DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (1aeaa33a64f9)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
/* cairo - a vector graphics library with display and print output
 *
 * Copyright © 2002 University of Southern California
 *
 * This library is free software; you can redistribute it and/or
 * modify it either under the terms of the GNU Lesser General Public
 * License version 2.1 as published by the Free Software Foundation
 * (the "LGPL") or, at your option, under the terms of the Mozilla
 * Public License Version 1.1 (the "MPL"). If you do not alter this
 * notice, a recipient may use your version of this file under either
 * the MPL or the LGPL.
 *
 * You should have received a copy of the LGPL along with this library
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
 * You should have received a copy of the MPL along with this library
 * in the file COPYING-MPL-1.1
 *
 * The contents of this file are subject to the Mozilla Public License
 * Version 1.1 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
 * the specific language governing rights and limitations.
 *
 * The Original Code is the cairo graphics library.
 *
 * The Initial Developer of the Original Code is University of Southern
 * California.
 *
 * Contributor(s):
 *	Carl D. Worth <cworth@cworth.org>
 */

#include "cairoint.h"

#include "cairo-slope-private.h"

cairo_bool_t
_cairo_spline_init (cairo_spline_t *spline,
		    cairo_spline_add_point_func_t add_point_func,
		    void *closure,
		    const cairo_point_t *a, const cairo_point_t *b,
		    const cairo_point_t *c, const cairo_point_t *d)
{
    spline->add_point_func = add_point_func;
    spline->closure = closure;

    spline->knots.a = *a;
    spline->knots.b = *b;
    spline->knots.c = *c;
    spline->knots.d = *d;

    if (a->x != b->x || a->y != b->y)
	_cairo_slope_init (&spline->initial_slope, &spline->knots.a, &spline->knots.b);
    else if (a->x != c->x || a->y != c->y)
	_cairo_slope_init (&spline->initial_slope, &spline->knots.a, &spline->knots.c);
    else if (a->x != d->x || a->y != d->y)
	_cairo_slope_init (&spline->initial_slope, &spline->knots.a, &spline->knots.d);
    else
	return FALSE;

    if (c->x != d->x || c->y != d->y)
	_cairo_slope_init (&spline->final_slope, &spline->knots.c, &spline->knots.d);
    else if (b->x != d->x || b->y != d->y)
	_cairo_slope_init (&spline->final_slope, &spline->knots.b, &spline->knots.d);
    else
	_cairo_slope_init (&spline->final_slope, &spline->knots.a, &spline->knots.d);

    return TRUE;
}

static cairo_status_t
_cairo_spline_add_point (cairo_spline_t *spline, cairo_point_t *point)
{
    cairo_point_t *prev;

    prev = &spline->last_point;
    if (prev->x == point->x && prev->y == point->y)
	return CAIRO_STATUS_SUCCESS;

    spline->last_point = *point;
    return spline->add_point_func (spline->closure, point);
}

static void
_lerp_half (const cairo_point_t *a, const cairo_point_t *b, cairo_point_t *result)
{
    result->x = a->x + ((b->x - a->x) >> 1);
    result->y = a->y + ((b->y - a->y) >> 1);
}

static void
_de_casteljau (cairo_spline_knots_t *s1, cairo_spline_knots_t *s2)
{
    cairo_point_t ab, bc, cd;
    cairo_point_t abbc, bccd;
    cairo_point_t final;

    _lerp_half (&s1->a, &s1->b, &ab);
    _lerp_half (&s1->b, &s1->c, &bc);
    _lerp_half (&s1->c, &s1->d, &cd);
    _lerp_half (&ab, &bc, &abbc);
    _lerp_half (&bc, &cd, &bccd);
    _lerp_half (&abbc, &bccd, &final);

    s2->a = final;
    s2->b = bccd;
    s2->c = cd;
    s2->d = s1->d;

    s1->b = ab;
    s1->c = abbc;
    s1->d = final;
}

/* Return an upper bound on the error (squared) that could result from
 * approximating a spline as a line segment connecting the two endpoints. */
static double
_cairo_spline_error_squared (const cairo_spline_knots_t *knots)
{
    double bdx, bdy, berr;
    double cdx, cdy, cerr;

    /* We are going to compute the distance (squared) between each of the the b
     * and c control points and the segment a-b. The maximum of these two
     * distances will be our approximation error. */

    bdx = _cairo_fixed_to_double (knots->b.x - knots->a.x);
    bdy = _cairo_fixed_to_double (knots->b.y - knots->a.y);

    cdx = _cairo_fixed_to_double (knots->c.x - knots->a.x);
    cdy = _cairo_fixed_to_double (knots->c.y - knots->a.y);

    if (knots->a.x != knots->d.x || knots->a.y != knots->d.y) {
	/* Intersection point (px):
	 *     px = p1 + u(p2 - p1)
	 *     (p - px) ∙ (p2 - p1) = 0
	 * Thus:
	 *     u = ((p - p1) ∙ (p2 - p1)) / ∥p2 - p1∥²;
	 */

	double dx, dy, u, v;

	dx = _cairo_fixed_to_double (knots->d.x - knots->a.x);
	dy = _cairo_fixed_to_double (knots->d.y - knots->a.y);
	 v = dx * dx + dy * dy;

	u = bdx * dx + bdy * dy;
	if (u <= 0) {
	    /* bdx -= 0;
	     * bdy -= 0;
	     */
	} else if (u >= v) {
	    bdx -= dx;
	    bdy -= dy;
	} else {
	    bdx -= u/v * dx;
	    bdy -= u/v * dy;
	}

	u = cdx * dx + cdy * dy;
	if (u <= 0) {
	    /* cdx -= 0;
	     * cdy -= 0;
	     */
	} else if (u >= v) {
	    cdx -= dx;
	    cdy -= dy;
	} else {
	    cdx -= u/v * dx;
	    cdy -= u/v * dy;
	}
    }

    berr = bdx * bdx + bdy * bdy;
    cerr = cdx * cdx + cdy * cdy;
    if (berr > cerr)
	return berr;
    else
	return cerr;
}

static cairo_status_t
_cairo_spline_decompose_into (cairo_spline_knots_t *s1, double tolerance_squared, cairo_spline_t *result)
{
    cairo_spline_knots_t s2;
    cairo_status_t status;

    if (_cairo_spline_error_squared (s1) < tolerance_squared) {
	return _cairo_spline_add_point (result, &s1->a);
    }

    _de_casteljau (s1, &s2);

    status = _cairo_spline_decompose_into (s1, tolerance_squared, result);
    if (unlikely (status)) {
	return status;
    }

    status = _cairo_spline_decompose_into (&s2, tolerance_squared, result);
    return status;
}

cairo_status_t
_cairo_spline_decompose (cairo_spline_t *spline, double tolerance)
{
    cairo_spline_knots_t s1;
    cairo_status_t status;

    s1 = spline->knots;
    spline->last_point = s1.a;
    status = _cairo_spline_decompose_into (&s1, tolerance * tolerance, spline);
    if (unlikely (status))
	return status;

    return _cairo_spline_add_point (spline, &spline->knots.d);
}

/* Note: this function is only good for computing bounds in device space. */
cairo_status_t
_cairo_spline_bound (cairo_spline_add_point_func_t add_point_func,
		     void *closure,
		     const cairo_point_t *p0, const cairo_point_t *p1,
		     const cairo_point_t *p2, const cairo_point_t *p3)
{
    double x0, x1, x2, x3;
    double y0, y1, y2, y3;
    double a, b, c;
    double t[4];
    int t_num = 0, i;
    cairo_status_t status;

    x0 = _cairo_fixed_to_double (p0->x);
    y0 = _cairo_fixed_to_double (p0->y);
    x1 = _cairo_fixed_to_double (p1->x);
    y1 = _cairo_fixed_to_double (p1->y);
    x2 = _cairo_fixed_to_double (p2->x);
    y2 = _cairo_fixed_to_double (p2->y);
    x3 = _cairo_fixed_to_double (p3->x);
    y3 = _cairo_fixed_to_double (p3->y);

    /* The spline can be written as a polynomial of the four points:
     *
     *   (1-t)³p0 + 3t(1-t)²p1 + 3t²(1-t)p2 + t³p3
     *
     * for 0≤t≤1.  Now, the X and Y components of the spline follow the
     * same polynomial but with x and y replaced for p.  To find the
     * bounds of the spline, we just need to find the X and Y bounds.
     * To find the bound, we take the derivative and equal it to zero,
     * and solve to find the t's that give the extreme points.
     *
     * Here is the derivative of the curve, sorted on t:
     *
     *   3t²(-p0+3p1-3p2+p3) + 2t(3p0-6p1+3p2) -3p0+3p1
     *
     * Let:
     *
     *   a = -p0+3p1-3p2+p3
     *   b =  p0-2p1+p2
     *   c = -p0+p1
     *
     * Gives:
     *
     *   a.t² + 2b.t + c = 0
     *
     * With:
     *
     *   delta = b*b - a*c
     *
     * the extreme points are at -c/2b if a is zero, at (-b±√delta)/a if
     * delta is positive, and at -b/a if delta is zero.
     */

#define ADD(t0) \
    { \
	double _t0 = (t0); \
	if (0 < _t0 && _t0 < 1) \
	    t[t_num++] = _t0; \
    }

#define FIND_EXTREMES(a,b,c) \
    { \
	if (a == 0) { \
	    if (b != 0) \
		ADD (-c / (2*b)); \
	} else { \
	    double b2 = b * b; \
	    double delta = b2 - a * c; \
	    if (delta > 0) { \
		cairo_bool_t feasible; \
		double _2ab = 2 * a * b; \
		/* We are only interested in solutions t that satisfy 0<t<1 \
		 * here.  We do some checks to avoid sqrt if the solutions \
		 * are not in that range.  The checks can be derived from: \
		 * \
		 *   0 < (-b±√delta)/a < 1 \
		 */ \
		if (_2ab >= 0) \
		    feasible = delta > b2 && delta < a*a + b2 + _2ab; \
		else if (-b / a >= 1) \
		    feasible = delta < b2 && delta > a*a + b2 + _2ab; \
		else \
		    feasible = delta < b2 || delta < a*a + b2 + _2ab; \
	        \
		if (unlikely (feasible)) { \
		    double sqrt_delta = sqrt (delta); \
		    ADD ((-b - sqrt_delta) / a); \
		    ADD ((-b + sqrt_delta) / a); \
		} \
	    } else if (delta == 0) { \
		ADD (-b / a); \
	    } \
	} \
    }

    /* Find X extremes */
    a = -x0 + 3*x1 - 3*x2 + x3;
    b =  x0 - 2*x1 + x2;
    c = -x0 + x1;
    FIND_EXTREMES (a, b, c);

    /* Find Y extremes */
    a = -y0 + 3*y1 - 3*y2 + y3;
    b =  y0 - 2*y1 + y2;
    c = -y0 + y1;
    FIND_EXTREMES (a, b, c);

    status = add_point_func (closure, p0);
    if (unlikely (status))
	return status;

    for (i = 0; i < t_num; i++) {
	cairo_point_t p;
	double x, y;
        double t_1_0, t_0_1;
        double t_2_0, t_0_2;
        double t_3_0, t_2_1_3, t_1_2_3, t_0_3;

        t_1_0 = t[i];          /*      t  */
        t_0_1 = 1 - t_1_0;     /* (1 - t) */

        t_2_0 = t_1_0 * t_1_0; /*      t  *      t  */
        t_0_2 = t_0_1 * t_0_1; /* (1 - t) * (1 - t) */

        t_3_0   = t_2_0 * t_1_0;     /*      t  *      t  *      t      */
        t_2_1_3 = t_2_0 * t_0_1 * 3; /*      t  *      t  * (1 - t) * 3 */
        t_1_2_3 = t_1_0 * t_0_2 * 3; /*      t  * (1 - t) * (1 - t) * 3 */
        t_0_3   = t_0_1 * t_0_2;     /* (1 - t) * (1 - t) * (1 - t)     */

        /* Bezier polynomial */
        x = x0 * t_0_3
          + x1 * t_1_2_3
          + x2 * t_2_1_3
          + x3 * t_3_0;
        y = y0 * t_0_3
          + y1 * t_1_2_3
          + y2 * t_2_1_3
          + y3 * t_3_0;

	p.x = _cairo_fixed_from_double (x);
	p.y = _cairo_fixed_from_double (y);
	status = add_point_func (closure, &p);
	if (unlikely (status))
	    return status;
    }

    return add_point_func (closure, p3);
}