths - polygon scan converter
 *
 * Copyright (c) 2008  M Joonas Pihlaja
 * Copyright (c) 2007  David Turner
 *
 * Permission is hereby granted, free of charge, to any person
 * obtaining a copy of this software and associated documentation
 * files (the "Software"), to deal in the Software without
 * restriction, including without limitation the rights to use,
 * copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following
 * conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */
/* This is the Glitter paths scan converter incorporated into cairo.
 * The source is from commit 734c53237a867a773640bd5b64816249fa1730f8
 * of
 *
 *   http://gitweb.freedesktop.org/?p=users/joonas/glitter-paths
 */
/* Glitter-paths is a stand alone polygon rasteriser derived from
 * David Turner's reimplementation of Tor Anderssons's 15x17
 * supersampling rasteriser from the Apparition graphics library.  The
 * main new feature here is cheaply choosing per-scan line between
 * doing fully analytical coverage computation for an entire row at a
 * time vs. using a supersampling approach.
 *
 * David Turner's code can be found at
 *
 *   http://david.freetype.org/rasterizer-shootout/raster-comparison-20070813.tar.bz2
 *
 * In particular this file incorporates large parts of ftgrays_tor10.h
 * from raster-comparison-20070813.tar.bz2
 */
/* Overview
 *
 * A scan converter's basic purpose to take polygon edges and convert
 * them into an RLE compressed A8 mask.  This one works in two phases:
 * gathering edges and generating spans.
 *
 * 1) As the user feeds the scan converter edges they are vertically
 * clipped and bucketted into a _polygon_ data structure.  The edges
 * are also snapped from the user's coordinates to the subpixel grid
 * coordinates used during scan conversion.
 *
 *     user
 *      |
 *      | edges
 *      V
 *    polygon buckets
 *
 * 2) Generating spans works by performing a vertical sweep of pixel
 * rows from top to bottom and maintaining an _active_list_ of edges
 * that intersect the row.  From the active list the fill rule
 * determines which edges are the left and right edges of the start of
 * each span, and their contribution is then accumulated into a pixel
 * coverage list (_cell_list_) as coverage deltas.  Once the coverage
 * deltas of all edges are known we can form spans of constant pixel
 * coverage by summing the deltas during a traversal of the cell list.
 * At the end of a pixel row the cell list is sent to a coverage
 * blitter for rendering to some target surface.
 *
 * The pixel coverages are computed by either supersampling the row
 * and box filtering a mono rasterisation, or by computing the exact
 * coverages of edges in the active list.  The supersampling method is
 * used whenever some edge starts or stops within the row or there are
 * edge intersections in the row.
 *
 *   polygon bucket for       \
 *   current pixel row        |
 *      |                     |
 *      | activate new edges  |  Repeat GRID_Y times if we
 *      V                     \  are supersampling this row,
 *   active list              /  or just once if we're computing
 *      |                     |  analytical coverage.
 *      | coverage deltas     |
 *      V                     |
 *   pixel coverage list     /
 *      |
 *      V
 *   coverage blitter
 */
#include "cairoint.h"
#include "cairo-spans-private.h"
#include "cairo-error-private.h"

#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>

/*-------------------------------------------------------------------------
 * cairo specific config
 */
#define I static

/* Prefer cairo's status type. */
#define GLITTER_HAVE_STATUS_T 1
#define GLITTER_STATUS_SUCCESS CAIRO_STATUS_SUCCESS
#define GLITTER_STATUS_NO_MEMORY CAIRO_STATUS_NO_MEMORY
typedef cairo_status_t glitter_status_t;

/* The input coordinate scale and the rasterisation grid scales. */
#define GLITTER_INPUT_BITS CAIRO_FIXED_FRAC_BITS
#define GRID_X_BITS CAIRO_FIXED_FRAC_BITS
#define GRID_Y 15

/* Set glitter up to use a cairo span renderer to do the coverage
 * blitting. */
struct pool;
struct cell_list;

static glitter_status_t
blit_with_span_renderer(
    struct cell_list		*coverages,
    cairo_span_renderer_t	*span_renderer,
    struct pool			*span_pool,
    int				 y,
    int				 height,
    int				 xmin,
    int				 xmax);

static glitter_status_t
blit_empty_with_span_renderer (cairo_span_renderer_t *renderer, int y, int height);

#define GLITTER_BLIT_COVERAGES_ARGS \
	cairo_span_renderer_t *span_renderer, \
	struct pool *span_pool

#define GLITTER_BLIT_COVERAGES(cells, y, height,xmin, xmax) do {	\
    cairo_status_t status = blit_with_span_renderer (cells,		\
						     span_renderer,	\
						     span_pool,		\
						     y, height,		\
						     xmin, xmax);	\
    if (unlikely (status))						\
	return status;							\
} while (0)

#define GLITTER_BLIT_COVERAGES_EMPTY(y, height, xmin, xmax) do {		\
    cairo_status_t status = blit_empty_with_span_renderer (span_renderer, y, height); \
    if (unlikely (status))						\
	return status;							\
} while (0)

/*-------------------------------------------------------------------------
 * glitter-paths.h
 */

/* "Input scaled" numbers are fixed precision reals with multiplier
 * 2**GLITTER_INPUT_BITS.  Input coordinates are given to glitter as
 * pixel scaled numbers.  These get converted to the internal grid
 * scaled numbers as soon as possible. Internal overflow is possible
 * if GRID_X/Y inside glitter-paths.c is larger than
 * 1<<GLITTER_INPUT_BITS. */
#ifndef GLITTER_INPUT_BITS
#  define GLITTER_INPUT_BITS 8
#endif
#define GLITTER_INPUT_SCALE (1<<GLITTER_INPUT_BITS)
typedef int glitter_input_scaled_t;

#if !GLITTER_HAVE_STATUS_T
typedef enum {
    GLITTER_STATUS_SUCCESS = 0,
    GLITTER_STATUS_NO_MEMORY
} glitter_status_t;
#endif

#ifndef I
# define I /*static*/
#endif

/* Opaque type for scan converting. */
typedef struct glitter_scan_converter glitter_scan_converter_t;

/* Reset a scan converter to accept polygon edges and set the clip box
 * in pixels.  Allocates O(ymax-ymin) bytes of memory.	The clip box
 * is set to integer pixel coordinates xmin <= x < xmax, ymin <= y <
 * ymax. */
I glitter_status_t
glitter_scan_converter_reset(
    glitter_scan_converter_t *converter,
    int xmin, int ymin,
    int xmax, int ymax);

/* Add a new polygon edge from pixel (x1,y1) to (x2,y2) to the scan
 * converter.  The coordinates represent pixel positions scaled by
 * 2**GLITTER_PIXEL_BITS.  If this function fails then the scan
 * converter should be reset or destroyed.  Dir must be +1 or -1,
 * with the latter reversing the orientation of the edge. */
I glitter_status_t
glitter_scan_converter_add_edge (glitter_scan_converter_t *converter,
				 const cairo_edge_t *edge);

/* Render the polygon in the scan converter to the given A8 format
 * image raster.  Only the pixels accessible as pixels[y*stride+x] for
 * x,y inside the clip box are written to, where xmin <= x < xmax,
 * ymin <= y < ymax.  The image is assumed to be clear on input.
 *
 * If nonzero_fill is true then the interior of the polygon is
 * computed with the non-zero fill rule.  Otherwise the even-odd fill
 * rule is used.
 *
 * The scan converter must be reset or destroyed after this call. */
#ifndef GLITTER_BLIT_COVERAGES_ARGS
# define GLITTER_BLIT_COVERAGES_ARGS unsigned char *raster_pixels, long raster_stride
#endif
I glitter_status_t
glitter_scan_converter_render(
    glitter_scan_converter_t *converter,
    int nonzero_fill,
    GLITTER_BLIT_COVERAGES_ARGS);

/*-------------------------------------------------------------------------
 * glitter-paths.c: Implementation internal types
 */
#include <stdlib.h>
#include <string.h>
#include <limits.h>

/* All polygon coordinates are snapped onto a subsample grid. "Grid
 * scaled" numbers are fixed precision reals with multiplier GRID_X or
 * GRID_Y. */
typedef int grid_scaled_t;
typedef int grid_scaled_x_t;
typedef int grid_scaled_y_t;

/* Default x/y scale factors.
 *  You can either define GRID_X/Y_BITS to get a power-of-two scale
 *  or define GRID_X/Y separately. */
#if !defined(GRID_X) && !defined(GRID_X_BITS)
#  define GRID_X_BITS 8
#endif
#if !defined(GRID_Y) && !defined(GRID_Y_BITS)
#  define GRID_Y 15
#endif

/* Use GRID_X/Y_BITS to define GRID_X/Y if they're available. */
#ifdef GRID_X_BITS
#  define GRID_X (1 << GRID_X_BITS)
#endif
#ifdef GRID_Y_BITS
#  define GRID_Y (1 << GRID_Y_BITS)
#endif

/* The GRID_X_TO_INT_FRAC macro splits a grid scaled coordinate into
 * integer and fractional parts. The integer part is floored. */
#if defined(GRID_X_TO_INT_FRAC)
  /* do nothing */
#elif defined(GRID_X_BITS)
#  define GRID_X_TO_INT_FRAC(x, i, f) \
	_GRID_TO_INT_FRAC_shift(x, i, f, GRID_X_BITS)
#else
#  define GRID_X_TO_INT_FRAC(x, i, f) \
	_GRID_TO_INT_FRAC_general(x, i, f, GRID_X)
#endif

#define _GRID_TO_INT_FRAC_general(t, i, f, m) do {	\
    (i) = (t) / (m);					\
    (f) = (t) % (m);					\
    if ((f) < 0) {					\
	--(i);						\
	(f) += (m);					\
    }							\
} while (0)

#define _GRID_TO_INT_FRAC_shift(t, i, f, b) do {	\
    (f) = (t) & ((1 << (b)) - 1);			\
    (i) = (t) >> (b);					\
} while (0)

/* A grid area is a real in [0,1] scaled by 2*GRID_X*GRID_Y.  We want
 * to be able to represent exactly areas of subpixel trapezoids whose
 * vertices are given in grid scaled coordinates.  The scale factor
 * comes from needing to accurately represent the area 0.5*dx*dy of a
 * triangle with base dx and height dy in grid scaled numbers. */
typedef int grid_area_t;
#define GRID_XY (2*GRID_X*GRID_Y) /* Unit area on the grid. */

/* GRID_AREA_TO_ALPHA(area): map [0,GRID_XY] to [0,255]. */
#if GRID_XY == 510
#  define GRID_AREA_TO_ALPHA(c)	  (((c)+1) >> 1)
#elif GRID_XY == 255
#  define  GRID_AREA_TO_ALPHA(c)  (c)
#elif GRID_XY == 64
#  define  GRID_AREA_TO_ALPHA(c)  (((c) << 2) | -(((c) & 0x40) >> 6))
#elif GRID_XY == 128
#  define  GRID_AREA_TO_ALPHA(c)  ((((c) << 1) | -((c) >> 7)) & 255)
#elif GRID_XY == 256
#  define  GRID_AREA_TO_ALPHA(c)  (((c) | -((c) >> 8)) & 255)
#elif GRID_XY == 15
#  define  GRID_AREA_TO_ALPHA(c)  (((c) << 4) + (c))
#elif GRID_XY == 2*256*15
#  define  GRID_AREA_TO_ALPHA(c)  (((c) + ((c)<<4) + 256) >> 9)
#else
#  define  GRID_AREA_TO_ALPHA(c)  (((c)*255 + GRID_XY/2) / GRID_XY)
#endif

#define UNROLL3(x) x x x

struct quorem {
    int32_t quo;
    int32_t rem;
};

/* Header for a chunk of memory in a memory pool. */
struct _pool_chunk {
    /* # bytes used in this chunk. */
    size_t size;

    /* # bytes total in this chunk */
    size_t capacity;

    /* Pointer to the previous chunk or %NULL if this is the sentinel
     * chunk in the pool header. */
    struct _pool_chunk *prev_chunk;

    /* Actual data starts here.	 Well aligned for pointers. */
};

/* A memory pool.  This is supposed to be embedded on the stack or
 * within some other structure.	 It may optionally be followed by an
 * embedded array from which requests are fulfilled until
 * malloc needs to be called to allocate a first real chunk. */
struct pool {
    /* Chunk we're allocating from. */
    struct _pool_chunk *current;

    /* Free list of previously allocated chunks.  All have >= default
     * capacity. */
    struct _pool_chunk *first_free;

    /* The default capacity of a chunk. */
    size_t default_capacity;

    /* Header for the sentinel chunk.  Directly following the pool
     * struct should be some space for embedded elements from which
     * the sentinel chunk allocates from. */
    struct _pool_chunk sentinel[1];
};

/* A polygon edge. */
struct edge {
    /* Next in y-bucket or active list. */
    struct edge *next;

    /* Current x coordinate while the edge is on the active
     * list. Initialised to the x coordinate of the top of the
     * edge. The quotient is in grid_scaled_x_t units and the
     * remainder is mod dy in grid_scaled_y_t units.*/
    struct quorem x;

    /* Advance of the current x when moving down a subsample line. */
    struct quorem dxdy;

    /* Advance of the current x when moving down a full pixel
     * row. Only initialised when the height of the edge is large
     * enough that there's a chance the edge could be stepped by a
     * full row's worth of subsample rows at a time. */
    struct quorem dxdy_full;

    /* The clipped y of the top of the edge. */
    grid_scaled_y_t ytop;

    /* y2-y1 after orienting the edge downwards.  */
    grid_scaled_y_t dy;

    /* Number of subsample rows remaining to scan convert of this
     * edge. */
    grid_scaled_y_t height_left;

    /* Original sign of the edge: +1 for downwards, -1 for upwards
     * edges.  */
    int dir;
    int vertical;
};

/* Number of subsample rows per y-bucket. Must be GRID_Y. */
#define EDGE_Y_BUCKET_HEIGHT GRID_Y

#define EDGE_Y_BUCKET_INDEX(y, ymin) (((y) - (ymin))/EDGE_Y_BUCKET_HEIGHT)

struct bucket {
    /* Unsorted list of edges starting within this bucket. */
    struct edge *edges;

    /* Set to non-zero if there are edges starting strictly within the
     * bucket. */
    unsigned     have_inside_edges;
};

/* A collection of sorted and vertically clipped edges of the polygon.
 * Edges are moved from the polygon to an active list while scan
 * converting. */
struct polygon {
    /* The clip extents. */
    grid_scaled_x_t xmin, xmax;
    grid_scaled_y_t ymin, ymax;

    /* Array of edges all starting in the same bucket.	An edge is put
     * into bucket EDGE_BUCKET_INDEX(edge->ytop, polygon->ymin) when
     * it is added to the polygon. */
    struct bucket *y_buckets;
    struct bucket  y_buckets_embedded[64];

    struct {
	struct pool base[1];
	struct edge embedded[32];
    } edge_pool;
};

/* A cell records the effect on pixel coverage of polygon edges
 * passing through a pixel.  It contains two accumulators of pixel
 * coverage.
 *
 * Consider the effects of a polygon edge on the coverage of a pixel
 * it intersects and that of the following one.  The coverage of the
 * following pixel is the height of the edge multiplied by the width
 * of the pixel, and the coverage of the pixel itself is the area of
 * the trapezoid formed by the edge and the right side of the pixel.
 *
 * +-----------------------+-----------------------+
 * |                       |                       |
 * |                       |                       |
 * |_______________________|_______________________|
 * |   \...................|.......................|\
 * |    \..................|.......................| |
 * |     \.................|.......................| |
 * |      \....covered.....|.......................| |
 * |       \....area.......|.......................| } covered height
 * |        \..............|.......................| |
 * |uncovered\.............|.......................| |
 * |  area    \............|.......................| |
 * |___________\...........|.......................|/
 * |                       |                       |
 * |                       |                       |
 * |                       |                       |
 * +-----------------------+-----------------------+
 *
 * Since the coverage of the following pixel will always be a multiple
 * of the width of the pixel, we can store the height of the covered
 * area instead.  The coverage of the pixel itself is the total
 * coverage minus the area of the uncovered area to the left of the
 * edge.  As it's faster to compute the uncovered area we only store
 * that and subtract it from the total coverage later when forming
 * spans to blit.
 *
 * The heights and areas are signed, with left edges of the polygon
 * having positive sign and right edges having negative sign.  When
 * two edges intersect they swap their left/rightness so their
 * contribution above and below the intersection point must be
 * computed separately. */
struct cell {
    struct cell		*next;
    int			 x;
    grid_area_t		 uncovered_area;
    grid_scaled_y_t	 covered_height;
};

/* A cell list represents the scan line sparsely as cells ordered by
 * ascending x.  It is geared towards scanning the cells in order
 * using an internal cursor. */
struct cell_list {
    /* Points to the left-most cell in the scan line. */
    struct cell *head;
    /* Sentinel node */
    struct cell tail;

    /* Cursor state for iterating through the cell list.  Points to
     * a pointer to the current cell: either &cell_list->head or the next
     * field of the previous cell. */
    struct cell **cursor;

    /* Cells in the cell list are owned by the cell list and are
     * allocated from this pool.  */
    struct {
	struct pool base[1];
	struct cell embedded[32];
    } cell_pool;
};

struct cell_pair {
    struct cell *cell1;
    struct cell *cell2;
};

/* The active list contains edges in the current scan line ordered by
 * the x-coordinate of the intercept of the edge and the scan line. */
struct active_list {
    /* Leftmost edge on the current scan line. */
    struct edge *head;

    /* A lower bound on the height of the active edges is used to
     * estimate how soon some active edge ends.	 We can't advance the
     * scan conversion by a full pixel row if an edge ends somewhere
     * within it. */
    grid_scaled_y_t min_height;
};

struct glitter_scan_converter {
    struct polygon	polygon[1];
    struct active_list	active[1];
    struct cell_list	coverages[1];

    /* Clip box. */
    grid_scaled_x_t xmin, xmax;
    grid_scaled_y_t ymin, ymax;
};

/* Compute the floored division a/b. Assumes / and % perform symmetric
 * division. */
inline static struct quorem
floored_divrem(int a, int b)
{
    struct quorem qr;
    qr.quo = a/b;
    qr.rem = a%b;
    if ((a^b)<0 && qr.rem) {
	qr.quo -= 1;
	qr.rem += b;
    }
    return qr;
}

/* Compute the floored division (x*a)/b. Assumes / and % perform symmetric
 * division. */
static struct quorem
floored_muldivrem(int x, int a, int b)
{
    struct quorem qr;
    long long xa = (long long)x*a;
    qr.quo = xa/b;
    qr.rem = xa%b;
    if ((xa>=0) != (b>=0) && qr.rem) {
	qr.quo -= 1;
	qr.rem += b;
    }
    return qr;
}

static void
_pool_chunk_init(
    struct _pool_chunk *p,
    struct _pool_chunk *prev_chunk,
    size_t capacity)
{
    p->prev_chunk = prev_chunk;
    p->size = 0;
    p->capacity = capacity;
}

static struct _pool_chunk *
_pool_chunk_create(
    struct _pool_chunk *prev_chunk,
    size_t size)
{
    struct _pool_chunk *p;
    size_t size_with_head = size + sizeof(struct _pool_chunk);
    if (size_with_head < size)
	return NULL;
    p = malloc(size_with_head);
    if (p)
	_pool_chunk_init(p, prev_chunk, size);
    return p;
}

static void
pool_init(
    struct pool *pool,
    size_t default_capacity,
    size_t embedded_capacity)
{
    pool->current = pool->sentinel;
    pool->first_free = NULL;
    pool->default_capacity = default_capacity;
    _pool_chunk_init(pool->sentinel, NULL, embedded_capacity);
}

static void
pool_fini(struct pool *pool)
{
    struct _pool_chunk *p = pool->current;
    do {
	while (NULL != p) {
	    struct _pool_chunk *prev = p->prev_chunk;
	    if (p != pool->sentinel)
		free(p);
	    p = prev;
	}
	p = pool->first_free;
	pool->first_free = NULL;
    } while (NULL != p);
    pool_init(pool, 0, 0);
}

/* Satisfy an allocation by first allocating a new large enough chunk
 * and adding it to the head of the pool's chunk list. This function
 * is called as a fallback if pool_alloc() couldn't do a quick
 * allocation from the current chunk in the pool. */
static void *
_pool_alloc_from_new_chunk(
    struct pool *pool,
    size_t size)
{
    struct _pool_chunk *chunk;
    void *obj;
    size_t capacity;

    /* If the allocation is smaller than the default chunk size then
     * try getting a chunk off the free list.  Force alloc of a new
     * chunk for large requests. */
    capacity = size;
    chunk = NULL;
    if (size < pool->default_capacity) {
	capacity = pool->default_capacity;
	chunk = pool->first_free;
	if (chunk) {
	    pool->first_free = chunk->prev_chunk;
	    _pool_chunk_init(chunk, pool->current, chunk->capacity);
	}
    }

    if (NULL == chunk) {
	chunk = _pool_chunk_create (pool->current, capacity);
	if (unlikely (NULL == chunk))
	    return NULL;
    }
    pool->current = chunk;

    obj = ((unsigned char*)chunk + sizeof(*chunk) + chunk->size);
    chunk->size += size;
    return obj;
}

/* Allocate size bytes from the pool.  The first allocated address
 * returned from a pool is aligned to sizeof(void*).  Subsequent
 * addresses will maintain alignment as long as multiples of void* are
 * allocated.  Returns the address of a new memory area or %NULL on
 * allocation failures.	 The pool retains ownership of the returned
 * memory. */
inline static void *
pool_alloc (struct pool *pool, size_t size)
{
    struct _pool_chunk *chunk = pool->current;

    if (size <= chunk->capacity - chunk->size) {
	void *obj = ((unsigned char*)chunk + sizeof(*chunk) + chunk->size);
	chunk->size += size;
	return obj;
    } else {
	return _pool_alloc_from_new_chunk(pool, size);
    }
}

/* Relinquish all pool_alloced memory back to the pool. */
static void
pool_reset (struct pool *pool)
{
    /* Transfer all used chunks to the chunk free list. */
    struct _pool_chunk *chunk = pool->current;
    if (chunk != pool->sentinel) {
	while (chunk->prev_chunk != pool->sentinel) {
	    chunk = chunk->prev_chunk;
	}
	chunk->prev_chunk = pool->first_free;
	pool->first_free = pool->current;
    }
    /* Reset the sentinel as the current chunk. */
    pool->current = pool->sentinel;
    pool->sentinel->size = 0;
}

/* Rewinds the cell list's cursor to the beginning.  After rewinding
 * we're good to cell_list_find() the cell any x coordinate. */
inline static void
cell_list_rewind (struct cell_list *cells)
{
    cells->cursor = &cells->head;
}

/* Rewind the cell list if its cursor has been advanced past x. */
inline static void
cell_list_maybe_rewind (struct cell_list *cells, int x)
{
    struct cell *tail = *cells->cursor;
    if (tail->x > x)
	cell_list_rewind (cells);
}

static void
cell_list_init(struct cell_list *cells)
{
    pool_init(cells->cell_pool.base,
	      256*sizeof(struct cell),
	      sizeof(cells->cell_pool.embedded));
    cells->tail.next = NULL;
    cells->tail.x = INT_MAX;
    cells->head = &cells->tail;
    cell_list_rewind (cells);
}

static void
cell_list_fini(struct cell_list *cells)
{
    pool_fini (cells->cell_pool.base);
}

/* Empty the cell list.  This is called at the start of every pixel
 * row. */
inline static void
cell_list_reset (struct cell_list *cells)
{
    cell_list_rewind (cells);
    cells->head = &cells->tail;
    pool_reset (cells->cell_pool.base);
}

static struct cell *
cell_list_alloc (struct cell_list *cells,
		 struct cell **cursor,
		 struct cell *tail,
		 int x)
{
    struct cell *cell;

    cell = pool_alloc (cells->cell_pool.base, sizeof (struct cell));
    if (unlikely (NULL == cell))
	return NULL;

    *cursor = cell;
    cell->next = tail;
    cell->x = x;
    cell->uncovered_area = 0;
    cell->covered_height = 0;
    return cell;
}

/* Find a cell at the given x-coordinate.  Returns %NULL if a new cell
 * needed to be allocated but couldn't be.  Cells must be found with
 * non-decreasing x-coordinate until the cell list is rewound using
 * cell_list_rewind(). Ownership of the returned cell is retained by
 * the cell list. */
inline static struct cell *
cell_list_find (struct cell_list *cells, int x)
{
    struct cell **cursor = cells->cursor;
    struct cell *tail;

    while (1) {
	UNROLL3({
	    tail = *cursor;
	    if (tail->x >= x) {
		break;
	    }
	    cursor = &tail->next;
	});
    }
    cells->cursor = cursor;

    if (tail->x == x)
	return tail;

    return cell_list_alloc (cells, cursor, tail, x);
}

/* Find two cells at x1 and x2.	 This is exactly equivalent
 * to
 *
 *   pair.cell1 = cell_list_find(cells, x1);
 *   pair.cell2 = cell_list_find(cells, x2);
 *
 * except with less function call overhead. */
inline static struct cell_pair
cell_list_find_pair(struct cell_list *cells, int x1, int x2)
{
    struct cell_pair pair;
    struct cell **cursor = cells->cursor;
    struct cell *cell1;
    struct cell *cell2;
    struct cell *newcell;

    /* Find first cell at x1. */
    while (1) {
	UNROLL3({
	    cell1 = *cursor;
	    if (cell1->x > x1)
		break;

	    if (cell1->x == x1)
		goto found_first;

	    cursor = &cell1->next;
	});
    }

    /* New first cell at x1. */
    newcell = pool_alloc (cells->cell_pool.base,
			  sizeof (struct cell));
    if (likely (NULL != newcell)) {
	*cursor = newcell;
	newcell->next = cell1;
	newcell->x = x1;
	newcell->uncovered_area = 0;
	newcell->covered_height = 0;
    }
    cell1 = newcell;
 found_first:

    /* Find second cell at x2. */
    while (1) {
	UNROLL3({
	    cell2 = *cursor;
	    if (cell2->x > x2)
		break;
	    if (cell2->x == x2)
		goto found_second;
	    cursor = &cell2->next;
	});
    }

    /* New second cell at x2. */
    newcell = pool_alloc (cells->cell_pool.base,
			 sizeof (struct cell));
    if (likely (NULL != newcell)) {
	*cursor = newcell;
	newcell->next = cell2;
	newcell->x = x2;
	newcell->uncovered_area = 0;
	newcell->covered_height = 0;
    }
    cell2 = newcell;
 found_second:

    cells->cursor = cursor;
    pair.cell1 = cell1;
    pair.cell2 = cell2;
    return pair;
}

/* Add an unbounded subpixel span covering subpixels >= x to the
 * coverage cells. */
static glitter_status_t
cell_list_add_unbounded_subspan (struct cell_list *cells,
				 grid_scaled_x_t x)
{
    struct cell *cell;
    int ix, fx;

    GRID_X_TO_INT_FRAC(x, ix, fx);

    cell = cell_list_find (cells, ix);
    if (likely (cell != NULL)) {
	cell->uncovered_area += 2*fx;
	cell->covered_height++;
	return GLITTER_STATUS_SUCCESS;
    }

    return GLITTER_STATUS_NO_MEMORY;
}

/* Add a subpixel span covering [x1, x2) to the coverage cells. */
inline static glitter_status_t
cell_list_add_subspan(
    struct cell_list *cells,
    grid_scaled_x_t x1,
    grid_scaled_x_t x2)
{
    int ix1, fx1;
    int ix2, fx2;

    GRID_X_TO_INT_FRAC(x1, ix1, fx1);
    GRID_X_TO_INT_FRAC(x2, ix2, fx2);

    if (ix1 != ix2) {
	struct cell_pair p;
	p = cell_list_find_pair(cells, ix1, ix2);
	if (likely (p.cell1 != NULL && p.cell2 != NULL)) {
	    p.cell1->uncovered_area += 2*fx1;
	    ++p.cell1->covered_height;
	    p.cell2->uncovered_area -= 2*fx2;
	    --p.cell2->covered_height;
	    return GLITTER_STATUS_SUCCESS;
	}
    } else {
	struct cell *cell = cell_list_find(cells, ix1);
	if (likely (cell != NULL)) {
	    cell->uncovered_area += 2*(fx1-fx2);
	    return GLITTER_STATUS_SUCCESS;
	}
    }
    return GLITTER_STATUS_NO_MEMORY;
}

/* Adds the analytical coverage of an edge crossing the current pixel
 * row to the coverage cells and advances the edge's x position to the
 * following row.
 *
 * This function is only called when we know that during this pixel row:
 *
 * 1) The relative order of all edges on the active list doesn't
 * change.  In particular, no edges intersect within this row to pixel
 * precision.
 *
 * 2) No new edges start in this row.
 *
 * 3) No existing edges end mid-row.
 *
 * This function depends on being called with all edges from the
 * active list in the order they appear on the list (i.e. with
 * non-decreasing x-coordinate.)  */
static glitter_status_t
cell_list_render_edge(
    struct cell_list *cells,
    struct edge *edge,
    int sign)
{
    grid_scaled_y_t y1, y2, dy;
    grid_scaled_x_t dx;
    int ix1, ix2;
    grid_scaled_x_t fx1, fx2;

    struct quorem x1 = edge->x;
    struct quorem x2 = x1;

    if (! edge->vertical) {
	x2.quo += edge->dxdy_full.quo;
	x2.rem += edge->dxdy_full.rem;
	if (x2.rem >= 0) {
	    ++x2.quo;
	    x2.rem -= edge->dy;
	}

	edge->x = x2;
    }

    GRID_X_TO_INT_FRAC(x1.quo, ix1, fx1);
    GRID_X_TO_INT_FRAC(x2.quo, ix2, fx2);

    /* Edge is entirely within a column? */
    if (ix1 == ix2) {
	/* We always know that ix1 is >= the cell list cursor in this
	 * case due to the no-intersections precondition.  */
	struct cell *cell = cell_list_find(cells, ix1);
	if (unlikely (NULL == cell))
	    return GLITTER_STATUS_NO_MEMORY;

	cell->covered_height += sign*GRID_Y;
	cell->uncovered_area += sign*(fx1 + fx2)*GRID_Y;
	return GLITTER_STATUS_SUCCESS;
    }

    /* Orient the edge left-to-right. */
    dx = x2.quo - x1.quo;
    if (dx >= 0) {
	y1 = 0;
	y2 = GRID_Y;
    } else {
	int tmp;
	tmp = ix1; ix1 = ix2; ix2 = tmp;
	tmp = fx1; fx1 = fx2; fx2 = tmp;
	dx = -dx;
	sign = -sign;
	y1 = GRID_Y;
	y2 = 0;
    }
    dy = y2 - y1;

    /* Add coverage for all pixels [ix1,ix2] on this row crossed
     * by the edge. */
    {
	struct cell_pair pair;
	struct quorem y = floored_divrem((GRID_X - fx1)*dy, dx);

	/* When rendering a previous edge on the active list we may
	 * advance the cell list cursor past the leftmost pixel of the
	 * current edge even though the two edges don't intersect.
	 * e.g. consider two edges going down and rightwards:
	 *
	 *  --\_+---\_+-----+-----+----
	 *      \_    \_    |     |
	 *      | \_  | \_  |     |
	 *      |   \_|   \_|     |
	 *      |     \_    \_    |
	 *  ----+-----+-\---+-\---+----
	 *
	 * The left edge touches cells past the starting cell of the
	 * right edge.  Fortunately such cases are rare.
	 *
	 * The rewinding is never necessary if the current edge stays
	 * within a single column because we've checked before calling
	 * this function that the active list order won't change. */
	cell_list_maybe_rewind(cells, ix1);

	pair = cell_list_find_pair(cells, ix1, ix1+1);
	if (unlikely (!pair.cell1 || !pair.cell2))
	    return GLITTER_STATUS_NO_MEMORY;

	pair.cell1->uncovered_area += sign*y.quo*(GRID_X + fx1);
	pair.cell1->covered_height += sign*y.quo;
	y.quo += y1;

	if (ix1+1 < ix2) {
	    struct quorem dydx_full = floored_divrem(GRID_X*dy, dx);
	    struct cell *cell = pair.cell2;

	    ++ix1;
	    do {
		grid_scaled_y_t y_skip = dydx_full.quo;
		y.rem += dydx_full.rem;
		if (y.rem >= dx) {
		    ++y_skip;
		    y.rem -= dx;
		}

		y.quo += y_skip;

		y_skip *= sign;
		cell->uncovered_area += y_skip*GRID_X;
		cell->covered_height += y_skip;

		++ix1;
		cell = cell_list_find(cells, ix1);
		if (unlikely (NULL == cell))
		    return GLITTER_STATUS_NO_MEMORY;
	    } while (ix1 != ix2);

	    pair.cell2 = cell;
	}
	pair.cell2->uncovered_area += sign*(y2 - y.quo)*fx2;
	pair.cell2->covered_height += sign*(y2 - y.quo);
    }

    return GLITTER_STATUS_SUCCESS;
}

static void
polygon_init (struct polygon *polygon)
{
    polygon->ymin = polygon->ymax = 0;
    polygon->xmin = polygon->xmax = 0;
    polygon->y_buckets = polygon->y_buckets_embedded;
    pool_init (polygon->edge_pool.base,
	       8192 - sizeof (struct _pool_chunk),
	       sizeof (polygon->edge_pool.embedded));
}

static void
polygon_fini (struct polygon *polygon)
{
    if (polygon->y_buckets != polygon->y_buckets_embedded)
	free (polygon->y_buckets);

    pool_fini (polygon->edge_pool.base);
}

/* Empties the polygon of all edges. The polygon is then prepared to
 * receive new edges and clip them to the vertical range
 * [ymin,ymax). */
static glitter_status_t
polygon_reset (struct polygon *polygon,
	       grid_scaled_x_t xmin,
	       grid_scaled_x_t xmax,
	       grid_scaled_y_t ymin,
	       grid_scaled_y_t ymax)
{
    unsigned h = ymax - ymin;
    unsigned num_buckets = EDGE_Y_BUCKET_INDEX(ymax + EDGE_Y_BUCKET_HEIGHT-1,
					       ymin);

    pool_reset(polygon->edge_pool.base);

    if (unlikely (h > 0x7FFFFFFFU - EDGE_Y_BUCKET_HEIGHT))
	goto bail_no_mem; /* even if you could, you wouldn't want to. */

    if (polygon->y_buckets != polygon->y_buckets_embedded)
	free (polygon->y_buckets);

    polygon->y_buckets =  polygon->y_buckets_embedded;
    if (num_buckets > ARRAY_LENGTH (polygon->y_buckets_embedded)) {
	polygon->y_buckets = _cairo_malloc_ab (num_buckets,
					       sizeof (struct bucket));
	if (unlikely (NULL == polygon->y_buckets))
	    goto bail_no_mem;
    }
    memset (polygon->y_buckets, 0, num_buckets * sizeof (struct bucket));

    polygon->ymin = ymin;
    polygon->ymax = ymax;
    polygon->xmin = xmin;
    polygon->xmax = xmax;
    return GLITTER_STATUS_SUCCESS;

 bail_no_mem:
    polygon->ymin = 0;
    polygon->ymax = 0;
    return GLITTER_STATUS_NO_MEMORY;
}

static void
_polygon_insert_edge_into_its_y_bucket(
    struct polygon *polygon,
    struct edge *e)
{
    unsigned j = e->ytop - polygon->ymin;
    unsigned ix = j / EDGE_Y_BUCKET_HEIGHT;
    unsigned offset = j % EDGE_Y_BUCKET_HEIGHT;
    struct edge **ptail = &polygon->y_buckets[ix].edges;
    e->next = *ptail;
    *ptail = e;
    polygon->y_buckets[ix].have_inside_edges |= offset;
}

inline static glitter_status_t
polygon_add_edge (struct polygon *polygon,
		  const cairo_edge_t *edge)
{
    struct edge *e;
    grid_scaled_x_t dx;
    grid_scaled_y_t dy;
    grid_scaled_y_t ytop, ybot;
    grid_scaled_y_t ymin = polygon->ymin;
    grid_scaled_y_t ymax = polygon->ymax;

    assert (edge->bottom > edge->top);

    if (unlikely (edge->top >= ymax || edge->bottom <= ymin))
	return GLITTER_STATUS_SUCCESS;

    e = pool_alloc (polygon->edge_pool.base, sizeof (struct edge));
    if (unlikely (NULL == e))
	return GLITTER_STATUS_NO_MEMORY;

    dx = edge->line.p2.x - edge->line.p1.x;
    dy = edge->line.p2.y - edge->line.p1.y;
    e->dy = dy;
    e->dir = edge->dir;

    ytop = edge->top >= ymin ? edge->top : ymin;
    ybot = edge->bottom <= ymax ? edge->bottom : ymax;
    e->ytop = ytop;
    e->height_left = ybot - ytop;

    if (dx == 0) {
	e->vertical = TRUE;
	e->x.quo = edge->line.p1.x;
	e->x.rem = 0;
	e->dxdy.quo = 0;
	e->dxdy.rem = 0;
	e->dxdy_full.quo = 0;
	e->dxdy_full.rem = 0;

	/* Drop edges to the right of the clip extents. */
	if (e->x.quo >= polygon->xmax)
	    return GLITTER_STATUS_SUCCESS;

	/* Offset vertical edges at the left side of the clip extents
	 * to just shy of the left side.  We depend on this when
	 * checking for possible intersections within the clip
	 * rectangle. */
	if (e->x.quo <= polygon->xmin) {
	    e->x.quo = polygon->xmin - 1;
	}
    } else {
	e->vertical = FALSE;
	e->dxdy = floored_divrem (dx, dy);
	if (ytop == edge->line.p1.y) {
	    e->x.quo = edge->line.p1.x;
	    e->x.rem = 0;
	} else {
	    e->x = floored_muldivrem (ytop - edge->line.p1.y, dx, dy);
	    e->x.quo += edge->line.p1.x;
	}

	if (e->x.quo >= polygon->xmax && e->dxdy.quo >= 0)
	    return GLITTER_STATUS_SUCCESS;

	if (e->height_left >= GRID_Y) {
	    e->dxdy_full = floored_muldivrem (GRID_Y, dx, dy);
	} else {
	    e->dxdy_full.quo = 0;
	    e->dxdy_full.rem = 0;
	}
    }

    _polygon_insert_edge_into_its_y_bucket (polygon, e);

    e->x.rem -= dy;		/* Bias the remainder for faster
				 * edge advancement. */
    return GLITTER_STATUS_SUCCESS;
}

static void
active_list_reset (struct active_list *active)
{
    active->head = NULL;
    active->min_height = 0;
}

static void
active_list_init(struct active_list *active)
{
    active_list_reset(active);
}

/*
 * Merge two sorted edge lists.
 * Input:
 *  - head_a: The head of the first list.
 *  - head_b: The head of the second list; head_b cannot be NULL.
 * Output:
 * Returns the head of the merged list.
 *
 * Implementation notes:
 * To make it fast (in particular, to reduce to an insertion sort whenever
 * one of the two input lists only has a single element) we iterate through
 * a list until its head becomes greater than the head of the other list,
 * then we switch their roles. As soon as one of the two lists is empty, we
 * just attach the other one to the current list and exit.
 * Writes to memory are only needed to "switch" lists (as it also requires
 * attaching to the output list the list which we will be iterating next) and
 * to attach the last non-empty list.
 */
static struct edge *
merge_sorted_edges (struct edge *head_a, struct edge *head_b)
{
    struct edge *head, **next;

    head = head_a;
    next = &head;

    while (1) {
	while (head_a != NULL && head_a->x.quo <= head_b->x.quo) {
	    next = &head_a->next;
	    head_a = head_a->next;
	}

	*next = head_b;
	if (head_a == NULL)
	    return head;

	while (head_b != NULL && head_b->x.quo <= head_a->x.quo) {
	    next = &head_b->next;
	    head_b = head_b->next;
	}

	*next = head_a;
	if (head_b == NULL)
	    return head;
    }
}

/*
 * Sort (part of) a list.
 * Input:
 *  - list: The list to be sorted; list cannot be NULL.
 *  - limit: Recursion limit.
 * Output:
 *  - head_out: The head of the sorted list containing the first 2^(level+1) elements of the
 *              input list; if the input list has fewer elements, head_out be a sorted list
 *              containing all the elements of the input list.
 * Returns the head of the list of unprocessed elements (NULL if the sorted list contains
 * all the elements of the input list).
 *
 * Implementation notes:
 * Special case single element list, unroll/inline the sorting of the first two elements.
 * Some tail recursion is used since we iterate on the bottom-up solution of the problem
 * (we start with a small sorted list and keep merging other lists of the same size to it).
 */
static struct edge *
sort_edges (struct edge  *list,
	    unsigned int  level,
	    struct edge **head_out)
{
    struct edge *head_other, *remaining;
    unsigned int i;

    head_other = list->next;

    /* Single element list -> return */
    if (head_other == NULL) {
	*head_out = list;
	return NULL;
    }

    /* Unroll the first iteration of the following loop (halves the number of calls to merge_sorted_edges):
     *  - Initialize remaining to be the list containing the elements after the second in the input list.
     *  - Initialize *head_out to be the sorted list containing the first two element.
     */
    remaining = head_other->next;
    if (list->x.quo <= head_other->x.quo) {
	*head_out = list;
	/* list->next = head_other; */ /* The input list is already like this. */
	head_other->next = NULL;
    } else {
	*head_out = head_other;
	head_other->next = list;
	list->next = NULL;
    }

    for (i = 0; i < level && remaining; i++) {
	/* Extract a sorted list of the same size as *head_out
	 * (2^(i+1) elements) from the list of remaining elements. */
	remaining = sort_edges (remaining, i, &head_other);
	*head_out = merge_sorted_edges (*head_out, head_other);
    }

    /* *head_out now contains (at most) 2^(level+1) elements. */

    return remaining;
}

/* Test if the edges on the active list can be safely advanced by a
 * full row without intersections or any edges ending. */
inline static int
active_list_can_step_full_row (struct active_list *active,
			       grid_scaled_x_t     xmin)
{
    const struct edge *e;
    grid_scaled_x_t prev_x = INT_MIN;

    /* Recomputes the minimum height of all edges on the active
     * list if we have been dropping edges. */
    if (active->min_height <= 0) {
	int min_height = INT_MAX;

	e = active->head;
	while (NULL != e) {
	    if (e->height_left < min_height)
		min_height = e->height_left;
	    e = e->next;
	}

	active->min_height = min_height;
    }

    if (active->min_height < GRID_Y)
	return 0;

    /* Check for intersections as no edges end during the next row. */
    e = active->head;
    while (NULL != e) {
	struct quorem x = e->x;

	if (! e->vertical) {
	    x.quo += e->dxdy_full.quo;
	    x.rem += e->dxdy_full.rem;
	    if (x.rem >= 0)
		++x.quo;
	}

	/* There's may be an intersection if the edge sort order might
	 * change. */
	if (x.quo <= prev_x) {
	    /* Ignore intersections to the left of the clip extents.
	     * This assumes that all vertical edges on or at the left
	     * side of the clip rectangle have been shifted slightly
	     * to the left in polygon_add_edge(). */
	    if (prev_x >= xmin || x.quo >= xmin || e->x.quo >= xmin)
		return 0;
	}
	else {
	    prev_x = x.quo;
	}
	e = e->next;
    }

    return 1;
}

/* Merges edges on the given subpixel row from the polygon to the
 * active_list. */
inline static void
active_list_merge_edges_from_polygon(
    struct active_list *active,
    grid_scaled_y_t y,
    struct polygon *polygon)
{
    /* Split off the edges on the current subrow and merge them into
     * the active list. */
    unsigned ix = EDGE_Y_BUCKET_INDEX(y, polygon->ymin);
    int min_height = active->min_height;
    struct edge *subrow_edges = NULL;
    struct edge **ptail = &polygon->y_buckets[ix].edges;

    while (1) {
	struct edge *tail = *ptail;
	if (NULL == tail) break;

	if (y == tail->ytop) {
	    *ptail = tail->next;
	    tail->next = subrow_edges;
	    subrow_edges = tail;
	    if (tail->height_left < min_height)
		min_height = tail->height_left;
	} else {
	    ptail = &tail->next;
	}
    }
    if (subrow_edges) {
	sort_edges (subrow_edges, UINT_MAX, &subrow_edges);
	active->head = merge_sorted_edges (active->head, subrow_edges);
	active->min_height = min_height;
    }
}

/* Advance the edges on the active list by one subsample row by
 * updating their x positions.  Drop edges from the list that end. */
inline static void
active_list_substep_edges(
    struct active_list *active)
{
    struct edge **cursor = &active->head;
    grid_scaled_x_t prev_x = INT_MIN;
    struct edge *unsorted = NULL;

    while (1) {
	struct edge *edge;

	UNROLL3({
	    edge = *cursor;
	    if (NULL == edge)
		break;

	    if (0 != --edge->height_left) {
		edge->x.quo += edge->dxdy.quo;
		edge->x.rem += edge->dxdy.rem;
		if (edge->x.rem >= 0) {
		    ++edge->x.quo;
		    edge->x.rem -= edge->dy;
		}

		if (edge->x.quo < prev_x) {
		    *cursor = edge->next;
		    edge->next = unsorted;
		    unsorted = edge;
		} else {
		    prev_x = edge->x.quo;
		    cursor = &edge->next;
		}

	    } else {
		*cursor = edge->next;
	    }
	});
    }

    if (unsorted) {
	sort_edges (unsorted, UINT_MAX, &unsorted);
	active->head = merge_sorted_edges (active->head, unsorted);
    }
}

inline static glitter_status_t
apply_nonzero_fill_rule_for_subrow (struct active_list *active,
				    struct cell_list *coverages)
{
    struct edge *edge = active->head;
    int winding = 0;
    int xstart;
    int xend;
    int status;

    cell_list_rewind (coverages);

    while (NULL != edge) {
	xstart = edge->x.quo;
	winding = edge->dir;
	while (1) {
	    edge = edge->next;
	    if (NULL == edge)
		return cell_list_add_unbounded_subspan (coverages, xstart);

	    winding += edge->dir;
	    if (0 == winding) {
		if (edge->next == NULL || edge->next->x.quo != edge->x.quo)
		    break;
	    }
	}

	xend = edge->x.quo;
	status = cell_list_add_subspan (coverages, xstart, xend);
	if (unlikely (status))
	    return status;

	edge = edge->next;
    }

    return GLITTER_STATUS_SUCCESS;
}

static glitter_status_t
apply_evenodd_fill_rule_for_subrow (struct active_list *active,
				    struct cell_list *coverages)
{
    struct edge *edge = active->head;
    int xstart;
    int xend;
    int status;

    cell_list_rewind (coverages);

    while (NULL != edge) {
	xstart = edge->x.quo;

	while (1) {
	    edge = edge->next;
	    if (NULL == edge)
		return cell_list_add_unbounded_subspan (coverages, xstart);

	    if (edge->next == NULL || edge->next->x.quo != edge->x.quo)
		break;

	    edge = edge->next;
	}

	xend = edge->x.quo;
	status = cell_list_add_subspan (coverages, xstart, xend);
	if (unlikely (status))
	    return status;

	edge = edge->next;
    }

    return GLITTER_STATUS_SUCCESS;
}

static glitter_status_t
apply_nonzero_fill_rule_and_step_edges (struct active_list *active,
					struct cell_list *coverages)
{
    struct edge **cursor = &active->head;
    struct edge *left_edge;
    int status;

    left_edge = *cursor;
    while (NULL != left_edge) {
	struct edge *right_edge;
	int winding = left_edge->dir;

	left_edge->height_left -= GRID_Y;
	if (left_edge->height_left)
	    cursor = &left_edge->next;
	else
	    *cursor = left_edge->next;

	while (1) {
	    right_edge = *cursor;
	    if (NULL == right_edge)
		return cell_list_render_edge (coverages, left_edge, +1);

	    right_edge->height_left -= GRID_Y;
	    if (right_edge->height_left)
		cursor = &right_edge->next;
	    else
		*cursor = right_edge->next;

	    winding += right_edge->dir;
	    if (0 == winding) {
		if (right_edge->next == NULL ||
		    right_edge->next->x.quo != right_edge->x.quo)
		{
		    break;
		}
	    }

	    if (! right_edge->vertical) {
		right_edge->x.quo += right_edge->dxdy_full.quo;
		right_edge->x.rem += right_edge->dxdy_full.rem;
		if (right_edge->x.rem >= 0) {
		    ++right_edge->x.quo;
		    right_edge->x.rem -= right_edge->dy;
		}
	    }
	}

	status = cell_list_render_edge (coverages, left_edge, +1);
	if (unlikely (status))
	    return status;

	status = cell_list_render_edge (coverages, right_edge, -1);
	if (unlikely (status))
	    return status;

	left_edge = *cursor;
    }

    return GLITTER_STATUS_SUCCESS;
}

static glitter_status_t
apply_evenodd_fill_rule_and_step_edges (struct active_list *active,
					struct cell_list *coverages)
{
    struct edge **cursor = &active->head;
    struct edge *left_edge;
    int status;

    left_edge = *cursor;
    while (NULL != left_edge) {
	struct edge *right_edge;
	int winding = left_edge->dir;

	left_edge->height_left -= GRID_Y;
	if (left_edge->height_left)
	    cursor = &left_edge->next;
	else
	    *cursor = left_edge->next;

	while (1) {
	    right_edge = *cursor;
	    if (NULL == right_edge)
		return cell_list_render_edge (coverages, left_edge, +1);

	    right_edge->height_left -= GRID_Y;
	    if (right_edge->height_left)
		cursor = &right_edge->next;
	    else
		*cursor = right_edge->next;

	    winding += right_edge->dir;
	    if ((winding & 1) == 0) {
		if (right_edge->next == NULL ||
		    right_edge->next->x.quo != right_edge->x.quo)
		{
		    break;
		}
	    }

	    if (! right_edge->vertical) {
		right_edge->x.quo += right_edge->dxdy_full.quo;
		right_edge->x.rem += right_edge->dxdy_full.rem;
		if (right_edge->x.rem >= 0) {
		    ++right_edge->x.quo;
		    right_edge->x.rem -= right_edge->dy;
		}
	    }
	}

	status = cell_list_render_edge (coverages, left_edge, +1);
	if (unlikely (status))
	    return status;

	status = cell_list_render_edge (coverages, right_edge, -1);
	if (unlikely (status))
	    return status;

	left_edge = *cursor;
    }

    return GLITTER_STATUS_SUCCESS;
}

/* If the user hasn't configured a coverage blitter, use a default one
 * that blits spans directly to an A8 raster. */
#ifndef GLITTER_BLIT_COVERAGES

inline static void
blit_span(
    unsigned char *row_pixels,
    int x, unsigned len,
    grid_area_t coverage)
{
    int alpha = GRID_AREA_TO_ALPHA(coverage);
    if (1 == len) {
	row_pixels[x] = alpha;
    }
    else {
	memset(row_pixels + x, alpha, len);
    }
}

#define GLITTER_BLIT_COVERAGES(coverages, y, height, xmin, xmax) \
    do { \
	int __y = y; \
	int __h = height; \
	do { \
	    blit_cells(coverages, raster_pixels + (__y)*raster_stride, xmin, xmax); \
	} while (--__h); \
    } while (0)

static void
blit_cells(
    struct cell_list *cells,
    unsigned char *row_pixels,
    int xmin, int xmax)
{
    struct cell *cell = cells->head;
    int prev_x = xmin;
    int coverage = 0;
    if (NULL == cell)
	return;

    while (NULL != cell && cell->x < xmin) {
	coverage += cell->covered_height;
	cell = cell->next;
    }
    coverage *= GRID_X*2;

    for (; NULL != cell; cell = cell->next) {
	int x = cell->x;
	int area;
	if (x >= xmax)
	    break;
	if (x > prev_x && 0 != coverage) {
	    blit_span(row_pixels, prev_x, x - prev_x, coverage);
	}

	coverage += cell->covered_height * GRID_X*2;
	area = coverage - cell->uncovered_area;
	if (area) {
	    blit_span(row_pixels, x, 1, area);
	}
	prev_x = x+1;
    }

    if (0 != coverage && prev_x < xmax) {
	blit_span(row_pixels, prev_x, xmax - prev_x, coverage);
    }
}
#endif /* GLITTER_BLIT_COVERAGES */

static void
_glitter_scan_converter_init(glitter_scan_converter_t *converter)
{
    polygon_init(converter->polygon);
    active_list_init(converter->active);
    cell_list_init(converter->coverages);
    converter->xmin=0;
    converter->ymin=0;
    converter->xmax=0;
    converter->ymax=0;
}

static void
_glitter_scan_converter_fini(glitter_scan_converter_t *converter)
{
    polygon_fini(converter->polygon);
    cell_list_fini(converter->coverages);
    converter->xmin=0;
    converter->ymin=0;
    converter->xmax=0;
    converter->ymax=0;
}

static grid_scaled_t
int_to_grid_scaled(int i, int scale)
{
    /* Clamp to max/min representable scaled number. */
    if (i >= 0) {
	if (i >= INT_MAX/scale)
	    i = INT_MAX/scale;
    }
    else {
	if (i <= INT_MIN/scale)
	    i = INT_MIN/scale;
    }
    return i*scale;
}

#define int_to_grid_scaled_x(x) int_to_grid_scaled((x), GRID_X)
#define int_to_grid_scaled_y(x) int_to_grid_scaled((x), GRID_Y)

I glitter_status_t
glitter_scan_converter_reset(
    glitter_scan_converter_t *converter,
    int xmin, int ymin,
    int xmax, int ymax)
{
    glitter_status_t status;

    converter->xmin = 0; converter->xmax = 0;
    converter->ymin = 0; converter->ymax = 0;

    xmin = int_to_grid_scaled_x(xmin);
    ymin = int_to_grid_scaled_y(ymin);
    xmax = int_to_grid_scaled_x(xmax);
    ymax = int_to_grid_scaled_y(ymax);

    active_list_reset(converter->active);
    cell_list_reset(converter->coverages);
    status = polygon_reset(converter->polygon, xmin, xmax, ymin, ymax);
    if (status)
	return status;

    converter->xmin = xmin;
    converter->xmax = xmax;
    converter->ymin = ymin;
    converter->ymax = ymax;
    return GLITTER_STATUS_SUCCESS;
}

/* INPUT_TO_GRID_X/Y (in_coord, out_grid_scaled, grid_scale)
 *   These macros convert an input coordinate in the client's
 *   device space to the rasterisation grid.
 */
/* Gah.. this bit of ugly defines INPUT_TO_GRID_X/Y so as to use
 * shifts if possible, and something saneish if not.
 */
#if !defined(INPUT_TO_GRID_Y) && defined(GRID_Y_BITS) && GRID_Y_BITS <= GLITTER_INPUT_BITS
#  define INPUT_TO_GRID_Y(in, out) (out) = (in) >> (GLITTER_INPUT_BITS - GRID_Y_BITS)
#else
#  define INPUT_TO_GRID_Y(in, out) INPUT_TO_GRID_general(in, out, GRID_Y)
#endif

#if !defined(INPUT_TO_GRID_X) && defined(GRID_X_BITS) && GRID_X_BITS <= GLITTER_INPUT_BITS
#  define INPUT_TO_GRID_X(in, out) (out) = (in) >> (GLITTER_INPUT_BITS - GRID_X_BITS)
#else
#  define INPUT_TO_GRID_X(in, out) INPUT_TO_GRID_general(in, out, GRID_X)
#endif

#define INPUT_TO_GRID_general(in, out, grid_scale) do {		\
	long long tmp__ = (long long)(grid_scale) * (in);	\
	tmp__ >>= GLITTER_INPUT_BITS;				\
	(out) = tmp__;						\
} while (0)

I glitter_status_t
glitter_scan_converter_add_edge (glitter_scan_converter_t *converter,
				 const cairo_edge_t *edge)
{
    cairo_edge_t e;

    INPUT_TO_GRID_Y (edge->top, e.top);
    INPUT_TO_GRID_Y (edge->bottom, e.bottom);
    if (e.top >= e.bottom)
	return GLITTER_STATUS_SUCCESS;

    /* XXX: possible overflows if GRID_X/Y > 2**GLITTER_INPUT_BITS */
    INPUT_TO_GRID_Y (edge->line.p1.y, e.line.p1.y);
    INPUT_TO_GRID_Y (edge->line.p2.y, e.line.p2.y);
    if (e.line.p1.y == e.line.p2.y)
	return GLITTER_STATUS_SUCCESS;

    INPUT_TO_GRID_X (edge->line.p1.x, e.line.p1.x);
    INPUT_TO_GRID_X (edge->line.p2.x, e.line.p2.x);

    e.dir = edge->dir;

    return polygon_add_edge (converter->polygon, &e);
}

#ifndef GLITTER_BLIT_COVERAGES_BEGIN
# define GLITTER_BLIT_COVERAGES_BEGIN
#endif

#ifndef GLITTER_BLIT_COVERAGES_END
# define GLITTER_BLIT_COVERAGES_END
#endif

#ifndef GLITTER_BLIT_COVERAGES_EMPTY
# define GLITTER_BLIT_COVERAGES_EMPTY(y0, y1, xmin, xmax)
#endif

static cairo_bool_t
active_list_is_vertical (struct active_list *active)
{
    struct edge *e;

    for (e = active->head; e != NULL; e = e->next) {
	if (! e->vertical)
	    return FALSE;
    }

    return TRUE;
}

static void
step_edges (struct active_list *active, int count)
{
    struct edge **cursor = &active->head;
    struct edge *edge;

    for (edge = *cursor; edge != NULL; edge = *cursor) {
	edge->height_left -= GRID_Y * count;
	if (edge->height_left)
	    cursor = &edge->next;
	else
	    *cursor = edge->next;
    }
}

I glitter_status_t
glitter_scan_converter_render(
    glitter_scan_converter_t *converter,
    int nonzero_fill,
    GLITTER_BLIT_COVERAGES_ARGS)
{
    int i, j;
    int ymax_i = converter->ymax / GRID_Y;
    int ymin_i = converter->ymin / GRID_Y;
    int xmin_i, xmax_i;
    grid_scaled_x_t xmin = converter->xmin;
    int h = ymax_i - ymin_i;
    struct polygon *polygon = converter->polygon;
    struct cell_list *coverages = converter->coverages;
    struct active_list *active = converter->active;

    xmin_i = converter->xmin / GRID_X;
    xmax_i = converter->xmax / GRID_X;
    if (xmin_i >= xmax_i)
	return GLITTER_STATUS_SUCCESS;

    /* Let the coverage blitter initialise itself. */
    GLITTER_BLIT_COVERAGES_BEGIN;

    /* Render each pixel row. */
    for (i = 0; i < h; i = j) {
	int do_full_step = 0;
	glitter_status_t status = 0;

	j = i + 1;

	/* Determine if we can ignore this row or use the full pixel
	 * stepper. */
	if (polygon->y_buckets[i].edges == NULL) {
	    if (! active->head) {
		for (; j < h && ! polygon->y_buckets[j].edges; j++)
		    ;
		GLITTER_BLIT_COVERAGES_EMPTY (i+ymin_i, j-i, xmin_i, xmax_i);
		continue;
	    }
	    do_full_step = active_list_can_step_full_row (active, xmin);
	}
	else if (! polygon->y_buckets[i].have_inside_edges) {
	    grid_scaled_y_t y = (i+ymin_i)*GRID_Y;
	    active_list_merge_edges_from_polygon (active, y, polygon);
	    do_full_step = active_list_can_step_full_row (active, xmin);
	}

	if (do_full_step) {
	    /* Step by a full pixel row's worth. */
	    if (nonzero_fill) {
		status = apply_nonzero_fill_rule_and_step_edges (active,
								 coverages);
	    } else {
		status = apply_evenodd_fill_rule_and_step_edges (active,
								 coverages);
	    }

	    if (active_list_is_vertical (active)) {
		while (j < h &&
		       polygon->y_buckets[j].edges == NULL &&
		       active->min_height >= 2*GRID_Y)
		{
		    active->min_height -= GRID_Y;
		    j++;
		}
		if (j != i + 1)
		    step_edges (active, j - (i + 1));
	    }
	} else {
	    /* Supersample this row. */
	    grid_scaled_y_t suby;
	    for (suby = 0; suby < GRID_Y; suby++) {
		grid_scaled_y_t y = (i+ymin_i)*GRID_Y + suby;

		active_list_merge_edges_from_polygon (active, y, polygon);

		if (nonzero_fill) {
		    status |= apply_nonzero_fill_rule_for_subrow (active,
								  coverages);
		} else {
		    status |= apply_evenodd_fill_rule_for_subrow (active,
								  coverages);
		}

		active_list_substep_edges(active);
	    }
	}

	if (unlikely (status))
	    return status;

	GLITTER_BLIT_COVERAGES(coverages, i+ymin_i, j-i, xmin_i, xmax_i);
	cell_list_reset (coverages);

	if (! active->head)
	    active->min_height = INT_MAX;
	else
	    active->min_height -= GRID_Y;
    }

    /* Clean up the coverage blitter. */
    GLITTER_BLIT_COVERAGES_END;

    return GLITTER_STATUS_SUCCESS;
}

/*-------------------------------------------------------------------------
 * cairo specific implementation: the coverage blitter and
 * scan converter subclass. */

static glitter_status_t
blit_with_span_renderer (struct cell_list *cells,
			 cairo_span_renderer_t *renderer,
			 struct pool *span_pool,
			 int y, int height,
			 int xmin, int xmax)
{
    struct cell *cell = cells->head;
    int prev_x = xmin;
    int cover = 0;
    cairo_half_open_span_t *spans;
    unsigned num_spans;

    if (cell == NULL)
	return blit_empty_with_span_renderer (renderer, y, height);

    /* Skip cells to the left of the clip region. */
    while (cell != NULL && cell->x < xmin) {
	cover += cell->covered_height;
	cell = cell->next;
    }
    cover *= GRID_X*2;

    /* Count number of cells remaining. */
    {
	struct cell *next = cell;
	num_spans = 1;
	while (next != NULL) {
	    next = next->next;
	    ++num_spans;
	}
	num_spans = 2*num_spans;
    }

    /* Allocate enough spans for the row. */
    pool_reset (span_pool);
    spans = pool_alloc (span_pool, sizeof(spans[0])*num_spans);
    if (unlikely (spans == NULL))
	return GLITTER_STATUS_NO_MEMORY;

    num_spans = 0;

    /* Form the spans from the coverages and areas. */
    for (; cell != NULL; cell = cell->next) {
	int x = cell->x;
	int area;

	if (x >= xmax)
	    break;

	if (x > prev_x) {
	    spans[num_spans].x = prev_x;
	    spans[num_spans].coverage = GRID_AREA_TO_ALPHA (cover);
	    ++num_spans;
	}

	cover += cell->covered_height*GRID_X*2;
	area = cover - cell->uncovered_area;

	spans[num_spans].x = x;
	spans[num_spans].coverage = GRID_AREA_TO_ALPHA (area);
	++num_spans;

	prev_x = x+1;
    }

    if (prev_x <= xmax) {
	spans[num_spans].x = prev_x;
	spans[num_spans].coverage = GRID_AREA_TO_ALPHA (cover);
	++num_spans;
    }

    if (prev_x < xmax && cover) {
	spans[num_spans].x = xmax;
	spans[num_spans].coverage = 0;
	++num_spans;
    }

    /* Dump them into the renderer. */
    return renderer->render_rows (renderer, y, height, spans, num_spans);
}

static glitter_status_t
blit_empty_with_span_renderer (cairo_span_renderer_t *renderer, int y, int height)
{
    return renderer->render_rows (renderer, y, height, NULL, 0);
}

struct _cairo_tor_scan_converter {
    cairo_scan_converter_t base;

    glitter_scan_converter_t converter[1];
    cairo_fill_rule_t fill_rule;

    struct {
	struct pool base[1];
	cairo_half_open_span_t embedded[32];
    } span_pool;
};

typedef struct _cairo_tor_scan_converter cairo_tor_scan_converter_t;

static void
_cairo_tor_scan_converter_destroy (void *converter)
{
    cairo_tor_scan_converter_t *self = converter;
    if (self == NULL) {
	return;
    }
    _glitter_scan_converter_fini (self->converter);
    pool_fini (self->span_pool.base);
    free(self);
}

static cairo_status_t
_cairo_tor_scan_converter_add_edge (void		*converter,
				    const cairo_point_t *p1,
				    const cairo_point_t *p2,
				    int top, int bottom,
				    int dir)
{
    cairo_tor_scan_converter_t *self = converter;
    cairo_status_t status;
    cairo_edge_t edge;

    edge.line.p1 = *p1;
    edge.line.p2 = *p2;
    edge.top = top;
    edge.bottom = bottom;
    edge.dir = dir;

    status = glitter_scan_converter_add_edge (self->converter, &edge);
    if (unlikely (status))
	return _cairo_scan_converter_set_error (self, _cairo_error (status));

    return CAIRO_STATUS_SUCCESS;
}

static cairo_status_t
_cairo_tor_scan_converter_add_polygon (void		*converter,
				       const cairo_polygon_t *polygon)
{
    cairo_tor_scan_converter_t *self = converter;
    cairo_status_t status;
    int i;

    for (i = 0; i < polygon->num_edges; i++) {
	status = glitter_scan_converter_add_edge (self->converter,
						  &polygon->edges[i]);
	if (unlikely (status)) {
	    return _cairo_scan_converter_set_error (self,
						    _cairo_error (status));
	}
    }

    return CAIRO_STATUS_SUCCESS;
}

static cairo_status_t
_cairo_tor_scan_converter_generate (void			*converter,
				    cairo_span_renderer_t	*renderer)
{
    cairo_tor_scan_converter_t *self = converter;
    cairo_status_t status;

   status = glitter_scan_converter_render (self->converter,
					   self->fill_rule == CAIRO_FILL_RULE_WINDING,
					   renderer,
					   self->span_pool.base);
    if (unlikely (status))
	return _cairo_scan_converter_set_error (self, _cairo_error (status));

    return CAIRO_STATUS_SUCCESS;
}

cairo_scan_converter_t *
_cairo_tor_scan_converter_create (int			xmin,
				  int			ymin,
				  int			xmax,
				  int			ymax,
				  cairo_fill_rule_t	fill_rule)
{
    cairo_tor_scan_converter_t *self;
    cairo_status_t status;

    self = calloc (1, sizeof(struct _cairo_tor_scan_converter));
    if (unlikely (self == NULL)) {
	status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
	goto bail_nomem;
    }

    self->base.destroy = _cairo_tor_scan_converter_destroy;
    self->base.add_edge = _cairo_tor_scan_converter_add_edge;
    self->base.add_polygon = _cairo_tor_scan_converter_add_polygon;
    self->base.generate = _cairo_tor_scan_converter_generate;

    pool_init (self->span_pool.base,
	      250 * sizeof(self->span_pool.embedded[0]),
	      sizeof(self->span_pool.embedded));

    _glitter_scan_converter_init (self->converter);
    status = glitter_scan_converter_reset (self->converter,
					   xmin, ymin, xmax, ymax);
    if (unlikely (status))
	goto bail;

    self->fill_rule = fill_rule;

    return &self->base;

 bail:
    self->base.destroy(&self->base);
 bail_nomem:
    return _cairo_scan_converter_create_in_error (status);
}