DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (1aeaa33a64f9)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
/* cairo - a vector graphics library with display and print output
 *
 * Copyright © 2005 Red Hat, Inc
 *
 * This library is free software; you can redistribute it and/or
 * modify it either under the terms of the GNU Lesser General Public
 * License version 2.1 as published by the Free Software Foundation
 * (the "LGPL") or, at your option, under the terms of the Mozilla
 * Public License Version 1.1 (the "MPL"). If you do not alter this
 * notice, a recipient may use your version of this file under either
 * the MPL or the LGPL.
 *
 * You should have received a copy of the LGPL along with this library
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
 * You should have received a copy of the MPL along with this library
 * in the file COPYING-MPL-1.1
 *
 * The contents of this file are subject to the Mozilla Public License
 * Version 1.1 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
 * the specific language governing rights and limitations.
 *
 * The Original Code is the cairo graphics library.
 *
 * The Initial Developer of the Original Code is Red Hat, Inc.
 *
 * Contributor(s):
 *	Carl Worth <cworth@cworth.org>
 */

#include "cairoint.h"
#include "cairo-error-private.h"

void
_cairo_stroke_style_init (cairo_stroke_style_t *style)
{
    VG (VALGRIND_MAKE_MEM_UNDEFINED (style, sizeof (cairo_stroke_style_t)));

    style->line_width = CAIRO_GSTATE_LINE_WIDTH_DEFAULT;
    style->line_cap = CAIRO_GSTATE_LINE_CAP_DEFAULT;
    style->line_join = CAIRO_GSTATE_LINE_JOIN_DEFAULT;
    style->miter_limit = CAIRO_GSTATE_MITER_LIMIT_DEFAULT;

    style->dash = NULL;
    style->num_dashes = 0;
    style->dash_offset = 0.0;
}

cairo_status_t
_cairo_stroke_style_init_copy (cairo_stroke_style_t *style,
			       const cairo_stroke_style_t *other)
{
    if (CAIRO_INJECT_FAULT ())
	return _cairo_error (CAIRO_STATUS_NO_MEMORY);

    VG (VALGRIND_MAKE_MEM_UNDEFINED (style, sizeof (cairo_stroke_style_t)));

    style->line_width = other->line_width;
    style->line_cap = other->line_cap;
    style->line_join = other->line_join;
    style->miter_limit = other->miter_limit;

    style->num_dashes = other->num_dashes;

    if (other->dash == NULL) {
	style->dash = NULL;
    } else {
	style->dash = _cairo_malloc_ab (style->num_dashes, sizeof (double));
	if (unlikely (style->dash == NULL))
	    return _cairo_error (CAIRO_STATUS_NO_MEMORY);

	memcpy (style->dash, other->dash,
		style->num_dashes * sizeof (double));
    }

    style->dash_offset = other->dash_offset;

    return CAIRO_STATUS_SUCCESS;
}

void
_cairo_stroke_style_fini (cairo_stroke_style_t *style)
{
    if (style->dash) {
	free (style->dash);
	style->dash = NULL;
    }
    style->num_dashes = 0;

    VG (VALGRIND_MAKE_MEM_NOACCESS (style, sizeof (cairo_stroke_style_t)));
}

/*
 * For a stroke in the given style, compute the maximum distance
 * from the path that vertices could be generated.  In the case
 * of rotation in the ctm, the distance will not be exact.
 */
void
_cairo_stroke_style_max_distance_from_path (const cairo_stroke_style_t *style,
                                            const cairo_matrix_t *ctm,
                                            double *dx, double *dy)
{
    double style_expansion = 0.5;

    if (style->line_cap == CAIRO_LINE_CAP_SQUARE)
	style_expansion = M_SQRT1_2;

    if (style->line_join == CAIRO_LINE_JOIN_MITER &&
	style_expansion < M_SQRT2 * style->miter_limit)
    {
	style_expansion = M_SQRT2 * style->miter_limit;
    }

    style_expansion *= style->line_width;

    *dx = style_expansion * hypot (ctm->xx, ctm->xy);
    *dy = style_expansion * hypot (ctm->yy, ctm->yx);
}

/*
 * Computes the period of a dashed stroke style.
 * Returns 0 for non-dashed styles.
 */
double
_cairo_stroke_style_dash_period (const cairo_stroke_style_t *style)
{
    double period;
    unsigned int i;

    period = 0.0;
    for (i = 0; i < style->num_dashes; i++)
	period += style->dash[i];

    if (style->num_dashes & 1)
	period *= 2.0;

    return period;
}

/*
 * Coefficient of the linear approximation (minimizing square difference)
 * of the surface covered by round caps
 *
 * This can be computed in the following way:
 * the area inside the circle with radius w/2 and the region -d/2 <= x <= d/2 is:
 *   f(w,d) = 2 * integrate (sqrt (w*w/4 - x*x), x, -d/2, d/2)
 * The square difference to a generic linear approximation (c*d) in the range (0,w) would be:
 *   integrate ((f(w,d) - c*d)^2, d, 0, w)
 * To minimize this difference it is sufficient to find a solution of the differential with
 * respect to c:
 *   solve ( diff (integrate ((f(w,d) - c*d)^2, d, 0, w), c), c)
 * Which leads to c = 9/32*pi*w
 * Since we're not interested in the true area, but just in a coverage extimate,
 * we always divide the real area by the line width (w).
 * The same computation for square caps would be
 *   f(w,d) = 2 * integrate(w/2, x, -d/2, d/2)
 *   c = 1*w
 * but in this case it would not be an approximation, since f is already linear in d.
 */
#define ROUND_MINSQ_APPROXIMATION (9*M_PI/32)

/*
 * Computes the length of the "on" part of a dashed stroke style,
 * taking into account also line caps.
 * Returns 0 for non-dashed styles.
 */
double
_cairo_stroke_style_dash_stroked (const cairo_stroke_style_t *style)
{
    double stroked, cap_scale;
    unsigned int i;

    switch (style->line_cap) {
    default: ASSERT_NOT_REACHED;
    case CAIRO_LINE_CAP_BUTT:   cap_scale = 0.0; break;
    case CAIRO_LINE_CAP_ROUND:  cap_scale = ROUND_MINSQ_APPROXIMATION; break;
    case CAIRO_LINE_CAP_SQUARE: cap_scale = 1.0; break;
    }

    stroked = 0.0;
    if (style->num_dashes & 1) {
        /* Each dash element is used both as on and as off. The order in which they are summed is
	 * irrelevant, so sum the coverage of one dash element, taken both on and off at each iteration */
	for (i = 0; i < style->num_dashes; i++)
	    stroked += style->dash[i] + cap_scale * MIN (style->dash[i], style->line_width);
    } else {
        /* Even (0, 2, ...) dashes are on and simply counted for the coverage, odd dashes are off, thus
	 * their coverage is approximated based on the area covered by the caps of adjacent on dases. */
	for (i = 0; i < style->num_dashes; i+=2)
	    stroked += style->dash[i] + cap_scale * MIN (style->dash[i+1], style->line_width);
    }

    return stroked;
}

/*
 * Verifies if _cairo_stroke_style_dash_approximate should be used to generate
 * an approximation of the dash pattern in the specified style, when used for
 * stroking a path with the given CTM and tolerance.
 * Always %FALSE for non-dashed styles.
 */
cairo_bool_t
_cairo_stroke_style_dash_can_approximate (const cairo_stroke_style_t *style,
					  const cairo_matrix_t *ctm,
					  double tolerance)
{
    double period;

    if (! style->num_dashes)
        return FALSE;

    period = _cairo_stroke_style_dash_period (style);
    return _cairo_matrix_transformed_circle_major_axis (ctm, period) < tolerance;
}

/*
 * Create a 2-dashes approximation of a dashed style, by making the "on" and "off"
 * parts respect the original ratio.
 */
void
_cairo_stroke_style_dash_approximate (const cairo_stroke_style_t *style,
				      const cairo_matrix_t *ctm,
				      double tolerance,
				      double *dash_offset,
				      double *dashes,
				      unsigned int *num_dashes)
{
    double coverage, scale, offset;
    cairo_bool_t on = TRUE;
    unsigned int i = 0;

    coverage = _cairo_stroke_style_dash_stroked (style) / _cairo_stroke_style_dash_period (style);
    coverage = MIN (coverage, 1.0);
    scale = tolerance / _cairo_matrix_transformed_circle_major_axis (ctm, 1.0);

    /* We stop searching for a starting point as soon as the
     * offset reaches zero.  Otherwise when an initial dash
     * segment shrinks to zero it will be skipped over. */
    offset = style->dash_offset;
    while (offset > 0.0 && offset >= style->dash[i]) {
	offset -= style->dash[i];
	on = !on;
	if (++i == style->num_dashes)
	    i = 0;
    }

    *num_dashes = 2;

    /*
     * We want to create a new dash pattern with the same relative coverage,
     * but composed of just 2 elements with total length equal to scale.
     * Based on the formula in _cairo_stroke_style_dash_stroked:
     * scale * coverage = dashes[0] + cap_scale * MIN (dashes[1], line_width)
     *                  = MIN (dashes[0] + cap_scale * (scale - dashes[0]),
     *                         dashes[0] + cap_scale * line_width) = 
     *                  = MIN (dashes[0] * (1 - cap_scale) + cap_scale * scale,
     *	                       dashes[0] + cap_scale * line_width)
     *
     * Solving both cases we get:
     *   dashes[0] = scale * (coverage - cap_scale) / (1 - cap_scale)
     *	  when scale - dashes[0] <= line_width
     *	dashes[0] = scale * coverage - cap_scale * line_width
     *	  when scale - dashes[0] > line_width.
     *
     * Comparing the two cases we get:
     *   second > first
     *   second > scale * (coverage - cap_scale) / (1 - cap_scale)
     *   second - cap_scale * second - scale * coverage + scale * cap_scale > 0
     * 	 (scale * coverage - cap_scale * line_width) - cap_scale * second - scale * coverage + scale * cap_scale > 0
     *   - line_width - second + scale > 0
     *   scale - second > line_width
     * which is the condition for the second solution to be the valid one.
     * So when second > first, the second solution is the correct one (i.e.
     * the solution is always MAX (first, second).
     */
    switch (style->line_cap) {
    default:
        ASSERT_NOT_REACHED;
	dashes[0] = 0.0;
	break;

    case CAIRO_LINE_CAP_BUTT:
        /* Simplified formula (substituting 0 for cap_scale): */
        dashes[0] = scale * coverage;
	break;

    case CAIRO_LINE_CAP_ROUND:
        dashes[0] = MAX(scale * (coverage - ROUND_MINSQ_APPROXIMATION) / (1.0 - ROUND_MINSQ_APPROXIMATION),
			scale * coverage - ROUND_MINSQ_APPROXIMATION * style->line_width);
	break;

    case CAIRO_LINE_CAP_SQUARE:
        /*
	 * Special attention is needed to handle the case cap_scale == 1 (since the first solution
	 * is either indeterminate or -inf in this case). Since dash lengths are always >=0, using
	 * 0 as first solution always leads to the correct solution.
	 */
        dashes[0] = MAX(0.0, scale * coverage - style->line_width);
	break;
    }

    dashes[1] = scale - dashes[0];

    *dash_offset = on ? 0.0 : dashes[0];
}