DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (1aeaa33a64f9)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
/* -*- Mode: c; c-basic-offset: 4; indent-tabs-mode: t; tab-width: 8; -*- */
/* cairo - a vector graphics library with display and print output
 *
 * Copyright © 2004 David Reveman
 * Copyright © 2005 Red Hat, Inc.
 *
 * Permission to use, copy, modify, distribute, and sell this software
 * and its documentation for any purpose is hereby granted without
 * fee, provided that the above copyright notice appear in all copies
 * and that both that copyright notice and this permission notice
 * appear in supporting documentation, and that the name of David
 * Reveman not be used in advertising or publicity pertaining to
 * distribution of the software without specific, written prior
 * permission. David Reveman makes no representations about the
 * suitability of this software for any purpose.  It is provided "as
 * is" without express or implied warranty.
 *
 * DAVID REVEMAN DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
 * SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
 * FITNESS, IN NO EVENT SHALL DAVID REVEMAN BE LIABLE FOR ANY SPECIAL,
 * INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
 * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR
 * IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 * Authors: David Reveman <davidr@novell.com>
 *	    Keith Packard <keithp@keithp.com>
 *	    Carl Worth <cworth@cworth.org>
 */

#include "cairoint.h"
#include "cairo-error-private.h"
#include "cairo-freed-pool-private.h"

/**
 * SECTION:cairo-pattern
 * @Title: cairo_pattern_t
 * @Short_Description: Sources for drawing
 * @See_Also: #cairo_t, #cairo_surface_t
 *
 * #cairo_pattern_t is the paint with which cairo draws.
 * The primary use of patterns is as the source for all cairo drawing 
 * operations, although they can also be used as masks, that is, as the 
 * brush too.
 *
 * A cairo pattern is created by using one of the many constructors,
 * of the form cairo_pattern_create_<emphasis>type</emphasis>()
 * or implicitly through
 * cairo_set_source_<emphasis>type</emphasis>() functions.
 */

#if HAS_FREED_POOL
static freed_pool_t freed_pattern_pool[4];
#endif

static const cairo_solid_pattern_t _cairo_pattern_nil = {
    { CAIRO_PATTERN_TYPE_SOLID,		/* type */
      CAIRO_REFERENCE_COUNT_INVALID,	/* ref_count */
      CAIRO_STATUS_NO_MEMORY,		/* status */
      { 0, 0, 0, NULL },		/* user_data */
      { 1., 0., 0., 1., 0., 0., },	/* matrix */
      CAIRO_FILTER_DEFAULT,		/* filter */
      CAIRO_EXTEND_GRADIENT_DEFAULT },	/* extend */
};

static const cairo_solid_pattern_t _cairo_pattern_nil_null_pointer = {
    { CAIRO_PATTERN_TYPE_SOLID,		/* type */
      CAIRO_REFERENCE_COUNT_INVALID,	/* ref_count */
      CAIRO_STATUS_NULL_POINTER,	/* status */
      { 0, 0, 0, NULL },		/* user_data */
      { 1., 0., 0., 1., 0., 0., },	/* matrix */
      CAIRO_FILTER_DEFAULT,		/* filter */
      CAIRO_EXTEND_GRADIENT_DEFAULT },	/* extend */
};

const cairo_solid_pattern_t _cairo_pattern_black = {
    { CAIRO_PATTERN_TYPE_SOLID,		/* type */
      CAIRO_REFERENCE_COUNT_INVALID,	/* ref_count */
      CAIRO_STATUS_SUCCESS,		/* status */
      { 0, 0, 0, NULL },		/* user_data */
      { 1., 0., 0., 1., 0., 0., },	/* matrix */
      CAIRO_FILTER_DEFAULT,		/* filter */
      CAIRO_EXTEND_GRADIENT_DEFAULT},	/* extend */
    { 0., 0., 0., 1., 0, 0, 0, 0xffff },/* color (double rgba, short rgba) */
};

const cairo_solid_pattern_t _cairo_pattern_clear = {
    { CAIRO_PATTERN_TYPE_SOLID,		/* type */
      CAIRO_REFERENCE_COUNT_INVALID,	/* ref_count */
      CAIRO_STATUS_SUCCESS,		/* status */
      { 0, 0, 0, NULL },		/* user_data */
      { 1., 0., 0., 1., 0., 0., },	/* matrix */
      CAIRO_FILTER_DEFAULT,		/* filter */
      CAIRO_EXTEND_GRADIENT_DEFAULT},	/* extend */
    { 0., 0., 0., 0., 0, 0, 0, 0 },/* color (double rgba, short rgba) */
};

const cairo_solid_pattern_t _cairo_pattern_white = {
    { CAIRO_PATTERN_TYPE_SOLID,		/* type */
      CAIRO_REFERENCE_COUNT_INVALID,	/* ref_count */
      CAIRO_STATUS_SUCCESS,		/* status */
      { 0, 0, 0, NULL },		/* user_data */
      { 1., 0., 0., 1., 0., 0., },	/* matrix */
      CAIRO_FILTER_DEFAULT,		/* filter */
      CAIRO_EXTEND_GRADIENT_DEFAULT},	/* extend */
    { 1., 1., 1., 1., 0xffff, 0xffff, 0xffff, 0xffff },/* color (double rgba, short rgba) */
};

/**
 * _cairo_pattern_set_error:
 * @pattern: a pattern
 * @status: a status value indicating an error
 *
 * Atomically sets pattern->status to @status and calls _cairo_error;
 * Does nothing if status is %CAIRO_STATUS_SUCCESS.
 *
 * All assignments of an error status to pattern->status should happen
 * through _cairo_pattern_set_error(). Note that due to the nature of
 * the atomic operation, it is not safe to call this function on the nil
 * objects.
 *
 * The purpose of this function is to allow the user to set a
 * breakpoint in _cairo_error() to generate a stack trace for when the
 * user causes cairo to detect an error.
 **/
static cairo_status_t
_cairo_pattern_set_error (cairo_pattern_t *pattern,
			  cairo_status_t status)
{
    if (status == CAIRO_STATUS_SUCCESS)
	return status;

    /* Don't overwrite an existing error. This preserves the first
     * error, which is the most significant. */
    _cairo_status_set_error (&pattern->status, status);

    return _cairo_error (status);
}

static void
_cairo_pattern_init (cairo_pattern_t *pattern, cairo_pattern_type_t type)
{
#if HAVE_VALGRIND
    switch (type) {
    case CAIRO_PATTERN_TYPE_SOLID:
	VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_solid_pattern_t));
	break;
    case CAIRO_PATTERN_TYPE_SURFACE:
	VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_surface_pattern_t));
	break;
    case CAIRO_PATTERN_TYPE_LINEAR:
	VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_linear_pattern_t));
	break;
    case CAIRO_PATTERN_TYPE_RADIAL:
	VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_radial_pattern_t));
	break;
    }
#endif

    pattern->type      = type;
    pattern->status    = CAIRO_STATUS_SUCCESS;

    /* Set the reference count to zero for on-stack patterns.
     * Callers needs to explicitly increment the count for heap allocations. */
    CAIRO_REFERENCE_COUNT_INIT (&pattern->ref_count, 0);

    _cairo_user_data_array_init (&pattern->user_data);

    if (type == CAIRO_PATTERN_TYPE_SURFACE)
	pattern->extend = CAIRO_EXTEND_SURFACE_DEFAULT;
    else
	pattern->extend = CAIRO_EXTEND_GRADIENT_DEFAULT;

    pattern->filter    = CAIRO_FILTER_DEFAULT;

    pattern->has_component_alpha = FALSE;

    cairo_matrix_init_identity (&pattern->matrix);
}

static cairo_status_t
_cairo_gradient_pattern_init_copy (cairo_gradient_pattern_t	  *pattern,
				   const cairo_gradient_pattern_t *other)
{
    if (CAIRO_INJECT_FAULT ())
	return _cairo_error (CAIRO_STATUS_NO_MEMORY);

    if (other->base.type == CAIRO_PATTERN_TYPE_LINEAR)
    {
	cairo_linear_pattern_t *dst = (cairo_linear_pattern_t *) pattern;
	cairo_linear_pattern_t *src = (cairo_linear_pattern_t *) other;

	*dst = *src;
    }
    else
    {
	cairo_radial_pattern_t *dst = (cairo_radial_pattern_t *) pattern;
	cairo_radial_pattern_t *src = (cairo_radial_pattern_t *) other;

	*dst = *src;
    }

    if (other->stops == other->stops_embedded)
	pattern->stops = pattern->stops_embedded;
    else if (other->stops)
    {
	pattern->stops = _cairo_malloc_ab (other->stops_size,
					   sizeof (cairo_gradient_stop_t));
	if (unlikely (pattern->stops == NULL)) {
	    pattern->stops_size = 0;
	    pattern->n_stops = 0;
	    return _cairo_pattern_set_error (&pattern->base, CAIRO_STATUS_NO_MEMORY);
	}

	memcpy (pattern->stops, other->stops,
		other->n_stops * sizeof (cairo_gradient_stop_t));
    }

    return CAIRO_STATUS_SUCCESS;
}

cairo_status_t
_cairo_pattern_init_copy (cairo_pattern_t	*pattern,
			  const cairo_pattern_t *other)
{
    if (other->status)
	return _cairo_pattern_set_error (pattern, other->status);

    switch (other->type) {
    case CAIRO_PATTERN_TYPE_SOLID: {
	cairo_solid_pattern_t *dst = (cairo_solid_pattern_t *) pattern;
	cairo_solid_pattern_t *src = (cairo_solid_pattern_t *) other;

	VG (VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_solid_pattern_t)));

	*dst = *src;
    } break;
    case CAIRO_PATTERN_TYPE_SURFACE: {
	cairo_surface_pattern_t *dst = (cairo_surface_pattern_t *) pattern;
	cairo_surface_pattern_t *src = (cairo_surface_pattern_t *) other;

	VG (VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_surface_pattern_t)));

	*dst = *src;
	cairo_surface_reference (dst->surface);
    } break;
    case CAIRO_PATTERN_TYPE_LINEAR:
    case CAIRO_PATTERN_TYPE_RADIAL: {
	cairo_gradient_pattern_t *dst = (cairo_gradient_pattern_t *) pattern;
	cairo_gradient_pattern_t *src = (cairo_gradient_pattern_t *) other;
	cairo_status_t status;

	if (other->type == CAIRO_PATTERN_TYPE_LINEAR) {
	    VG (VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_linear_pattern_t)));
	} else {
	    VG (VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_radial_pattern_t)));
	}

	status = _cairo_gradient_pattern_init_copy (dst, src);
	if (unlikely (status))
	    return status;

    } break;
    }

    /* The reference count and user_data array are unique to the copy. */
    CAIRO_REFERENCE_COUNT_INIT (&pattern->ref_count, 0);
    _cairo_user_data_array_init (&pattern->user_data);

    return CAIRO_STATUS_SUCCESS;
}

void
_cairo_pattern_init_static_copy (cairo_pattern_t	*pattern,
				 const cairo_pattern_t *other)
{
    int size;

    assert (other->status == CAIRO_STATUS_SUCCESS);

    switch (other->type) {
    default:
	ASSERT_NOT_REACHED;
    case CAIRO_PATTERN_TYPE_SOLID:
	size = sizeof (cairo_solid_pattern_t);
	break;
    case CAIRO_PATTERN_TYPE_SURFACE:
	size = sizeof (cairo_surface_pattern_t);
	break;
    case CAIRO_PATTERN_TYPE_LINEAR:
	size = sizeof (cairo_linear_pattern_t);
	break;
    case CAIRO_PATTERN_TYPE_RADIAL:
	size = sizeof (cairo_radial_pattern_t);
	break;
    }

    memcpy (pattern, other, size);

    CAIRO_REFERENCE_COUNT_INIT (&pattern->ref_count, 0);
    _cairo_user_data_array_init (&pattern->user_data);
}

cairo_status_t
_cairo_pattern_init_snapshot (cairo_pattern_t       *pattern,
			      const cairo_pattern_t *other)
{
    cairo_status_t status;

    /* We don't bother doing any fancy copy-on-write implementation
     * for the pattern's data. It's generally quite tiny. */
    status = _cairo_pattern_init_copy (pattern, other);
    if (unlikely (status))
	return status;

    /* But we do let the surface snapshot stuff be as fancy as it
     * would like to be. */
    if (pattern->type == CAIRO_PATTERN_TYPE_SURFACE) {
	cairo_surface_pattern_t *surface_pattern =
	    (cairo_surface_pattern_t *) pattern;
	cairo_surface_t *surface = surface_pattern->surface;

	surface_pattern->surface = _cairo_surface_snapshot (surface);

	cairo_surface_destroy (surface);

	if (surface_pattern->surface->status)
	    return surface_pattern->surface->status;
    }

    return CAIRO_STATUS_SUCCESS;
}

void
_cairo_pattern_fini (cairo_pattern_t *pattern)
{
    _cairo_user_data_array_fini (&pattern->user_data);

    switch (pattern->type) {
    case CAIRO_PATTERN_TYPE_SOLID:
	break;
    case CAIRO_PATTERN_TYPE_SURFACE: {
	cairo_surface_pattern_t *surface_pattern =
	    (cairo_surface_pattern_t *) pattern;

	cairo_surface_destroy (surface_pattern->surface);
    } break;
    case CAIRO_PATTERN_TYPE_LINEAR:
    case CAIRO_PATTERN_TYPE_RADIAL: {
	cairo_gradient_pattern_t *gradient =
	    (cairo_gradient_pattern_t *) pattern;

	if (gradient->stops && gradient->stops != gradient->stops_embedded)
	    free (gradient->stops);
    } break;
    }

#if HAVE_VALGRIND
    switch (pattern->type) {
    case CAIRO_PATTERN_TYPE_SOLID:
	VALGRIND_MAKE_MEM_NOACCESS (pattern, sizeof (cairo_solid_pattern_t));
	break;
    case CAIRO_PATTERN_TYPE_SURFACE:
	VALGRIND_MAKE_MEM_NOACCESS (pattern, sizeof (cairo_surface_pattern_t));
	break;
    case CAIRO_PATTERN_TYPE_LINEAR:
	VALGRIND_MAKE_MEM_NOACCESS (pattern, sizeof (cairo_linear_pattern_t));
	break;
    case CAIRO_PATTERN_TYPE_RADIAL:
	VALGRIND_MAKE_MEM_NOACCESS (pattern, sizeof (cairo_radial_pattern_t));
	break;
    }
#endif
}

cairo_status_t
_cairo_pattern_create_copy (cairo_pattern_t	  **pattern_out,
			    const cairo_pattern_t  *other)
{
    cairo_pattern_t *pattern;
    cairo_status_t status;

    if (other->status)
	return other->status;

    switch (other->type) {
    case CAIRO_PATTERN_TYPE_SOLID:
	pattern = malloc (sizeof (cairo_solid_pattern_t));
	break;
    case CAIRO_PATTERN_TYPE_SURFACE:
	pattern = malloc (sizeof (cairo_surface_pattern_t));
	break;
    case CAIRO_PATTERN_TYPE_LINEAR:
	pattern = malloc (sizeof (cairo_linear_pattern_t));
	break;
    case CAIRO_PATTERN_TYPE_RADIAL:
	pattern = malloc (sizeof (cairo_radial_pattern_t));
	break;
    default:
	ASSERT_NOT_REACHED;
	return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH);
    }
    if (unlikely (pattern == NULL))
	return _cairo_error (CAIRO_STATUS_NO_MEMORY);

    status = _cairo_pattern_init_copy (pattern, other);
    if (unlikely (status)) {
	free (pattern);
	return status;
    }

    CAIRO_REFERENCE_COUNT_INIT (&pattern->ref_count, 1);
    *pattern_out = pattern;
    return CAIRO_STATUS_SUCCESS;
}


void
_cairo_pattern_init_solid (cairo_solid_pattern_t *pattern,
			   const cairo_color_t	 *color)
{
    _cairo_pattern_init (&pattern->base, CAIRO_PATTERN_TYPE_SOLID);
    pattern->color = *color;
}

void
_cairo_pattern_init_for_surface (cairo_surface_pattern_t *pattern,
				 cairo_surface_t	 *surface)
{
    if (surface->status) {
	/* Force to solid to simplify the pattern_fini process. */
	_cairo_pattern_init (&pattern->base, CAIRO_PATTERN_TYPE_SOLID);
	_cairo_pattern_set_error (&pattern->base, surface->status);
	return;
    }

    _cairo_pattern_init (&pattern->base, CAIRO_PATTERN_TYPE_SURFACE);

    pattern->surface = cairo_surface_reference (surface);
}

static void
_cairo_pattern_init_gradient (cairo_gradient_pattern_t *pattern,
			      cairo_pattern_type_t     type)
{
    _cairo_pattern_init (&pattern->base, type);

    pattern->n_stops    = 0;
    pattern->stops_size = 0;
    pattern->stops      = NULL;
}

void
_cairo_pattern_init_linear (cairo_linear_pattern_t *pattern,
			    double x0, double y0, double x1, double y1)
{
    _cairo_pattern_init_gradient (&pattern->base, CAIRO_PATTERN_TYPE_LINEAR);

    pattern->p1.x = _cairo_fixed_from_double (x0);
    pattern->p1.y = _cairo_fixed_from_double (y0);
    pattern->p2.x = _cairo_fixed_from_double (x1);
    pattern->p2.y = _cairo_fixed_from_double (y1);
}

void
_cairo_pattern_init_radial (cairo_radial_pattern_t *pattern,
			    double cx0, double cy0, double radius0,
			    double cx1, double cy1, double radius1)
{
    _cairo_pattern_init_gradient (&pattern->base, CAIRO_PATTERN_TYPE_RADIAL);

    pattern->c1.x = _cairo_fixed_from_double (cx0);
    pattern->c1.y = _cairo_fixed_from_double (cy0);
    pattern->r1   = _cairo_fixed_from_double (fabs (radius0));
    pattern->c2.x = _cairo_fixed_from_double (cx1);
    pattern->c2.y = _cairo_fixed_from_double (cy1);
    pattern->r2   = _cairo_fixed_from_double (fabs (radius1));
}

cairo_pattern_t *
_cairo_pattern_create_solid (const cairo_color_t *color)
{
    cairo_solid_pattern_t *pattern;

    pattern =
	_freed_pool_get (&freed_pattern_pool[CAIRO_PATTERN_TYPE_SOLID]);
    if (unlikely (pattern == NULL)) {
	/* None cached, need to create a new pattern. */
	pattern = malloc (sizeof (cairo_solid_pattern_t));
	if (unlikely (pattern == NULL)) {
	    _cairo_error_throw (CAIRO_STATUS_NO_MEMORY);
	    return (cairo_pattern_t *) &_cairo_pattern_nil;
	}
    }

    _cairo_pattern_init_solid (pattern, color);
    CAIRO_REFERENCE_COUNT_INIT (&pattern->base.ref_count, 1);

    return &pattern->base;
}

cairo_pattern_t *
_cairo_pattern_create_in_error (cairo_status_t status)
{
    cairo_pattern_t *pattern;

    if (status == CAIRO_STATUS_NO_MEMORY)
	return (cairo_pattern_t *)&_cairo_pattern_nil.base;

    CAIRO_MUTEX_INITIALIZE ();

    pattern = _cairo_pattern_create_solid (CAIRO_COLOR_BLACK);
    if (pattern->status == CAIRO_STATUS_SUCCESS)
	status = _cairo_pattern_set_error (pattern, status);

    return pattern;
}

/**
 * cairo_pattern_create_rgb:
 * @red: red component of the color
 * @green: green component of the color
 * @blue: blue component of the color
 *
 * Creates a new #cairo_pattern_t corresponding to an opaque color.  The
 * color components are floating point numbers in the range 0 to 1.
 * If the values passed in are outside that range, they will be
 * clamped.
 *
 * Return value: the newly created #cairo_pattern_t if successful, or
 * an error pattern in case of no memory.  The caller owns the
 * returned object and should call cairo_pattern_destroy() when
 * finished with it.
 *
 * This function will always return a valid pointer, but if an error
 * occurred the pattern status will be set to an error.  To inspect
 * the status of a pattern use cairo_pattern_status().
 **/
cairo_pattern_t *
cairo_pattern_create_rgb (double red, double green, double blue)
{
    cairo_color_t color;

    red   = _cairo_restrict_value (red,   0.0, 1.0);
    green = _cairo_restrict_value (green, 0.0, 1.0);
    blue  = _cairo_restrict_value (blue,  0.0, 1.0);

    _cairo_color_init_rgb (&color, red, green, blue);

    CAIRO_MUTEX_INITIALIZE ();

    return _cairo_pattern_create_solid (&color);
}
slim_hidden_def (cairo_pattern_create_rgb);

/**
 * cairo_pattern_create_rgba:
 * @red: red component of the color
 * @green: green component of the color
 * @blue: blue component of the color
 * @alpha: alpha component of the color
 *
 * Creates a new #cairo_pattern_t corresponding to a translucent color.
 * The color components are floating point numbers in the range 0 to
 * 1.  If the values passed in are outside that range, they will be
 * clamped.
 *
 * Return value: the newly created #cairo_pattern_t if successful, or
 * an error pattern in case of no memory.  The caller owns the
 * returned object and should call cairo_pattern_destroy() when
 * finished with it.
 *
 * This function will always return a valid pointer, but if an error
 * occurred the pattern status will be set to an error.  To inspect
 * the status of a pattern use cairo_pattern_status().
 **/
cairo_pattern_t *
cairo_pattern_create_rgba (double red, double green, double blue,
			   double alpha)
{
    cairo_color_t color;

    red   = _cairo_restrict_value (red,   0.0, 1.0);
    green = _cairo_restrict_value (green, 0.0, 1.0);
    blue  = _cairo_restrict_value (blue,  0.0, 1.0);
    alpha = _cairo_restrict_value (alpha, 0.0, 1.0);

    _cairo_color_init_rgba (&color, red, green, blue, alpha);

    CAIRO_MUTEX_INITIALIZE ();

    return _cairo_pattern_create_solid (&color);
}
slim_hidden_def (cairo_pattern_create_rgba);

/**
 * cairo_pattern_create_for_surface:
 * @surface: the surface
 *
 * Create a new #cairo_pattern_t for the given surface.
 *
 * Return value: the newly created #cairo_pattern_t if successful, or
 * an error pattern in case of no memory.  The caller owns the
 * returned object and should call cairo_pattern_destroy() when
 * finished with it.
 *
 * This function will always return a valid pointer, but if an error
 * occurred the pattern status will be set to an error.  To inspect
 * the status of a pattern use cairo_pattern_status().
 **/
cairo_pattern_t *
cairo_pattern_create_for_surface (cairo_surface_t *surface)
{
    cairo_surface_pattern_t *pattern;

    if (surface == NULL) {
	_cairo_error_throw (CAIRO_STATUS_NULL_POINTER);
	return (cairo_pattern_t*) &_cairo_pattern_nil_null_pointer;
    }

    if (surface->status)
	return _cairo_pattern_create_in_error (surface->status);

    pattern =
	_freed_pool_get (&freed_pattern_pool[CAIRO_PATTERN_TYPE_SURFACE]);
    if (unlikely (pattern == NULL)) {
	pattern = malloc (sizeof (cairo_surface_pattern_t));
	if (unlikely (pattern == NULL)) {
	    _cairo_error_throw (CAIRO_STATUS_NO_MEMORY);
	    return (cairo_pattern_t *)&_cairo_pattern_nil.base;
	}
    }

    CAIRO_MUTEX_INITIALIZE ();

    _cairo_pattern_init_for_surface (pattern, surface);
    CAIRO_REFERENCE_COUNT_INIT (&pattern->base.ref_count, 1);

    return &pattern->base;
}
slim_hidden_def (cairo_pattern_create_for_surface);

/**
 * cairo_pattern_create_linear:
 * @x0: x coordinate of the start point
 * @y0: y coordinate of the start point
 * @x1: x coordinate of the end point
 * @y1: y coordinate of the end point
 *
 * Create a new linear gradient #cairo_pattern_t along the line defined
 * by (x0, y0) and (x1, y1).  Before using the gradient pattern, a
 * number of color stops should be defined using
 * cairo_pattern_add_color_stop_rgb() or
 * cairo_pattern_add_color_stop_rgba().
 *
 * Note: The coordinates here are in pattern space. For a new pattern,
 * pattern space is identical to user space, but the relationship
 * between the spaces can be changed with cairo_pattern_set_matrix().
 *
 * Return value: the newly created #cairo_pattern_t if successful, or
 * an error pattern in case of no memory.  The caller owns the
 * returned object and should call cairo_pattern_destroy() when
 * finished with it.
 *
 * This function will always return a valid pointer, but if an error
 * occurred the pattern status will be set to an error.  To inspect
 * the status of a pattern use cairo_pattern_status().
 **/
cairo_pattern_t *
cairo_pattern_create_linear (double x0, double y0, double x1, double y1)
{
    cairo_linear_pattern_t *pattern;

    pattern =
	_freed_pool_get (&freed_pattern_pool[CAIRO_PATTERN_TYPE_LINEAR]);
    if (unlikely (pattern == NULL)) {
	pattern = malloc (sizeof (cairo_linear_pattern_t));
	if (unlikely (pattern == NULL)) {
	    _cairo_error_throw (CAIRO_STATUS_NO_MEMORY);
	    return (cairo_pattern_t *) &_cairo_pattern_nil.base;
	}
    }

    CAIRO_MUTEX_INITIALIZE ();

    _cairo_pattern_init_linear (pattern, x0, y0, x1, y1);
    CAIRO_REFERENCE_COUNT_INIT (&pattern->base.base.ref_count, 1);

    return &pattern->base.base;
}

/**
 * cairo_pattern_create_radial:
 * @cx0: x coordinate for the center of the start circle
 * @cy0: y coordinate for the center of the start circle
 * @radius0: radius of the start circle
 * @cx1: x coordinate for the center of the end circle
 * @cy1: y coordinate for the center of the end circle
 * @radius1: radius of the end circle
 *
 * Creates a new radial gradient #cairo_pattern_t between the two
 * circles defined by (cx0, cy0, radius0) and (cx1, cy1, radius1).  Before using the
 * gradient pattern, a number of color stops should be defined using
 * cairo_pattern_add_color_stop_rgb() or
 * cairo_pattern_add_color_stop_rgba().
 *
 * Note: The coordinates here are in pattern space. For a new pattern,
 * pattern space is identical to user space, but the relationship
 * between the spaces can be changed with cairo_pattern_set_matrix().
 *
 * Return value: the newly created #cairo_pattern_t if successful, or
 * an error pattern in case of no memory.  The caller owns the
 * returned object and should call cairo_pattern_destroy() when
 * finished with it.
 *
 * This function will always return a valid pointer, but if an error
 * occurred the pattern status will be set to an error.  To inspect
 * the status of a pattern use cairo_pattern_status().
 **/
cairo_pattern_t *
cairo_pattern_create_radial (double cx0, double cy0, double radius0,
			     double cx1, double cy1, double radius1)
{
    cairo_radial_pattern_t *pattern;

    pattern =
	_freed_pool_get (&freed_pattern_pool[CAIRO_PATTERN_TYPE_RADIAL]);
    if (unlikely (pattern == NULL)) {
	pattern = malloc (sizeof (cairo_radial_pattern_t));
	if (unlikely (pattern == NULL)) {
	    _cairo_error_throw (CAIRO_STATUS_NO_MEMORY);
	    return (cairo_pattern_t *) &_cairo_pattern_nil.base;
	}
    }

    CAIRO_MUTEX_INITIALIZE ();

    _cairo_pattern_init_radial (pattern, cx0, cy0, radius0, cx1, cy1, radius1);
    CAIRO_REFERENCE_COUNT_INIT (&pattern->base.base.ref_count, 1);

    return &pattern->base.base;
}

/**
 * cairo_pattern_reference:
 * @pattern: a #cairo_pattern_t
 *
 * Increases the reference count on @pattern by one. This prevents
 * @pattern from being destroyed until a matching call to
 * cairo_pattern_destroy() is made.
 *
 * The number of references to a #cairo_pattern_t can be get using
 * cairo_pattern_get_reference_count().
 *
 * Return value: the referenced #cairo_pattern_t.
 **/
cairo_pattern_t *
cairo_pattern_reference (cairo_pattern_t *pattern)
{
    if (pattern == NULL ||
	    CAIRO_REFERENCE_COUNT_IS_INVALID (&pattern->ref_count))
	return pattern;

    assert (CAIRO_REFERENCE_COUNT_HAS_REFERENCE (&pattern->ref_count));

    _cairo_reference_count_inc (&pattern->ref_count);

    return pattern;
}
slim_hidden_def (cairo_pattern_reference);

/**
 * cairo_pattern_get_type:
 * @pattern: a #cairo_pattern_t
 *
 * This function returns the type a pattern.
 * See #cairo_pattern_type_t for available types.
 *
 * Return value: The type of @pattern.
 *
 * Since: 1.2
 **/
cairo_pattern_type_t
cairo_pattern_get_type (cairo_pattern_t *pattern)
{
    return pattern->type;
}

/**
 * cairo_pattern_status:
 * @pattern: a #cairo_pattern_t
 *
 * Checks whether an error has previously occurred for this
 * pattern.
 *
 * Return value: %CAIRO_STATUS_SUCCESS, %CAIRO_STATUS_NO_MEMORY, or
 * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH.
 **/
cairo_status_t
cairo_pattern_status (cairo_pattern_t *pattern)
{
    return pattern->status;
}

/**
 * cairo_pattern_destroy:
 * @pattern: a #cairo_pattern_t
 *
 * Decreases the reference count on @pattern by one. If the result is
 * zero, then @pattern and all associated resources are freed.  See
 * cairo_pattern_reference().
 **/
void
cairo_pattern_destroy (cairo_pattern_t *pattern)
{
    cairo_pattern_type_t type;

    if (pattern == NULL ||
	    CAIRO_REFERENCE_COUNT_IS_INVALID (&pattern->ref_count))
	return;

    assert (CAIRO_REFERENCE_COUNT_HAS_REFERENCE (&pattern->ref_count));

    if (! _cairo_reference_count_dec_and_test (&pattern->ref_count))
	return;

    type = pattern->type;
    _cairo_pattern_fini (pattern);

    /* maintain a small cache of freed patterns */
    _freed_pool_put (&freed_pattern_pool[type], pattern);
}
slim_hidden_def (cairo_pattern_destroy);

/**
 * cairo_pattern_get_reference_count:
 * @pattern: a #cairo_pattern_t
 *
 * Returns the current reference count of @pattern.
 *
 * Return value: the current reference count of @pattern.  If the
 * object is a nil object, 0 will be returned.
 *
 * Since: 1.4
 **/
unsigned int
cairo_pattern_get_reference_count (cairo_pattern_t *pattern)
{
    if (pattern == NULL ||
	    CAIRO_REFERENCE_COUNT_IS_INVALID (&pattern->ref_count))
	return 0;

    return CAIRO_REFERENCE_COUNT_GET_VALUE (&pattern->ref_count);
}

/**
 * cairo_pattern_get_user_data:
 * @pattern: a #cairo_pattern_t
 * @key: the address of the #cairo_user_data_key_t the user data was
 * attached to
 *
 * Return user data previously attached to @pattern using the
 * specified key.  If no user data has been attached with the given
 * key this function returns %NULL.
 *
 * Return value: the user data previously attached or %NULL.
 *
 * Since: 1.4
 **/
void *
cairo_pattern_get_user_data (cairo_pattern_t		 *pattern,
			     const cairo_user_data_key_t *key)
{
    return _cairo_user_data_array_get_data (&pattern->user_data,
					    key);
}

/**
 * cairo_pattern_set_user_data:
 * @pattern: a #cairo_pattern_t
 * @key: the address of a #cairo_user_data_key_t to attach the user data to
 * @user_data: the user data to attach to the #cairo_pattern_t
 * @destroy: a #cairo_destroy_func_t which will be called when the
 * #cairo_t is destroyed or when new user data is attached using the
 * same key.
 *
 * Attach user data to @pattern.  To remove user data from a surface,
 * call this function with the key that was used to set it and %NULL
 * for @data.
 *
 * Return value: %CAIRO_STATUS_SUCCESS or %CAIRO_STATUS_NO_MEMORY if a
 * slot could not be allocated for the user data.
 *
 * Since: 1.4
 **/
cairo_status_t
cairo_pattern_set_user_data (cairo_pattern_t		 *pattern,
			     const cairo_user_data_key_t *key,
			     void			 *user_data,
			     cairo_destroy_func_t	  destroy)
{
    if (CAIRO_REFERENCE_COUNT_IS_INVALID (&pattern->ref_count))
	return pattern->status;

    return _cairo_user_data_array_set_data (&pattern->user_data,
					    key, user_data, destroy);
}

/* make room for at least one more color stop */
static cairo_status_t
_cairo_pattern_gradient_grow (cairo_gradient_pattern_t *pattern)
{
    cairo_gradient_stop_t *new_stops;
    int old_size = pattern->stops_size;
    int embedded_size = ARRAY_LENGTH (pattern->stops_embedded);
    int new_size = 2 * MAX (old_size, 4);

    /* we have a local buffer at pattern->stops_embedded.  try to fulfill the request
     * from there. */
    if (old_size < embedded_size) {
	pattern->stops = pattern->stops_embedded;
	pattern->stops_size = embedded_size;
	return CAIRO_STATUS_SUCCESS;
    }

    if (CAIRO_INJECT_FAULT ())
	return _cairo_error (CAIRO_STATUS_NO_MEMORY);

    assert (pattern->n_stops <= pattern->stops_size);

    if (pattern->stops == pattern->stops_embedded) {
	new_stops = _cairo_malloc_ab (new_size, sizeof (cairo_gradient_stop_t));
	if (new_stops)
	    memcpy (new_stops, pattern->stops, old_size * sizeof (cairo_gradient_stop_t));
    } else {
	new_stops = _cairo_realloc_ab (pattern->stops,
				       new_size,
				       sizeof (cairo_gradient_stop_t));
    }

    if (unlikely (new_stops == NULL))
	return _cairo_error (CAIRO_STATUS_NO_MEMORY);

    pattern->stops = new_stops;
    pattern->stops_size = new_size;

    return CAIRO_STATUS_SUCCESS;
}

static void
_cairo_pattern_add_color_stop (cairo_gradient_pattern_t *pattern,
			       double			 offset,
			       double			 red,
			       double			 green,
			       double			 blue,
			       double			 alpha)
{
    cairo_gradient_stop_t *stops;
    unsigned int	   i;

    if (pattern->n_stops >= pattern->stops_size) {
        cairo_status_t status = _cairo_pattern_gradient_grow (pattern);
	if (unlikely (status)) {
	    status = _cairo_pattern_set_error (&pattern->base, status);
	    return;
	}
    }

    stops = pattern->stops;

    for (i = 0; i < pattern->n_stops; i++)
    {
	if (offset < stops[i].offset)
	{
	    memmove (&stops[i + 1], &stops[i],
		     sizeof (cairo_gradient_stop_t) * (pattern->n_stops - i));

	    break;
	}
    }

    stops[i].offset = offset;

    stops[i].color.red   = red;
    stops[i].color.green = green;
    stops[i].color.blue  = blue;
    stops[i].color.alpha = alpha;

    stops[i].color.red_short   = _cairo_color_double_to_short (red);
    stops[i].color.green_short = _cairo_color_double_to_short (green);
    stops[i].color.blue_short  = _cairo_color_double_to_short (blue);
    stops[i].color.alpha_short = _cairo_color_double_to_short (alpha);

    pattern->n_stops++;
}

/**
 * cairo_pattern_add_color_stop_rgb:
 * @pattern: a #cairo_pattern_t
 * @offset: an offset in the range [0.0 .. 1.0]
 * @red: red component of color
 * @green: green component of color
 * @blue: blue component of color
 *
 * Adds an opaque color stop to a gradient pattern. The offset
 * specifies the location along the gradient's control vector. For
 * example, a linear gradient's control vector is from (x0,y0) to
 * (x1,y1) while a radial gradient's control vector is from any point
 * on the start circle to the corresponding point on the end circle.
 *
 * The color is specified in the same way as in cairo_set_source_rgb().
 *
 * If two (or more) stops are specified with identical offset values,
 * they will be sorted according to the order in which the stops are
 * added, (stops added earlier will compare less than stops added
 * later). This can be useful for reliably making sharp color
 * transitions instead of the typical blend.
 *
 *
 * Note: If the pattern is not a gradient pattern, (eg. a linear or
 * radial pattern), then the pattern will be put into an error status
 * with a status of %CAIRO_STATUS_PATTERN_TYPE_MISMATCH.
 **/
void
cairo_pattern_add_color_stop_rgb (cairo_pattern_t *pattern,
				  double	   offset,
				  double	   red,
				  double	   green,
				  double	   blue)
{
    if (pattern->status)
	return;

    if (pattern->type != CAIRO_PATTERN_TYPE_LINEAR &&
	pattern->type != CAIRO_PATTERN_TYPE_RADIAL)
    {
	_cairo_pattern_set_error (pattern, CAIRO_STATUS_PATTERN_TYPE_MISMATCH);
	return;
    }

    offset = _cairo_restrict_value (offset, 0.0, 1.0);
    red    = _cairo_restrict_value (red,    0.0, 1.0);
    green  = _cairo_restrict_value (green,  0.0, 1.0);
    blue   = _cairo_restrict_value (blue,   0.0, 1.0);

    _cairo_pattern_add_color_stop ((cairo_gradient_pattern_t *) pattern,
				   offset, red, green, blue, 1.0);
}

/**
 * cairo_pattern_add_color_stop_rgba:
 * @pattern: a #cairo_pattern_t
 * @offset: an offset in the range [0.0 .. 1.0]
 * @red: red component of color
 * @green: green component of color
 * @blue: blue component of color
 * @alpha: alpha component of color
 *
 * Adds a translucent color stop to a gradient pattern. The offset
 * specifies the location along the gradient's control vector. For
 * example, a linear gradient's control vector is from (x0,y0) to
 * (x1,y1) while a radial gradient's control vector is from any point
 * on the start circle to the corresponding point on the end circle.
 *
 * The color is specified in the same way as in cairo_set_source_rgba().
 *
 * If two (or more) stops are specified with identical offset values,
 * they will be sorted according to the order in which the stops are
 * added, (stops added earlier will compare less than stops added
 * later). This can be useful for reliably making sharp color
 * transitions instead of the typical blend.
 *
 * Note: If the pattern is not a gradient pattern, (eg. a linear or
 * radial pattern), then the pattern will be put into an error status
 * with a status of %CAIRO_STATUS_PATTERN_TYPE_MISMATCH.
 */
void
cairo_pattern_add_color_stop_rgba (cairo_pattern_t *pattern,
				   double	   offset,
				   double	   red,
				   double	   green,
				   double	   blue,
				   double	   alpha)
{
    if (pattern->status)
	return;

    if (pattern->type != CAIRO_PATTERN_TYPE_LINEAR &&
	pattern->type != CAIRO_PATTERN_TYPE_RADIAL)
    {
	_cairo_pattern_set_error (pattern, CAIRO_STATUS_PATTERN_TYPE_MISMATCH);
	return;
    }

    offset = _cairo_restrict_value (offset, 0.0, 1.0);
    red    = _cairo_restrict_value (red,    0.0, 1.0);
    green  = _cairo_restrict_value (green,  0.0, 1.0);
    blue   = _cairo_restrict_value (blue,   0.0, 1.0);
    alpha  = _cairo_restrict_value (alpha,  0.0, 1.0);

    _cairo_pattern_add_color_stop ((cairo_gradient_pattern_t *) pattern,
				   offset, red, green, blue, alpha);
}

/**
 * cairo_pattern_set_matrix:
 * @pattern: a #cairo_pattern_t
 * @matrix: a #cairo_matrix_t
 *
 * Sets the pattern's transformation matrix to @matrix. This matrix is
 * a transformation from user space to pattern space.
 *
 * When a pattern is first created it always has the identity matrix
 * for its transformation matrix, which means that pattern space is
 * initially identical to user space.
 *
 * Important: Please note that the direction of this transformation
 * matrix is from user space to pattern space. This means that if you
 * imagine the flow from a pattern to user space (and on to device
 * space), then coordinates in that flow will be transformed by the
 * inverse of the pattern matrix.
 *
 * For example, if you want to make a pattern appear twice as large as
 * it does by default the correct code to use is:
 *
 * <informalexample><programlisting>
 * cairo_matrix_init_scale (&amp;matrix, 0.5, 0.5);
 * cairo_pattern_set_matrix (pattern, &amp;matrix);
 * </programlisting></informalexample>
 *
 * Meanwhile, using values of 2.0 rather than 0.5 in the code above
 * would cause the pattern to appear at half of its default size.
 *
 * Also, please note the discussion of the user-space locking
 * semantics of cairo_set_source().
 **/
void
cairo_pattern_set_matrix (cairo_pattern_t      *pattern,
			  const cairo_matrix_t *matrix)
{
    cairo_matrix_t inverse;
    cairo_status_t status;

    if (pattern->status)
	return;

    if (memcmp (&pattern->matrix, matrix, sizeof (cairo_matrix_t)) == 0)
	return;

    pattern->matrix = *matrix;

    inverse = *matrix;
    status = cairo_matrix_invert (&inverse);
    if (unlikely (status))
	status = _cairo_pattern_set_error (pattern, status);
}
slim_hidden_def (cairo_pattern_set_matrix);

/**
 * cairo_pattern_get_matrix:
 * @pattern: a #cairo_pattern_t
 * @matrix: return value for the matrix
 *
 * Stores the pattern's transformation matrix into @matrix.
 **/
void
cairo_pattern_get_matrix (cairo_pattern_t *pattern, cairo_matrix_t *matrix)
{
    *matrix = pattern->matrix;
}

/**
 * cairo_pattern_set_filter:
 * @pattern: a #cairo_pattern_t
 * @filter: a #cairo_filter_t describing the filter to use for resizing
 * the pattern
 *
 * Sets the filter to be used for resizing when using this pattern.
 * See #cairo_filter_t for details on each filter.
 *
 * * Note that you might want to control filtering even when you do not
 * have an explicit #cairo_pattern_t object, (for example when using
 * cairo_set_source_surface()). In these cases, it is convenient to
 * use cairo_get_source() to get access to the pattern that cairo
 * creates implicitly. For example:
 *
 * <informalexample><programlisting>
 * cairo_set_source_surface (cr, image, x, y);
 * cairo_pattern_set_filter (cairo_get_source (cr), CAIRO_FILTER_NEAREST);
 * </programlisting></informalexample>
 **/
void
cairo_pattern_set_filter (cairo_pattern_t *pattern, cairo_filter_t filter)
{
    if (pattern->status)
	return;

    pattern->filter = filter;
}

/**
 * cairo_pattern_get_filter:
 * @pattern: a #cairo_pattern_t
 *
 * Gets the current filter for a pattern.  See #cairo_filter_t
 * for details on each filter.
 *
 * Return value: the current filter used for resizing the pattern.
 **/
cairo_filter_t
cairo_pattern_get_filter (cairo_pattern_t *pattern)
{
    return pattern->filter;
}

/**
 * cairo_pattern_set_extend:
 * @pattern: a #cairo_pattern_t
 * @extend: a #cairo_extend_t describing how the area outside of the
 * pattern will be drawn
 *
 * Sets the mode to be used for drawing outside the area of a pattern.
 * See #cairo_extend_t for details on the semantics of each extend
 * strategy.
 *
 * The default extend mode is %CAIRO_EXTEND_NONE for surface patterns
 * and %CAIRO_EXTEND_PAD for gradient patterns.
 **/
void
cairo_pattern_set_extend (cairo_pattern_t *pattern, cairo_extend_t extend)
{
    if (pattern->status)
	return;

    pattern->extend = extend;
}

/**
 * cairo_pattern_get_extend:
 * @pattern: a #cairo_pattern_t
 *
 * Gets the current extend mode for a pattern.  See #cairo_extend_t
 * for details on the semantics of each extend strategy.
 *
 * Return value: the current extend strategy used for drawing the
 * pattern.
 **/
cairo_extend_t
cairo_pattern_get_extend (cairo_pattern_t *pattern)
{
    return pattern->extend;
}
slim_hidden_def (cairo_pattern_get_extend);

void
_cairo_pattern_transform (cairo_pattern_t	*pattern,
			  const cairo_matrix_t  *ctm_inverse)
{
    if (pattern->status)
	return;

    cairo_matrix_multiply (&pattern->matrix, ctm_inverse, &pattern->matrix);
}

static void
_cairo_linear_pattern_classify (cairo_linear_pattern_t *pattern,
				double		       offset_x,
				double		       offset_y,
				int		       width,
				int		       height,
				cairo_bool_t           *is_horizontal,
				cairo_bool_t           *is_vertical)
{
    cairo_point_double_t point0, point1;
    double a, b, c, d, tx, ty;
    double scale, start, dx, dy;
    cairo_fixed_t factors[3];
    int i;

    /* To classify a pattern as horizontal or vertical, we first
     * compute the (fixed point) factors at the corners of the
     * pattern. We actually only need 3/4 corners, so we skip the
     * fourth.
     */
    point0.x = _cairo_fixed_to_double (pattern->p1.x);
    point0.y = _cairo_fixed_to_double (pattern->p1.y);
    point1.x = _cairo_fixed_to_double (pattern->p2.x);
    point1.y = _cairo_fixed_to_double (pattern->p2.y);

    _cairo_matrix_get_affine (&pattern->base.base.matrix,
			      &a, &b, &c, &d, &tx, &ty);

    dx = point1.x - point0.x;
    dy = point1.y - point0.y;
    scale = dx * dx + dy * dy;
    scale = (scale) ? 1.0 / scale : 1.0;

    start = dx * point0.x + dy * point0.y;

    for (i = 0; i < 3; i++) {
	double qx_device = (i % 2) * (width - 1) + offset_x;
	double qy_device = (i / 2) * (height - 1) + offset_y;

	/* transform fragment into pattern space */
	double qx = a * qx_device + c * qy_device + tx;
	double qy = b * qx_device + d * qy_device + ty;

	factors[i] = _cairo_fixed_from_double (((dx * qx + dy * qy) - start) * scale);
    }

    /* We consider a pattern to be vertical if the fixed point factor
     * at the two upper corners is the same. We could accept a small
     * change, but determining what change is acceptable would require
     * sorting the stops in the pattern and looking at the differences.
     *
     * Horizontal works the same way with the two left corners.
     */

    *is_vertical = factors[1] == factors[0];
    *is_horizontal = factors[2] == factors[0];
}

static cairo_int_status_t
_cairo_pattern_acquire_surface_for_gradient (const cairo_gradient_pattern_t *pattern,
					     cairo_surface_t	        *dst,
					     int			x,
					     int			y,
					     unsigned int		width,
					     unsigned int	        height,
					     cairo_surface_t	        **out,
					     cairo_surface_attributes_t *attr)
{
    cairo_image_surface_t *image;
    pixman_image_t	  *pixman_image;
    pixman_transform_t	  pixman_transform;
    cairo_status_t	  status;
    cairo_bool_t	  repeat = FALSE;
    cairo_bool_t          opaque = TRUE;

    pixman_gradient_stop_t pixman_stops_static[2];
    pixman_gradient_stop_t *pixman_stops = pixman_stops_static;
    unsigned int i;
    int clone_offset_x, clone_offset_y;
    cairo_matrix_t matrix = pattern->base.matrix;

    if (CAIRO_INJECT_FAULT ())
	return _cairo_error (CAIRO_STATUS_NO_MEMORY);

    if (pattern->n_stops > ARRAY_LENGTH(pixman_stops_static)) {
	pixman_stops = _cairo_malloc_ab (pattern->n_stops,
					 sizeof(pixman_gradient_stop_t));
	if (unlikely (pixman_stops == NULL))
	    return _cairo_error (CAIRO_STATUS_NO_MEMORY);
    }

    for (i = 0; i < pattern->n_stops; i++) {
	pixman_stops[i].x = _cairo_fixed_16_16_from_double (pattern->stops[i].offset);
	pixman_stops[i].color.red = pattern->stops[i].color.red_short;
	pixman_stops[i].color.green = pattern->stops[i].color.green_short;
	pixman_stops[i].color.blue = pattern->stops[i].color.blue_short;
	pixman_stops[i].color.alpha = pattern->stops[i].color.alpha_short;
	if (! CAIRO_ALPHA_SHORT_IS_OPAQUE (pixman_stops[i].color.alpha))
	    opaque = FALSE;
    }

    if (pattern->base.type == CAIRO_PATTERN_TYPE_LINEAR)
    {
	cairo_linear_pattern_t *linear = (cairo_linear_pattern_t *) pattern;
	pixman_point_fixed_t p1, p2;
        double x0, y0, x1, y1, maxabs;

	/*
	 * Transform the matrix to avoid overflow when converting between
	 * cairo_fixed_t and pixman_fixed_t (without incurring performance
	 * loss when the transformation is unnecessary).
	 *
	 * Having a function to compute the required transformation to
	 * "normalize" a given bounding box would be generally useful -
	 * cf linear patterns, gradient patterns, surface patterns...
	 */
	x0 = _cairo_fixed_to_double (linear->p1.x);
	y0 = _cairo_fixed_to_double (linear->p1.y);
	x1 = _cairo_fixed_to_double (linear->p2.x);
	y1 = _cairo_fixed_to_double (linear->p2.y);
	cairo_matrix_transform_point (&matrix, &x0, &y0);
	cairo_matrix_transform_point (&matrix, &x1, &y1);
	maxabs = MAX (MAX (fabs (x0), fabs (x1)), MAX (fabs (y0), fabs (y1)));

#define PIXMAN_MAX_INT ((pixman_fixed_1 >> 1) - pixman_fixed_e) /* need to ensure deltas also fit */
	if (maxabs > PIXMAN_MAX_INT)
	{
	    double sf;
	    cairo_matrix_t scale;

            sf = PIXMAN_MAX_INT / maxabs;

	    p1.x = _cairo_fixed_16_16_from_double (_cairo_fixed_to_double (linear->p1.x) * sf);
	    p1.y = _cairo_fixed_16_16_from_double (_cairo_fixed_to_double (linear->p1.y) * sf);
	    p2.x = _cairo_fixed_16_16_from_double (_cairo_fixed_to_double (linear->p2.x) * sf);
	    p2.y = _cairo_fixed_16_16_from_double (_cairo_fixed_to_double (linear->p2.y) * sf);

	    /* cairo_matrix_scale does a pre-scale, we want a post-scale */
	    cairo_matrix_init_scale (&scale, sf, sf);
	    cairo_matrix_multiply (&matrix, &matrix, &scale);
	}
	else
	{
	    p1.x = _cairo_fixed_to_16_16 (linear->p1.x);
	    p1.y = _cairo_fixed_to_16_16 (linear->p1.y);
	    p2.x = _cairo_fixed_to_16_16 (linear->p2.x);
	    p2.y = _cairo_fixed_to_16_16 (linear->p2.y);
	}

	pixman_image = pixman_image_create_linear_gradient (&p1, &p2,
							    pixman_stops,
							    pattern->n_stops);
    }
    else
    {
	cairo_radial_pattern_t *radial = (cairo_radial_pattern_t *) pattern;
	pixman_point_fixed_t c1, c2;
	pixman_fixed_t r1, r2;

	c1.x = _cairo_fixed_to_16_16 (radial->c1.x);
	c1.y = _cairo_fixed_to_16_16 (radial->c1.y);
	r1   = _cairo_fixed_to_16_16 (radial->r1);

	c2.x = _cairo_fixed_to_16_16 (radial->c2.x);
	c2.y = _cairo_fixed_to_16_16 (radial->c2.y);
	r2   = _cairo_fixed_to_16_16 (radial->r2);

	pixman_image = pixman_image_create_radial_gradient (&c1, &c2,
							    r1, r2,
							    pixman_stops,
							    pattern->n_stops);
    }

    if (pixman_stops != pixman_stops_static)
	free (pixman_stops);

    if (unlikely (pixman_image == NULL))
	return _cairo_error (CAIRO_STATUS_NO_MEMORY);

    if (_cairo_surface_is_image (dst))
    {
	image = (cairo_image_surface_t *)
	    _cairo_image_surface_create_for_pixman_image (pixman_image,
							  PIXMAN_a8r8g8b8);
	if (image->base.status)
	{
	    pixman_image_unref (pixman_image);
	    return image->base.status;
	}

	attr->x_offset = attr->y_offset = 0;
	attr->matrix = matrix;
	attr->extend = pattern->base.extend;
	attr->filter = CAIRO_FILTER_NEAREST;
	attr->has_component_alpha = pattern->base.has_component_alpha;

	*out = &image->base;

	return CAIRO_STATUS_SUCCESS;
    }

    if (pattern->base.type == CAIRO_PATTERN_TYPE_LINEAR) {
	cairo_bool_t is_horizontal;
	cairo_bool_t is_vertical;

	_cairo_linear_pattern_classify ((cairo_linear_pattern_t *)pattern,
					x, y, width, height,
					&is_horizontal, &is_vertical);
	if (is_horizontal) {
	    height = 1;
	    repeat = TRUE;
	}
	/* width-1 repeating patterns are quite slow with scan-line based
	 * compositing code, so we use a wider strip and spend some extra
	 * expense in computing the gradient. It's possible that for narrow
	 * gradients we'd be better off using a 2 or 4 pixel strip; the
	 * wider the gradient, the more it's worth spending extra time
	 * computing a sample.
	 */
	if (is_vertical && width > 8) {
	    width = 8;
	    repeat = TRUE;
	}
    }

    if (! pixman_image_set_filter (pixman_image, PIXMAN_FILTER_BILINEAR,
				   NULL, 0))
    {
	pixman_image_unref (pixman_image);
	return _cairo_error (CAIRO_STATUS_NO_MEMORY);
    }

    image = (cairo_image_surface_t *)
	cairo_image_surface_create (CAIRO_FORMAT_ARGB32, width, height);
    if (image->base.status) {
	pixman_image_unref (pixman_image);
	return image->base.status;
    }

    _cairo_matrix_to_pixman_matrix (&matrix, &pixman_transform,
				    width/2., height/2.);
    if (!pixman_image_set_transform (pixman_image, &pixman_transform)) {
	cairo_surface_destroy (&image->base);
	pixman_image_unref (pixman_image);
	return _cairo_error (CAIRO_STATUS_NO_MEMORY);
    }

    switch (pattern->base.extend) {
    case CAIRO_EXTEND_NONE:
	pixman_image_set_repeat (pixman_image, PIXMAN_REPEAT_NONE);
	break;
    case CAIRO_EXTEND_REPEAT:
	pixman_image_set_repeat (pixman_image, PIXMAN_REPEAT_NORMAL);
	break;
    case CAIRO_EXTEND_REFLECT:
	pixman_image_set_repeat (pixman_image, PIXMAN_REPEAT_REFLECT);
	break;
    case CAIRO_EXTEND_PAD:
	pixman_image_set_repeat (pixman_image, PIXMAN_REPEAT_PAD);
	break;
    }

    pixman_image_composite32 (PIXMAN_OP_SRC,
                              pixman_image,
                              NULL,
                              image->pixman_image,
                              x, y,
                              0, 0,
                              0, 0,
                              width, height);

    pixman_image_unref (pixman_image);

    _cairo_debug_check_image_surface_is_defined (&image->base);

    status = _cairo_surface_clone_similar (dst, &image->base,
					   0, 0, width, height,
					   &clone_offset_x,
					   &clone_offset_y,
					   out);

    cairo_surface_destroy (&image->base);

    attr->x_offset = -x;
    attr->y_offset = -y;
    cairo_matrix_init_identity (&attr->matrix);
    attr->extend = repeat ? CAIRO_EXTEND_REPEAT : CAIRO_EXTEND_NONE;
    attr->filter = CAIRO_FILTER_NEAREST;
    attr->has_component_alpha = pattern->base.has_component_alpha;

    return status;
}

/* We maintain a small cache here, because we don't want to constantly
 * recreate surfaces for simple solid colors. */
#define MAX_SURFACE_CACHE_SIZE 16
static struct {
    struct _cairo_pattern_solid_surface_cache{
	cairo_color_t    color;
	cairo_surface_t *surface;
    } cache[MAX_SURFACE_CACHE_SIZE];
    int size;
} solid_surface_cache;

static cairo_bool_t
_cairo_pattern_solid_surface_matches (
	const struct _cairo_pattern_solid_surface_cache	    *cache,
	const cairo_solid_pattern_t			    *pattern,
	cairo_surface_t					    *dst)
{
    if (cairo_surface_get_content (cache->surface) != _cairo_color_get_content (&pattern->color))
	return FALSE;

    if (CAIRO_REFERENCE_COUNT_GET_VALUE (&cache->surface->ref_count) != 1)
	return FALSE;

    if (! _cairo_surface_is_similar (cache->surface, dst))
	return FALSE;

    return TRUE;
}

static cairo_bool_t
_cairo_pattern_solid_surface_matches_color (
	const struct _cairo_pattern_solid_surface_cache	    *cache,
	const cairo_solid_pattern_t			    *pattern,
	cairo_surface_t					    *dst)
{
    if (! _cairo_color_equal (&cache->color, &pattern->color))
	return FALSE;

    return _cairo_pattern_solid_surface_matches (cache, pattern, dst);
}

static cairo_int_status_t
_cairo_pattern_acquire_surface_for_solid (const cairo_solid_pattern_t	     *pattern,
					  cairo_surface_t	     *dst,
					  int			     x,
					  int			     y,
					  unsigned int		     width,
					  unsigned int		     height,
					  cairo_surface_t	     **out,
					  cairo_surface_attributes_t *attribs)
{
    static int i;

    cairo_surface_t *surface, *to_destroy = NULL;
    cairo_status_t   status;

    CAIRO_MUTEX_LOCK (_cairo_pattern_solid_surface_cache_lock);

    /* Check cache first */
    if (i < solid_surface_cache.size &&
	_cairo_pattern_solid_surface_matches_color (&solid_surface_cache.cache[i],
						    pattern,
						    dst))
    {
	goto DONE;
    }

    for (i = 0 ; i < solid_surface_cache.size; i++) {
	if (_cairo_pattern_solid_surface_matches_color (&solid_surface_cache.cache[i],
							pattern,
							dst))
	{
	    goto DONE;
	}
    }

    /* Choose a surface to repaint/evict */
    surface = NULL;
    if (solid_surface_cache.size == MAX_SURFACE_CACHE_SIZE) {
	i = rand () % MAX_SURFACE_CACHE_SIZE;
	surface = solid_surface_cache.cache[i].surface;

	if (_cairo_pattern_solid_surface_matches (&solid_surface_cache.cache[i],
						  pattern,
						  dst))
	{
	    /* Reuse the surface instead of evicting */
	    status = _cairo_surface_repaint_solid_pattern_surface (dst, surface, pattern);
	    if (unlikely (status))
		goto EVICT;

	    cairo_surface_reference (surface);
	}
	else
	{
	  EVICT:
	    surface = NULL;
	}
    }

    if (surface == NULL) {
	/* Not cached, need to create new */
	surface = _cairo_surface_create_solid_pattern_surface (dst, pattern);
	if (surface == NULL) {
	    status = CAIRO_INT_STATUS_UNSUPPORTED;
	    goto UNLOCK;
	}
	if (unlikely (surface->status)) {
	    status = surface->status;
	    goto UNLOCK;
	}

	if (unlikely (! _cairo_surface_is_similar (surface, dst)))
	{
	    /* In the rare event of a substitute surface being returned,
	     * don't cache the fallback.
	     */
	    *out = surface;
	    goto NOCACHE;
	}
    }

    if (i == solid_surface_cache.size)
	solid_surface_cache.size++;

    to_destroy = solid_surface_cache.cache[i].surface;
    solid_surface_cache.cache[i].surface = surface;
    solid_surface_cache.cache[i].color   = pattern->color;

DONE:
    *out = cairo_surface_reference (solid_surface_cache.cache[i].surface);

NOCACHE:
    attribs->x_offset = attribs->y_offset = 0;
    cairo_matrix_init_identity (&attribs->matrix);
    attribs->extend = CAIRO_EXTEND_REPEAT;
    attribs->filter = CAIRO_FILTER_NEAREST;
    attribs->has_component_alpha = pattern->base.has_component_alpha;

    status = CAIRO_STATUS_SUCCESS;

UNLOCK:
    CAIRO_MUTEX_UNLOCK (_cairo_pattern_solid_surface_cache_lock);

    if (to_destroy)
      cairo_surface_destroy (to_destroy);

    return status;
}

static void
_cairo_pattern_reset_solid_surface_cache (void)
{
    CAIRO_MUTEX_LOCK (_cairo_pattern_solid_surface_cache_lock);

    /* remove surfaces starting from the end so that solid_surface_cache.cache
     * is always in a consistent state when we release the mutex. */
    while (solid_surface_cache.size) {
	cairo_surface_t *surface;

	solid_surface_cache.size--;
	surface = solid_surface_cache.cache[solid_surface_cache.size].surface;
	solid_surface_cache.cache[solid_surface_cache.size].surface = NULL;

	/* release the lock to avoid the possibility of a recursive
	 * deadlock when the surface destroy closure gets called */
	CAIRO_MUTEX_UNLOCK (_cairo_pattern_solid_surface_cache_lock);
	cairo_surface_destroy (surface);
	CAIRO_MUTEX_LOCK (_cairo_pattern_solid_surface_cache_lock);
    }

    CAIRO_MUTEX_UNLOCK (_cairo_pattern_solid_surface_cache_lock);
}

static void
_extents_to_linear_parameter (const cairo_linear_pattern_t *linear,
			      const cairo_rectangle_int_t *extents,
			      double t[2])
{
    double t0, tdx, tdy;
    double p1x, p1y, pdx, pdy, invsqnorm;

    p1x = _cairo_fixed_to_double (linear->p1.x);
    p1y = _cairo_fixed_to_double (linear->p1.y);
    pdx = _cairo_fixed_to_double (linear->p2.x) - p1x;
    pdy = _cairo_fixed_to_double (linear->p2.y) - p1y;
    invsqnorm = 1.0 / (pdx * pdx + pdy * pdy);
    pdx *= invsqnorm;
    pdy *= invsqnorm;

    t0 = (extents->x - p1x) * pdx + (extents->y - p1y) * pdy;
    tdx = extents->width * pdx;
    tdy = extents->height * pdy;

    t[0] = t[1] = t0;
    if (tdx < 0)
	t[0] += tdx;
    else
	t[1] += tdx;

    if (tdy < 0)
	t[0] += tdy;
    else
	t[1] += tdy;
}

static cairo_bool_t
_linear_pattern_is_degenerate (const cairo_linear_pattern_t *linear)
{
    return linear->p1.x == linear->p2.x && linear->p1.y == linear->p2.y;
}

static cairo_bool_t
_radial_pattern_is_degenerate (const cairo_radial_pattern_t *radial)
{
    return radial->r1 == radial->r2 &&
	(radial->r1 == 0 /* && radial->r2 == 0 */ ||
	 (radial->c1.x == radial->c2.x && radial->c1.y == radial->c2.y));
}

static cairo_bool_t
_gradient_is_clear (const cairo_gradient_pattern_t *gradient,
		    const cairo_rectangle_int_t *extents)
{
    unsigned int i;

    assert (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR ||
	    gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL);

    if (gradient->n_stops == 0 ||
	(gradient->base.extend == CAIRO_EXTEND_NONE &&
	 gradient->stops[0].offset == gradient->stops[gradient->n_stops - 1].offset))
	return TRUE;

    /* Check if the extents intersect the drawn part of the pattern. */
    if (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR) {
	if (gradient->base.extend == CAIRO_EXTEND_NONE) {
	    cairo_linear_pattern_t *linear = (cairo_linear_pattern_t *) gradient;
	    /* EXTEND_NONE degenerate linear gradients are clear */
	    if (_linear_pattern_is_degenerate (linear))
		return TRUE;

	    if (extents != NULL) {
		double t[2];
		_extents_to_linear_parameter (linear, extents, t);
		if ((t[0] <= 0.0 && t[1] <= 0.0) || (t[0] >= 1.0 && t[1] >= 1.0))
		    return TRUE;
	    }
	}
    } else {
	cairo_radial_pattern_t *radial = (cairo_radial_pattern_t *) gradient;
	/* degenerate radial gradients are clear */
	if (_radial_pattern_is_degenerate (radial) && FALSE)
	    return TRUE;
	/* TODO: check actual intersection */
    }

    for (i = 0; i < gradient->n_stops; i++)
	if (! CAIRO_COLOR_IS_CLEAR (&gradient->stops[i].color))
	    return FALSE;

    return TRUE;
}

/**
 * _cairo_gradient_pattern_is_solid
 *
 * Convenience function to determine whether a gradient pattern is
 * a solid color within the given extents. In this case the color
 * argument is initialized to the color the pattern represents.
 * This functions doesn't handle completely transparent gradients,
 * thus it should be called only after _cairo_pattern_is_clear has
 * returned FALSE.
 *
 * Return value: %TRUE if the pattern is a solid color.
 **/
cairo_bool_t
_cairo_gradient_pattern_is_solid (const cairo_gradient_pattern_t *gradient,
				  const cairo_rectangle_int_t *extents,
				  cairo_color_t *color)
{
    unsigned int i;

    assert (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR ||
	    gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL);

    /* TODO: radial, degenerate linear */
    if (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR) {
	if (gradient->base.extend == CAIRO_EXTEND_NONE) {
	    cairo_linear_pattern_t *linear = (cairo_linear_pattern_t *) gradient;
	    double t[2];

	    /* We already know that the pattern is not clear, thus if some
	     * part of it is clear, the whole is not solid.
	     */

	    if (extents == NULL)
		return FALSE;

	    _extents_to_linear_parameter (linear, extents, t);
	    if (t[0] < 0.0 || t[1] > 1.0)
		return FALSE;
	}
    }

    for (i = 1; i < gradient->n_stops; i++)
	if (! _cairo_color_stop_equal (&gradient->stops[0].color,
				       &gradient->stops[i].color))
	    return FALSE;

    _cairo_color_init_rgba (color,
			    gradient->stops[0].color.red,
			    gradient->stops[0].color.green,
			    gradient->stops[0].color.blue,
			    gradient->stops[0].color.alpha);

    return TRUE;
}

/**
 * _cairo_pattern_is_opaque_solid
 *
 * Convenience function to determine whether a pattern is an opaque
 * (alpha==1.0) solid color pattern. This is done by testing whether
 * the pattern's alpha value when converted to a byte is 255, so if a
 * backend actually supported deep alpha channels this function might
 * not do the right thing.
 *
 * Return value: %TRUE if the pattern is an opaque, solid color.
 **/
cairo_bool_t
_cairo_pattern_is_opaque_solid (const cairo_pattern_t *pattern)
{
    cairo_solid_pattern_t *solid;

    if (pattern->type != CAIRO_PATTERN_TYPE_SOLID)
	return FALSE;

    solid = (cairo_solid_pattern_t *) pattern;

    return CAIRO_COLOR_IS_OPAQUE (&solid->color);
}

static cairo_bool_t
_surface_is_opaque (const cairo_surface_pattern_t *pattern,
		    const cairo_rectangle_int_t *r)
{
    if (pattern->surface->content & CAIRO_CONTENT_ALPHA)
	return FALSE;

    if (pattern->base.extend != CAIRO_EXTEND_NONE)
	return TRUE;

    if (r != NULL) {
	cairo_rectangle_int_t extents;

	if (! _cairo_surface_get_extents (pattern->surface, &extents))
	    return TRUE;

	if (r->x >= extents.x &&
	    r->y >= extents.y &&
	    r->x + r->width <= extents.x + extents.width &&
	    r->y + r->height <= extents.y + extents.height)
	{
	    return TRUE;
	}
    }

    return FALSE;
}

static cairo_bool_t
_surface_is_clear (const cairo_surface_pattern_t *pattern)
{
    cairo_rectangle_int_t extents;

    if (_cairo_surface_get_extents (pattern->surface, &extents) &&
	(extents.width == 0 || extents.height == 0))
	return TRUE;

    return pattern->surface->is_clear &&
	pattern->surface->content & CAIRO_CONTENT_ALPHA;
}

static cairo_bool_t
_gradient_is_opaque (const cairo_gradient_pattern_t *gradient,
		     const cairo_rectangle_int_t *extents)
{
    unsigned int i;

    assert (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR ||
	    gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL);

    if (gradient->n_stops == 0 ||
	(gradient->base.extend == CAIRO_EXTEND_NONE &&
	 gradient->stops[0].offset == gradient->stops[gradient->n_stops - 1].offset))
	return FALSE;

    if (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR) {
	if (gradient->base.extend == CAIRO_EXTEND_NONE) {
	    double t[2];
	    cairo_linear_pattern_t *linear = (cairo_linear_pattern_t *) gradient;

	    /* EXTEND_NONE degenerate radial gradients are clear */
	    if (_linear_pattern_is_degenerate (linear))
		return FALSE;

	    if (extents == NULL)
		return FALSE;

	    _extents_to_linear_parameter (linear, extents, t);
	    if (t[0] < 0.0 || t[1] > 1.0)
		return FALSE;
	}
    }

    for (i = 0; i < gradient->n_stops; i++)
	if (! CAIRO_COLOR_IS_OPAQUE (&gradient->stops[i].color))
	    return FALSE;

    return TRUE;
}

/**
 * _cairo_pattern_is_opaque
 *
 * Convenience function to determine whether a pattern is an opaque
 * pattern (of any type). The same caveats that apply to
 * _cairo_pattern_is_opaque_solid apply here as well.
 *
 * Return value: %TRUE if the pattern is a opaque.
 **/
cairo_bool_t
_cairo_pattern_is_opaque (const cairo_pattern_t *abstract_pattern,
			  const cairo_rectangle_int_t *extents)
{
    const cairo_pattern_union_t *pattern;

    if (abstract_pattern->has_component_alpha)
	return FALSE;

    pattern = (cairo_pattern_union_t *) abstract_pattern;
    switch (pattern->base.type) {
    case CAIRO_PATTERN_TYPE_SOLID:
	return _cairo_pattern_is_opaque_solid (abstract_pattern);
    case CAIRO_PATTERN_TYPE_SURFACE:
	return _surface_is_opaque (&pattern->surface, extents);
    case CAIRO_PATTERN_TYPE_LINEAR:
    case CAIRO_PATTERN_TYPE_RADIAL:
	return _gradient_is_opaque (&pattern->gradient.base, extents);
    }

    ASSERT_NOT_REACHED;
    return FALSE;
}

cairo_bool_t
_cairo_pattern_is_clear (const cairo_pattern_t *abstract_pattern)
{
    const cairo_pattern_union_t *pattern;

    if (abstract_pattern->has_component_alpha)
	return FALSE;

    pattern = (cairo_pattern_union_t *) abstract_pattern;
    switch (pattern->type) {
    case CAIRO_PATTERN_TYPE_SOLID:
	return CAIRO_COLOR_IS_CLEAR (&pattern->solid.color);
    case CAIRO_PATTERN_TYPE_SURFACE:
	return _surface_is_clear (&pattern->surface);
    case CAIRO_PATTERN_TYPE_LINEAR:
    case CAIRO_PATTERN_TYPE_RADIAL:
	return _gradient_is_clear (&pattern->gradient.base, NULL);
    }

    ASSERT_NOT_REACHED;
    return FALSE;
}

/**
 * _cairo_pattern_analyze_filter:
 * @pattern: surface pattern
 * @pad_out: location to store necessary padding in the source image, or %NULL
 * Returns: the optimized #cairo_filter_t to use with @pattern.
 *
 * Analyze the filter to determine how much extra needs to be sampled
 * from the source image to account for the filter radius and whether
 * we can optimize the filter to a simpler value.
 *
 * XXX: We don't actually have any way of querying the backend for
 *      the filter radius, so we just guess base on what we know that
 *      backends do currently (see bug #10508)
 */
cairo_filter_t
_cairo_pattern_analyze_filter (const cairo_pattern_t	*pattern,
			       double			*pad_out)
{
    double pad;
    cairo_filter_t optimized_filter;

    switch (pattern->filter) {
    case CAIRO_FILTER_GOOD:
    case CAIRO_FILTER_BEST:
    case CAIRO_FILTER_BILINEAR:
	/* If source pixels map 1:1 onto destination pixels, we do
	 * not need to filter (and do not want to filter, since it
	 * will cause blurriness)
	 */
	if (_cairo_matrix_is_pixel_exact (&pattern->matrix)) {
	    pad = 0.;
	    optimized_filter = CAIRO_FILTER_NEAREST;
	} else {
	    /* 0.5 is enough for a bilinear filter. It's possible we
	     * should defensively use more for CAIRO_FILTER_BEST, but
	     * without a single example, it's hard to know how much
	     * more would be defensive...
	     */
	    pad = 0.5;
	    optimized_filter = pattern->filter;
	}
	break;

    case CAIRO_FILTER_FAST:
    case CAIRO_FILTER_NEAREST:
    case CAIRO_FILTER_GAUSSIAN:
    default:
	pad = 0.;
	optimized_filter = pattern->filter;
	break;
    }

    if (pad_out)
	*pad_out = pad;

    return optimized_filter;
}


static double
_pixman_nearest_sample (double d)
{
    return ceil (d - .5);
}

static cairo_int_status_t
_cairo_pattern_acquire_surface_for_surface (const cairo_surface_pattern_t   *pattern,
					    cairo_surface_t	       *dst,
					    int			       x,
					    int			       y,
					    unsigned int	       width,
					    unsigned int	       height,
					    unsigned int	       flags,
					    cairo_surface_t	       **out,
					    cairo_surface_attributes_t *attr)
{
    cairo_surface_t *surface;
    cairo_rectangle_int_t extents;
    cairo_rectangle_int_t sampled_area;
    double x1, y1, x2, y2;
    int tx, ty;
    double pad;
    cairo_bool_t is_identity;
    cairo_bool_t is_empty;
    cairo_bool_t is_bounded;
    cairo_int_status_t status;

    surface = cairo_surface_reference (pattern->surface);

    is_identity = FALSE;
    attr->matrix = pattern->base.matrix;
    attr->extend = pattern->base.extend;
    attr->filter = _cairo_pattern_analyze_filter (&pattern->base, &pad);
    attr->has_component_alpha = pattern->base.has_component_alpha;

    attr->x_offset = attr->y_offset = tx = ty = 0;
    if (_cairo_matrix_is_integer_translation (&attr->matrix, &tx, &ty)) {
	cairo_matrix_init_identity (&attr->matrix);
	attr->x_offset = tx;
	attr->y_offset = ty;
	is_identity = TRUE;
    } else if (attr->filter == CAIRO_FILTER_NEAREST) {
	/*
	 * For NEAREST, we can remove the fractional translation component
	 * from the transformation - this ensures that the pattern will always
	 * hit fast-paths in the backends for simple transformations that
	 * become (almost) identity, without loss of quality.
	 */
	attr->matrix.x0 = 0;
	attr->matrix.y0 = 0;
	if (_cairo_matrix_is_pixel_exact (&attr->matrix)) {
	    /* The rounding here is rather peculiar as it needs to match the
	     * rounding performed on the sample coordinate used by pixman.
	     */
	    attr->matrix.x0 = _pixman_nearest_sample (pattern->base.matrix.x0);
	    attr->matrix.y0 = _pixman_nearest_sample (pattern->base.matrix.y0);
	} else {
	    attr->matrix.x0 = pattern->base.matrix.x0;
	    attr->matrix.y0 = pattern->base.matrix.y0;
	}

	if (_cairo_matrix_is_integer_translation (&attr->matrix, &tx, &ty)) {
	    cairo_matrix_init_identity (&attr->matrix);
	    attr->x_offset = tx;
	    attr->y_offset = ty;
	    is_identity = TRUE;
	}
    }

    /* XXX: Hack:
     *
     * The way we currently support CAIRO_EXTEND_REFLECT is to create
     * an image twice bigger on each side, and create a pattern of four
     * images such that the new image, when repeated, has the same effect
     * of reflecting the original pattern.
     */
    if (flags & CAIRO_PATTERN_ACQUIRE_NO_REFLECT &&
	attr->extend == CAIRO_EXTEND_REFLECT)
    {
	cairo_t *cr;
	cairo_surface_t *src;
	int w, h;

	is_bounded = _cairo_surface_get_extents (surface, &extents);
	assert (is_bounded);

	status = _cairo_surface_clone_similar (dst, surface,
					       extents.x, extents.y,
					       extents.width, extents.height,
					       &extents.x, &extents.y, &src);
	if (unlikely (status))
	    goto BAIL;

	w = 2 * extents.width;
	h = 2 * extents.height;

	if (is_identity) {
	    attr->x_offset = -x;
	    x += tx;
	    while (x <= -w)
		x += w;
	    while (x >= w)
		x -= w;
	    extents.x += x;
	    tx = x = 0;

	    attr->y_offset = -y;
	    y += ty;
	    while (y <= -h)
		y += h;
	    while (y >= h)
		y -= h;
	    extents.y += y;
	    ty = y = 0;
	}

	cairo_surface_destroy (surface);
	surface = _cairo_surface_create_similar_solid (dst,
						       dst->content, w, h,
						       CAIRO_COLOR_TRANSPARENT,
						       FALSE);
	if (surface == NULL)
	    return CAIRO_INT_STATUS_UNSUPPORTED;
	if (unlikely (surface->status)) {
	    cairo_surface_destroy (src);
	    return surface->status;
	}

	surface->device_transform = pattern->surface->device_transform;
	surface->device_transform_inverse = pattern->surface->device_transform_inverse;

	cr = cairo_create (surface);

	cairo_set_source_surface (cr, src, -extents.x, -extents.y);
	cairo_paint (cr);

	cairo_scale (cr, -1, +1);
	cairo_set_source_surface (cr, src, extents.x-w, -extents.y);
	cairo_paint (cr);
	cairo_set_source_surface (cr, src, extents.x, -extents.y);
	cairo_paint (cr);

	cairo_scale (cr, +1, -1);
	cairo_set_source_surface (cr, src, extents.x-w, extents.y-h);
	cairo_paint (cr);
	cairo_set_source_surface (cr, src, extents.x, extents.y-h);
	cairo_paint (cr);
	cairo_set_source_surface (cr, src, extents.x-w, extents.y);
	cairo_paint (cr);
	cairo_set_source_surface (cr, src, extents.x, extents.y);
	cairo_paint (cr);

	cairo_scale (cr, -1, +1);
	cairo_set_source_surface (cr, src, -extents.x, extents.y-h);
	cairo_paint (cr);
	cairo_set_source_surface (cr, src, -extents.x, extents.y);
	cairo_paint (cr);

	status = cairo_status (cr);
	cairo_destroy (cr);

	cairo_surface_destroy (src);

	if (unlikely (status))
	    goto BAIL;

	attr->extend = CAIRO_EXTEND_REPEAT;
    }

    /* We first transform the rectangle to the coordinate space of the
     * source surface so that we only need to clone that portion of the
     * surface that will be read.
     */
    x1 = x;
    y1 = y;
    x2 = x + (int) width;
    y2 = y + (int) height;
    if (! is_identity) {
	_cairo_matrix_transform_bounding_box (&attr->matrix,
					      &x1, &y1, &x2, &y2,
					      NULL);
    }

    sampled_area.x = floor (x1 - pad);
    sampled_area.y = floor (y1 - pad);
    sampled_area.width  = ceil (x2 + pad) - sampled_area.x;
    sampled_area.height = ceil (y2 + pad) - sampled_area.y;

    sampled_area.x += tx;
    sampled_area.y += ty;

    if ( _cairo_surface_get_extents (surface, &extents)) {
	if (attr->extend == CAIRO_EXTEND_NONE) {
	    /* Never acquire a larger area than the source itself */
	    is_empty = _cairo_rectangle_intersect (&extents, &sampled_area);
	} else {
	    int trim = 0;

	    if (sampled_area.x >= extents.x &&
		sampled_area.x + (int) sampled_area.width <= extents.x + (int) extents.width)
	    {
		/* source is horizontally contained within extents, trim */
		extents.x = sampled_area.x;
		extents.width = sampled_area.width;
		trim |= 0x1;
	    }

	    if (sampled_area.y >= extents.y &&
		sampled_area.y + (int) sampled_area.height <= extents.y + (int) extents.height)
	    {
		/* source is vertically contained within extents, trim */
		extents.y = sampled_area.y;
		extents.height = sampled_area.height;
		trim |= 0x2;
	    }

	    if (trim == 0x3) {
		/* source is wholly contained within extents, drop the REPEAT */
		attr->extend = CAIRO_EXTEND_NONE;
	    }

	    is_empty = extents.width == 0 || extents.height == 0;
	}
    }

    /* XXX can we use is_empty? */

    status = _cairo_surface_clone_similar (dst, surface,
					   extents.x, extents.y,
					   extents.width, extents.height,
					   &x, &y, out);
    if (unlikely (status))
	goto BAIL;

    if (x != 0 || y != 0) {
	if (is_identity) {
	    attr->x_offset -= x;
	    attr->y_offset -= y;
	} else {
	    cairo_matrix_t m;

	    x -= attr->x_offset;
	    y -= attr->y_offset;
	    attr->x_offset = 0;
	    attr->y_offset = 0;

	    cairo_matrix_init_translate (&m, -x, -y);
	    cairo_matrix_multiply (&attr->matrix, &attr->matrix, &m);
	}
    }

    /* reduce likelihood of range overflow with large downscaling */
    if (! is_identity) {
	cairo_matrix_t m;
	cairo_status_t invert_status;

	m = attr->matrix;
	invert_status = cairo_matrix_invert (&m);
	assert (invert_status == CAIRO_STATUS_SUCCESS);

	if (m.x0 != 0. || m.y0 != 0.) {
	    /* pixman also limits the [xy]_offset to 16 bits so evenly
	     * spread the bits between the two.
	     */
	    x = floor (m.x0 / 2);
	    y = floor (m.y0 / 2);
	    attr->x_offset -= x;
	    attr->y_offset -= y;
	    cairo_matrix_init_translate (&m, x, y);
	    cairo_matrix_multiply (&attr->matrix, &m, &attr->matrix);
	}
    }

  BAIL:
    cairo_surface_destroy (surface);
    return status;
}

/**
 * _cairo_pattern_acquire_surface:
 * @pattern: a #cairo_pattern_t
 * @dst: destination surface
 * @x: X coordinate in source corresponding to left side of destination area
 * @y: Y coordinate in source corresponding to top side of destination area
 * @width: width of destination area
 * @height: height of destination area
 * @surface_out: location to store a pointer to a surface
 * @attributes: surface attributes that destination backend should apply to
 * the returned surface
 *
 * A convenience function to obtain a surface to use as the source for
 * drawing on @dst.
 *
 * Note that this function is only suitable for use when the destination
 * surface is pixel based and 1 device unit maps to one pixel.
 *
 * Return value: %CAIRO_STATUS_SUCCESS if a surface was stored in @surface_out.
 **/
cairo_int_status_t
_cairo_pattern_acquire_surface (const cairo_pattern_t	   *pattern,
				cairo_surface_t		   *dst,
				int			   x,
				int			   y,
				unsigned int		   width,
				unsigned int		   height,
				unsigned int		   flags,
				cairo_surface_t		   **surface_out,
				cairo_surface_attributes_t *attributes)
{
    if (unlikely (pattern->status)) {
	*surface_out = NULL;
	return pattern->status;
    }

    switch (pattern->type) {
    case CAIRO_PATTERN_TYPE_SOLID:
	return _cairo_pattern_acquire_surface_for_solid ((cairo_solid_pattern_t *) pattern,
							 dst, x, y, width, height,
							 surface_out,
							 attributes);

    case CAIRO_PATTERN_TYPE_LINEAR:
    case CAIRO_PATTERN_TYPE_RADIAL:
	return _cairo_pattern_acquire_surface_for_gradient ((cairo_gradient_pattern_t *) pattern,
							    dst, x, y, width, height,
							    surface_out,
							    attributes);

    case CAIRO_PATTERN_TYPE_SURFACE:
	return _cairo_pattern_acquire_surface_for_surface ((cairo_surface_pattern_t *) pattern,
							   dst, x, y, width, height,
							   flags,
							   surface_out,
							   attributes);

    default:
	ASSERT_NOT_REACHED;
	return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH);
    }
}

/**
 * _cairo_pattern_release_surface:
 * @pattern: a #cairo_pattern_t
 * @surface: a surface obtained by _cairo_pattern_acquire_surface
 * @attributes: attributes obtained by _cairo_pattern_acquire_surface
 *
 * Releases resources obtained by _cairo_pattern_acquire_surface.
 **/
void
_cairo_pattern_release_surface (const cairo_pattern_t *pattern,
				cairo_surface_t		   *surface,
				cairo_surface_attributes_t *attributes)
{
    cairo_surface_destroy (surface);
}

cairo_int_status_t
_cairo_pattern_acquire_surfaces (const cairo_pattern_t	    *src,
				 const cairo_pattern_t	    *mask,
				 cairo_surface_t	    *dst,
				 int			    src_x,
				 int			    src_y,
				 int			    mask_x,
				 int			    mask_y,
				 unsigned int		    width,
				 unsigned int		    height,
				 unsigned int		    flags,
				 cairo_surface_t	    **src_out,
				 cairo_surface_t	    **mask_out,
				 cairo_surface_attributes_t *src_attributes,
				 cairo_surface_attributes_t *mask_attributes)
{
    cairo_int_status_t	  status;
    cairo_pattern_union_t src_tmp;

    if (unlikely (src->status))
	return src->status;
    if (unlikely (mask != NULL && mask->status))
	return mask->status;

    /* If src and mask are both solid, then the mask alpha can be
     * combined into src and mask can be ignored. */

    if (src->type == CAIRO_PATTERN_TYPE_SOLID &&
	mask &&
	! mask->has_component_alpha &&
	mask->type == CAIRO_PATTERN_TYPE_SOLID)
    {
	cairo_color_t combined;
	cairo_solid_pattern_t *src_solid = (cairo_solid_pattern_t *) src;
	cairo_solid_pattern_t *mask_solid = (cairo_solid_pattern_t *) mask;

	combined = src_solid->color;
	_cairo_color_multiply_alpha (&combined, mask_solid->color.alpha);

	_cairo_pattern_init_solid (&src_tmp.solid, &combined);

	src = &src_tmp.base;
	mask = NULL;
    }

    status = _cairo_pattern_acquire_surface (src, dst,
					     src_x, src_y,
					     width, height,
					     flags,
					     src_out, src_attributes);
    if (unlikely (status))
	goto BAIL;

    if (mask == NULL) {
	*mask_out = NULL;
	goto BAIL;
    }

    status = _cairo_pattern_acquire_surface (mask, dst,
					     mask_x, mask_y,
					     width, height,
					     flags,
					     mask_out, mask_attributes);
    if (unlikely (status))
	_cairo_pattern_release_surface (src, *src_out, src_attributes);

  BAIL:
    if (src == &src_tmp.base)
	_cairo_pattern_fini (&src_tmp.base);

    return status;
}

/**
 * _cairo_pattern_get_extents:
 *
 * Return the "target-space" extents of @pattern in @extents.
 *
 * For unbounded patterns, the @extents will be initialized with
 * "infinite" extents, (minimum and maximum fixed-point values).
 *
 * XXX: Currently, bounded gradient patterns will also return
 * "infinite" extents, though it would be possible to optimize these
 * with a little more work.
 **/
void
_cairo_pattern_get_extents (const cairo_pattern_t         *pattern,
			    cairo_rectangle_int_t         *extents)
{
    double x1, y1, x2, y2;
    cairo_status_t status;

    switch (pattern->type) {
    case CAIRO_PATTERN_TYPE_SOLID:
	goto UNBOUNDED;

    case CAIRO_PATTERN_TYPE_SURFACE:
	{
	    cairo_rectangle_int_t surface_extents;
	    const cairo_surface_pattern_t *surface_pattern =
		(const cairo_surface_pattern_t *) pattern;
	    cairo_surface_t *surface = surface_pattern->surface;
	    double pad;

	    if (! _cairo_surface_get_extents (surface, &surface_extents))
		goto UNBOUNDED;

	    if (surface_extents.width == 0 || surface_extents.height == 0)
		goto EMPTY;

	    if (pattern->extend != CAIRO_EXTEND_NONE)
		goto UNBOUNDED;

	    /* The filter can effectively enlarge the extents of the
	     * pattern, so extend as necessary.
	     */
	    _cairo_pattern_analyze_filter (&surface_pattern->base, &pad);
	    x1 = surface_extents.x - pad;
	    y1 = surface_extents.y - pad;
	    x2 = surface_extents.x + (int) surface_extents.width  + pad;
	    y2 = surface_extents.y + (int) surface_extents.height + pad;
	}
	break;

    case CAIRO_PATTERN_TYPE_RADIAL:
	{
	    const cairo_radial_pattern_t *radial =
		(const cairo_radial_pattern_t *) pattern;
	    double cx1, cy1;
	    double cx2, cy2;
	    double r, D;

	    if (radial->r1 == 0 && radial->r2 == 0)
		goto EMPTY;

	    cx1 = _cairo_fixed_to_double (radial->c1.x);
	    cy1 = _cairo_fixed_to_double (radial->c1.y);
	    r = _cairo_fixed_to_double (radial->r1);
	    x1 = cx1 - r; x2 = cx1 + r;
	    y1 = cy1 - r; y2 = cy1 + r;

	    cx2 = _cairo_fixed_to_double (radial->c2.x);
	    cy2 = _cairo_fixed_to_double (radial->c2.y);
	    r = fabs (_cairo_fixed_to_double (radial->r2));

	    if (pattern->extend != CAIRO_EXTEND_NONE)
		goto UNBOUNDED;

	    /* We need to be careful, as if the circles are not
	     * self-contained, then the solution is actually unbounded.
	     */
	    D = (cx1-cx2)*(cx1-cx2) + (cy1-cy2)*(cy1-cy2);
	    if (D > r*r - 1e-5)
		goto UNBOUNDED;

	    if (cx2 - r < x1)
		x1 = cx2 - r;
	    if (cx2 + r > x2)
		x2 = cx2 + r;

	    if (cy2 - r < y1)
		y1 = cy2 - r;
	    if (cy2 + r > y2)
		y2 = cy2 + r;
	}
	break;

    case CAIRO_PATTERN_TYPE_LINEAR:
	{
	    const cairo_linear_pattern_t *linear =
		(const cairo_linear_pattern_t *) pattern;

	    if (pattern->extend != CAIRO_EXTEND_NONE)
		goto UNBOUNDED;

	    if (linear->p1.x == linear->p2.x && linear->p1.y == linear->p2.y)
		goto EMPTY;

	    if (pattern->matrix.xy != 0. || pattern->matrix.yx != 0.)
		goto UNBOUNDED;

	    if (linear->p1.x == linear->p2.x) {
		x1 = -HUGE_VAL;
		x2 = HUGE_VAL;
		y1 = _cairo_fixed_to_double (MIN (linear->p1.y, linear->p2.y));
		y2 = _cairo_fixed_to_double (MAX (linear->p1.y, linear->p2.y));
	    } else if (linear->p1.y == linear->p2.y) {
		x1 = _cairo_fixed_to_double (MIN (linear->p1.x, linear->p2.x));
		x2 = _cairo_fixed_to_double (MAX (linear->p1.x, linear->p2.x));
		y1 = -HUGE_VAL;
		y2 = HUGE_VAL;
	    } else {
		goto  UNBOUNDED;
	    }
	}
	break;

    default:
	ASSERT_NOT_REACHED;
    }

    if (_cairo_matrix_is_translation (&pattern->matrix)) {
	x1 -= pattern->matrix.x0; x2 -= pattern->matrix.x0;
	y1 -= pattern->matrix.y0; y2 -= pattern->matrix.y0;
    } else {
	cairo_matrix_t imatrix;

	imatrix = pattern->matrix;
	status = cairo_matrix_invert (&imatrix);
	/* cairo_pattern_set_matrix ensures the matrix is invertible */
	assert (status == CAIRO_STATUS_SUCCESS);

	_cairo_matrix_transform_bounding_box (&imatrix,
					      &x1, &y1, &x2, &y2,
					      NULL);
    }

    x1 = floor (x1);
    if (x1 < CAIRO_RECT_INT_MIN)
	x1 = CAIRO_RECT_INT_MIN;
    y1 = floor (y1);
    if (y1 < CAIRO_RECT_INT_MIN)
	y1 = CAIRO_RECT_INT_MIN;

    x2 = ceil (x2);
    if (x2 > CAIRO_RECT_INT_MAX)
	x2 = CAIRO_RECT_INT_MAX;
    y2 = ceil (y2);
    if (y2 > CAIRO_RECT_INT_MAX)
	y2 = CAIRO_RECT_INT_MAX;

    extents->x = x1; extents->width  = x2 - x1;
    extents->y = y1; extents->height = y2 - y1;
    return;

  UNBOUNDED:
    /* unbounded patterns -> 'infinite' extents */
    _cairo_unbounded_rectangle_init (extents);
    return;

  EMPTY:
    extents->x = extents->y = 0;
    extents->width = extents->height = 0;
    return;
}


static unsigned long
_cairo_solid_pattern_hash (unsigned long hash,
			   const cairo_pattern_t *pattern)
{
    const cairo_solid_pattern_t *solid = (cairo_solid_pattern_t *) pattern;

    hash = _cairo_hash_bytes (hash, &solid->color, sizeof (solid->color));

    return hash;
}

static unsigned long
_cairo_gradient_color_stops_hash (unsigned long hash,
				  const cairo_gradient_pattern_t *gradient)
{
    unsigned int n;

    hash = _cairo_hash_bytes (hash,
			      &gradient->n_stops,
			      sizeof (gradient->n_stops));

    for (n = 0; n < gradient->n_stops; n++) {
	hash = _cairo_hash_bytes (hash,
				  &gradient->stops[n].offset,
				  sizeof (double));
	hash = _cairo_hash_bytes (hash,
				  &gradient->stops[n].color,
				  sizeof (cairo_color_t));
    }

    return hash;
}

unsigned long
_cairo_linear_pattern_hash (unsigned long hash,
			    const cairo_linear_pattern_t *linear)
{
    hash = _cairo_hash_bytes (hash, &linear->p1, sizeof (linear->p1));
    hash = _cairo_hash_bytes (hash, &linear->p2, sizeof (linear->p2));

    return _cairo_gradient_color_stops_hash (hash, &linear->base);
}

unsigned long
_cairo_radial_pattern_hash (unsigned long hash,
			    const cairo_radial_pattern_t *radial)
{
    hash = _cairo_hash_bytes (hash, &radial->c1, sizeof (radial->c1));
    hash = _cairo_hash_bytes (hash, &radial->r1, sizeof (radial->r1));
    hash = _cairo_hash_bytes (hash, &radial->c2, sizeof (radial->c2));
    hash = _cairo_hash_bytes (hash, &radial->r2, sizeof (radial->r2));

    return _cairo_gradient_color_stops_hash (hash, &radial->base);
}

static unsigned long
_cairo_surface_pattern_hash (unsigned long hash,
			     const cairo_pattern_t *pattern)
{
    const cairo_surface_pattern_t *surface = (cairo_surface_pattern_t *) pattern;

    hash ^= surface->surface->unique_id;

    return hash;
}

unsigned long
_cairo_pattern_hash (const cairo_pattern_t *pattern)
{
    unsigned long hash = _CAIRO_HASH_INIT_VALUE;

    if (pattern->status)
	return 0;

    hash = _cairo_hash_bytes (hash, &pattern->type, sizeof (pattern->type));
    if (pattern->type != CAIRO_PATTERN_TYPE_SOLID) {
	hash = _cairo_hash_bytes (hash,
				  &pattern->matrix, sizeof (pattern->matrix));
	hash = _cairo_hash_bytes (hash,
				  &pattern->filter, sizeof (pattern->filter));
	hash = _cairo_hash_bytes (hash,
				  &pattern->extend, sizeof (pattern->extend));
	hash = _cairo_hash_bytes (hash,
				  &pattern->has_component_alpha,
				  sizeof (pattern->has_component_alpha));
    }

    switch (pattern->type) {
    case CAIRO_PATTERN_TYPE_SOLID:
	return _cairo_solid_pattern_hash (hash, pattern);
    case CAIRO_PATTERN_TYPE_LINEAR:
	return _cairo_linear_pattern_hash (hash, (cairo_linear_pattern_t *) pattern);
    case CAIRO_PATTERN_TYPE_RADIAL:
	return _cairo_radial_pattern_hash (hash, (cairo_radial_pattern_t *) pattern);
    case CAIRO_PATTERN_TYPE_SURFACE:
	return _cairo_surface_pattern_hash (hash, pattern);
    default:
	ASSERT_NOT_REACHED;
	return FALSE;
    }
}

static unsigned long
_cairo_gradient_pattern_color_stops_size (const cairo_pattern_t *pattern)
{
    cairo_gradient_pattern_t *gradient = (cairo_gradient_pattern_t *) pattern;

    return gradient->n_stops * (sizeof (double) + sizeof (cairo_color_t));
}

unsigned long
_cairo_pattern_size (const cairo_pattern_t *pattern)
{
    if (pattern->status)
	return 0;

    /* XXX */
    switch (pattern->type) {
    case CAIRO_PATTERN_TYPE_SOLID:
	return sizeof (cairo_solid_pattern_t);
	break;
    case CAIRO_PATTERN_TYPE_SURFACE:
	return sizeof (cairo_surface_pattern_t);
	break;
    case CAIRO_PATTERN_TYPE_LINEAR:
	return sizeof (cairo_linear_pattern_t) +
	    _cairo_gradient_pattern_color_stops_size (pattern);
	break;
    case CAIRO_PATTERN_TYPE_RADIAL:
	return sizeof (cairo_radial_pattern_t) +
	    _cairo_gradient_pattern_color_stops_size (pattern);
    default:
	ASSERT_NOT_REACHED;
	return 0;
    }
}


static cairo_bool_t
_cairo_solid_pattern_equal (const cairo_pattern_t *A,
			    const cairo_pattern_t *B)
{
    const cairo_solid_pattern_t *a = (cairo_solid_pattern_t *) A;
    const cairo_solid_pattern_t *b = (cairo_solid_pattern_t *) B;

    return _cairo_color_equal (&a->color, &b->color);
}

static cairo_bool_t
_cairo_gradient_color_stops_equal (const cairo_gradient_pattern_t *a,
				   const cairo_gradient_pattern_t *b)
{
    unsigned int n;

    if (a->n_stops != b->n_stops)
	return FALSE;

    for (n = 0; n < a->n_stops; n++) {
	if (a->stops[n].offset != b->stops[n].offset)
	    return FALSE;
	if (! _cairo_color_stop_equal (&a->stops[n].color, &b->stops[n].color))
	    return FALSE;
    }

    return TRUE;
}

cairo_bool_t
_cairo_linear_pattern_equal (const cairo_linear_pattern_t *a,
			     const cairo_linear_pattern_t *b)
{
    if (a->p1.x != b->p1.x)
	return FALSE;

    if (a->p1.y != b->p1.y)
	return FALSE;

    if (a->p2.x != b->p2.x)
	return FALSE;

    if (a->p2.y != b->p2.y)
	return FALSE;

    return _cairo_gradient_color_stops_equal (&a->base, &b->base);
}

cairo_bool_t
_cairo_radial_pattern_equal (const cairo_radial_pattern_t *a,
			     const cairo_radial_pattern_t *b)
{
    if (a->c1.x != b->c1.x)
	return FALSE;

    if (a->c1.y != b->c1.y)
	return FALSE;

    if (a->r1 != b->r1)
	return FALSE;

    if (a->c2.x != b->c2.x)
	return FALSE;

    if (a->c2.y != b->c2.y)
	return FALSE;

    if (a->r2 != b->r2)
	return FALSE;

    return _cairo_gradient_color_stops_equal (&a->base, &b->base);
}

static cairo_bool_t
_cairo_surface_pattern_equal (const cairo_pattern_t *A,
			      const cairo_pattern_t *B)
{
    const cairo_surface_pattern_t *a = (cairo_surface_pattern_t *) A;
    const cairo_surface_pattern_t *b = (cairo_surface_pattern_t *) B;

    return a->surface->unique_id == b->surface->unique_id;
}

cairo_bool_t
_cairo_pattern_equal (const cairo_pattern_t *a, const cairo_pattern_t *b)
{
    if (a->status || b->status)
	return FALSE;

    if (a == b)
	return TRUE;

    if (a->type != b->type)
	return FALSE;

    if (a->has_component_alpha != b->has_component_alpha)
	return FALSE;

    if (a->type != CAIRO_PATTERN_TYPE_SOLID) {
	if (memcmp (&a->matrix, &b->matrix, sizeof (cairo_matrix_t)))
	    return FALSE;

	if (a->filter != b->filter)
	    return FALSE;

	if (a->extend != b->extend)
	    return FALSE;
    }

    switch (a->type) {
    case CAIRO_PATTERN_TYPE_SOLID:
	return _cairo_solid_pattern_equal (a, b);
    case CAIRO_PATTERN_TYPE_LINEAR:
	return _cairo_linear_pattern_equal ((cairo_linear_pattern_t *) a,
					    (cairo_linear_pattern_t *) b);
    case CAIRO_PATTERN_TYPE_RADIAL:
	return _cairo_radial_pattern_equal ((cairo_radial_pattern_t *) a,
					    (cairo_radial_pattern_t *) b);
    case CAIRO_PATTERN_TYPE_SURFACE:
	return _cairo_surface_pattern_equal (a, b);
    default:
	ASSERT_NOT_REACHED;
	return FALSE;
    }
}

/**
 * cairo_pattern_get_rgba
 * @pattern: a #cairo_pattern_t
 * @red: return value for red component of color, or %NULL
 * @green: return value for green component of color, or %NULL
 * @blue: return value for blue component of color, or %NULL
 * @alpha: return value for alpha component of color, or %NULL
 *
 * Gets the solid color for a solid color pattern.
 *
 * Return value: %CAIRO_STATUS_SUCCESS, or
 * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH if the pattern is not a solid
 * color pattern.
 *
 * Since: 1.4
 **/
cairo_status_t
cairo_pattern_get_rgba (cairo_pattern_t *pattern,
			double *red, double *green,
			double *blue, double *alpha)
{
    cairo_solid_pattern_t *solid = (cairo_solid_pattern_t*) pattern;
    double r0, g0, b0, a0;

    if (pattern->status)
	return pattern->status;

    if (pattern->type != CAIRO_PATTERN_TYPE_SOLID)
	return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH);

    _cairo_color_get_rgba (&solid->color, &r0, &g0, &b0, &a0);

    if (red)
	*red = r0;
    if (green)
	*green = g0;
    if (blue)
	*blue = b0;
    if (alpha)
	*alpha = a0;

    return CAIRO_STATUS_SUCCESS;
}

/**
 * cairo_pattern_get_surface
 * @pattern: a #cairo_pattern_t
 * @surface: return value for surface of pattern, or %NULL
 * 
 * Gets the surface of a surface pattern.  The reference returned in
 * @surface is owned by the pattern; the caller should call
 * cairo_surface_reference() if the surface is to be retained.
 *
 * Return value: %CAIRO_STATUS_SUCCESS, or
 * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH if the pattern is not a surface
 * pattern.
 *
 * Since: 1.4
 **/
cairo_status_t
cairo_pattern_get_surface (cairo_pattern_t *pattern,
			   cairo_surface_t **surface)
{
    cairo_surface_pattern_t *spat = (cairo_surface_pattern_t*) pattern;

    if (pattern->status)
	return pattern->status;

    if (pattern->type != CAIRO_PATTERN_TYPE_SURFACE)
	return CAIRO_STATUS_PATTERN_TYPE_MISMATCH;

    if (surface)
	*surface = spat->surface;

    return CAIRO_STATUS_SUCCESS;
}

/**
 * cairo_pattern_get_color_stop_rgba
 * @pattern: a #cairo_pattern_t
 * @index: index of the stop to return data for
 * @offset: return value for the offset of the stop, or %NULL
 * @red: return value for red component of color, or %NULL
 * @green: return value for green component of color, or %NULL
 * @blue: return value for blue component of color, or %NULL
 * @alpha: return value for alpha component of color, or %NULL
 *
 * Gets the color and offset information at the given @index for a
 * gradient pattern.  Values of @index are 0 to 1 less than the number
 * returned by cairo_pattern_get_color_stop_count().
 *
 * Return value: %CAIRO_STATUS_SUCCESS, or %CAIRO_STATUS_INVALID_INDEX
 * if @index is not valid for the given pattern.  If the pattern is
 * not a gradient pattern, %CAIRO_STATUS_PATTERN_TYPE_MISMATCH is
 * returned.
 *
 * Since: 1.4
 **/
cairo_status_t
cairo_pattern_get_color_stop_rgba (cairo_pattern_t *pattern,
				   int index, double *offset,
				   double *red, double *green,
				   double *blue, double *alpha)
{
    cairo_gradient_pattern_t *gradient = (cairo_gradient_pattern_t*) pattern;

    if (pattern->status)
	return pattern->status;

    if (pattern->type != CAIRO_PATTERN_TYPE_LINEAR &&
	pattern->type != CAIRO_PATTERN_TYPE_RADIAL)
	return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH);

    if (index < 0 || (unsigned int) index >= gradient->n_stops)
	return _cairo_error (CAIRO_STATUS_INVALID_INDEX);

    if (offset)
	*offset = gradient->stops[index].offset;
    if (red)
	*red = gradient->stops[index].color.red;
    if (green)
	*green = gradient->stops[index].color.green;
    if (blue)
	*blue = gradient->stops[index].color.blue;
    if (alpha)
	*alpha = gradient->stops[index].color.alpha;

    return CAIRO_STATUS_SUCCESS;
}

/**
 * cairo_pattern_get_color_stop_count
 * @pattern: a #cairo_pattern_t
 * @count: return value for the number of color stops, or %NULL
 *
 * Gets the number of color stops specified in the given gradient
 * pattern.
 *
 * Return value: %CAIRO_STATUS_SUCCESS, or
 * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH if @pattern is not a gradient
 * pattern.
 *
 * Since: 1.4
 */
cairo_status_t
cairo_pattern_get_color_stop_count (cairo_pattern_t *pattern,
				    int *count)
{
    cairo_gradient_pattern_t *gradient = (cairo_gradient_pattern_t*) pattern;

    if (pattern->status)
	return pattern->status;

    if (pattern->type != CAIRO_PATTERN_TYPE_LINEAR &&
	pattern->type != CAIRO_PATTERN_TYPE_RADIAL)
	return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH);

    if (count)
	*count = gradient->n_stops;

    return CAIRO_STATUS_SUCCESS;
}

/**
 * cairo_pattern_get_linear_points
 * @pattern: a #cairo_pattern_t
 * @x0: return value for the x coordinate of the first point, or %NULL
 * @y0: return value for the y coordinate of the first point, or %NULL
 * @x1: return value for the x coordinate of the second point, or %NULL
 * @y1: return value for the y coordinate of the second point, or %NULL
 *
 * Gets the gradient endpoints for a linear gradient.
 *
 * Return value: %CAIRO_STATUS_SUCCESS, or
 * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH if @pattern is not a linear
 * gradient pattern.
 *
 * Since: 1.4
 **/
cairo_status_t
cairo_pattern_get_linear_points (cairo_pattern_t *pattern,
				 double *x0, double *y0,
				 double *x1, double *y1)
{
    cairo_linear_pattern_t *linear = (cairo_linear_pattern_t*) pattern;

    if (pattern->status)
	return pattern->status;

    if (pattern->type != CAIRO_PATTERN_TYPE_LINEAR)
	return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH);

    if (x0)
	*x0 = _cairo_fixed_to_double (linear->p1.x);
    if (y0)
	*y0 = _cairo_fixed_to_double (linear->p1.y);
    if (x1)
	*x1 = _cairo_fixed_to_double (linear->p2.x);
    if (y1)
	*y1 = _cairo_fixed_to_double (linear->p2.y);

    return CAIRO_STATUS_SUCCESS;
}

/**
 * cairo_pattern_get_radial_circles
 * @pattern: a #cairo_pattern_t
 * @x0: return value for the x coordinate of the center of the first circle, or %NULL
 * @y0: return value for the y coordinate of the center of the first circle, or %NULL
 * @r0: return value for the radius of the first circle, or %NULL
 * @x1: return value for the x coordinate of the center of the second circle, or %NULL
 * @y1: return value for the y coordinate of the center of the second circle, or %NULL
 * @r1: return value for the radius of the second circle, or %NULL
 *
 * Gets the gradient endpoint circles for a radial gradient, each
 * specified as a center coordinate and a radius.
 *
 * Return value: %CAIRO_STATUS_SUCCESS, or
 * %CAIRO_STATUS_PATTERN_TYPE_MISMATCH if @pattern is not a radial
 * gradient pattern.
 *
 * Since: 1.4
 **/
cairo_status_t
cairo_pattern_get_radial_circles (cairo_pattern_t *pattern,
				  double *x0, double *y0, double *r0,
				  double *x1, double *y1, double *r1)
{
    cairo_radial_pattern_t *radial = (cairo_radial_pattern_t*) pattern;

    if (pattern->status)
	return pattern->status;

    if (pattern->type != CAIRO_PATTERN_TYPE_RADIAL)
	return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH);

    if (x0)
	*x0 = _cairo_fixed_to_double (radial->c1.x);
    if (y0)
	*y0 = _cairo_fixed_to_double (radial->c1.y);
    if (r0)
	*r0 = _cairo_fixed_to_double (radial->r1);
    if (x1)
	*x1 = _cairo_fixed_to_double (radial->c2.x);
    if (y1)
	*y1 = _cairo_fixed_to_double (radial->c2.y);
    if (r1)
	*r1 = _cairo_fixed_to_double (radial->r2);

    return CAIRO_STATUS_SUCCESS;
}

void
_cairo_pattern_reset_static_data (void)
{
#if HAS_FREED_POOL
    int i;

    for (i = 0; i < ARRAY_LENGTH (freed_pattern_pool); i++)
	_freed_pool_reset (&freed_pattern_pool[i]);
#endif

    _cairo_pattern_reset_solid_surface_cache ();
}