DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (e67641c2e4cc)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "nsError.h"
#include "MediaDecoderStateMachine.h"
#include "OggDemuxer.h"
#include "OggCodecState.h"
#include "mozilla/AbstractThread.h"
#include "mozilla/Atomics.h"
#include "mozilla/PodOperations.h"
#include "mozilla/SharedThreadPool.h"
#include "mozilla/Telemetry.h"
#include "mozilla/TimeStamp.h"
#include "MediaDataDemuxer.h"
#include "nsAutoRef.h"
#include "XiphExtradata.h"
#include "MediaPrefs.h"

#include <algorithm>

extern mozilla::LazyLogModule gMediaDemuxerLog;
#define OGG_DEBUG(arg, ...)                                           \
  DDMOZ_LOG(gMediaDemuxerLog, mozilla::LogLevel::Debug, "::%s: " arg, \
            __func__, ##__VA_ARGS__)

// Un-comment to enable logging of seek bisections.
//#define SEEK_LOGGING
#ifdef SEEK_LOGGING
#define SEEK_LOG(type, msg) MOZ_LOG(gMediaDemuxerLog, type, msg)
#else
#define SEEK_LOG(type, msg)
#endif

namespace mozilla {

using media::TimeInterval;
using media::TimeIntervals;
using media::TimeUnit;

// The number of microseconds of "fuzz" we use in a bisection search over
// HTTP. When we're seeking with fuzz, we'll stop the search if a bisection
// lands between the seek target and OGG_SEEK_FUZZ_USECS microseconds before the
// seek target.  This is becaue it's usually quicker to just keep downloading
// from an exisiting connection than to do another bisection inside that
// small range, which would open a new HTTP connetion.
static const uint32_t OGG_SEEK_FUZZ_USECS = 500000;

// The number of microseconds of "pre-roll" we use for Opus streams.
// The specification recommends 80 ms.
static const int64_t OGG_SEEK_OPUS_PREROLL = 80 * USECS_PER_MS;

static Atomic<uint32_t> sStreamSourceID(0u);

// Return the corresponding category in aKind based on the following specs.
// (https://www.whatwg.org/specs/web-apps/current-
// work/multipage/embedded-content.html#dom-audiotrack-kind) &
// (http://wiki.xiph.org/SkeletonHeaders)
const nsString OggDemuxer::GetKind(const nsCString& aRole) {
  if (aRole.Find("audio/main") != -1 || aRole.Find("video/main") != -1) {
    return NS_LITERAL_STRING("main");
  } else if (aRole.Find("audio/alternate") != -1 ||
             aRole.Find("video/alternate") != -1) {
    return NS_LITERAL_STRING("alternative");
  } else if (aRole.Find("audio/audiodesc") != -1) {
    return NS_LITERAL_STRING("descriptions");
  } else if (aRole.Find("audio/described") != -1) {
    return NS_LITERAL_STRING("main-desc");
  } else if (aRole.Find("audio/dub") != -1) {
    return NS_LITERAL_STRING("translation");
  } else if (aRole.Find("audio/commentary") != -1) {
    return NS_LITERAL_STRING("commentary");
  } else if (aRole.Find("video/sign") != -1) {
    return NS_LITERAL_STRING("sign");
  } else if (aRole.Find("video/captioned") != -1) {
    return NS_LITERAL_STRING("captions");
  } else if (aRole.Find("video/subtitled") != -1) {
    return NS_LITERAL_STRING("subtitles");
  }
  return EmptyString();
}

void OggDemuxer::InitTrack(MessageField* aMsgInfo, TrackInfo* aInfo,
                           bool aEnable) {
  MOZ_ASSERT(aMsgInfo);
  MOZ_ASSERT(aInfo);

  nsCString* sName = aMsgInfo->mValuesStore.Get(eName);
  nsCString* sRole = aMsgInfo->mValuesStore.Get(eRole);
  nsCString* sTitle = aMsgInfo->mValuesStore.Get(eTitle);
  nsCString* sLanguage = aMsgInfo->mValuesStore.Get(eLanguage);
  aInfo->Init(sName ? NS_ConvertUTF8toUTF16(*sName) : EmptyString(),
              sRole ? GetKind(*sRole) : EmptyString(),
              sTitle ? NS_ConvertUTF8toUTF16(*sTitle) : EmptyString(),
              sLanguage ? NS_ConvertUTF8toUTF16(*sLanguage) : EmptyString(),
              aEnable);
}

OggDemuxer::OggDemuxer(MediaResource* aResource)
    : mTheoraState(nullptr),
      mVorbisState(nullptr),
      mOpusState(nullptr),
      mFlacState(nullptr),
      mOpusEnabled(MediaDecoder::IsOpusEnabled()),
      mSkeletonState(nullptr),
      mAudioOggState(aResource),
      mVideoOggState(aResource),
      mIsChained(false),
      mTimedMetadataEvent(nullptr),
      mOnSeekableEvent(nullptr) {
  MOZ_COUNT_CTOR(OggDemuxer);
  // aResource is referenced through inner m{Audio,Video}OffState members.
  DDLINKCHILD("resource", aResource);
}

OggDemuxer::~OggDemuxer() {
  MOZ_COUNT_DTOR(OggDemuxer);
  Reset(TrackInfo::kAudioTrack);
  Reset(TrackInfo::kVideoTrack);
  if (HasAudio() || HasVideo()) {
    // If we were able to initialize our decoders, report whether we encountered
    // a chained stream or not.
    bool isChained = mIsChained;
    void* ptr = this;
    nsCOMPtr<nsIRunnable> task = NS_NewRunnableFunction(
        "OggDemuxer::~OggDemuxer", [ptr, isChained]() -> void {
          // We can't use OGG_DEBUG here because it implicitly refers to `this`,
          // which we can't capture in this runnable.
          MOZ_LOG(gMediaDemuxerLog, mozilla::LogLevel::Debug,
                  ("OggDemuxer(%p)::%s: Reporting telemetry "
                   "MEDIA_OGG_LOADED_IS_CHAINED=%d",
                   ptr, __func__, isChained));
          Telemetry::Accumulate(
              Telemetry::HistogramID::MEDIA_OGG_LOADED_IS_CHAINED, isChained);
        });
    SystemGroup::Dispatch(TaskCategory::Other, task.forget());
  }
}

void OggDemuxer::SetChainingEvents(TimedMetadataEventProducer* aMetadataEvent,
                                   MediaEventProducer<void>* aOnSeekableEvent) {
  mTimedMetadataEvent = aMetadataEvent;
  mOnSeekableEvent = aOnSeekableEvent;
}

bool OggDemuxer::HasAudio() const {
  return mVorbisState || mOpusState || mFlacState;
}

bool OggDemuxer::HasVideo() const { return mTheoraState; }

bool OggDemuxer::HaveStartTime() const { return mStartTime.isSome(); }

int64_t OggDemuxer::StartTime() const { return mStartTime.refOr(0); }

bool OggDemuxer::HaveStartTime(TrackInfo::TrackType aType) {
  return OggState(aType).mStartTime.isSome();
}

int64_t OggDemuxer::StartTime(TrackInfo::TrackType aType) {
  return OggState(aType).mStartTime.refOr(TimeUnit::Zero()).ToMicroseconds();
}

RefPtr<OggDemuxer::InitPromise> OggDemuxer::Init() {
  int ret = ogg_sync_init(OggSyncState(TrackInfo::kAudioTrack));
  if (ret != 0) {
    return InitPromise::CreateAndReject(NS_ERROR_OUT_OF_MEMORY, __func__);
  }
  ret = ogg_sync_init(OggSyncState(TrackInfo::kVideoTrack));
  if (ret != 0) {
    return InitPromise::CreateAndReject(NS_ERROR_OUT_OF_MEMORY, __func__);
  }
  if (ReadMetadata() != NS_OK) {
    return InitPromise::CreateAndReject(NS_ERROR_DOM_MEDIA_METADATA_ERR,
                                        __func__);
  }

  if (!GetNumberTracks(TrackInfo::kAudioTrack) &&
      !GetNumberTracks(TrackInfo::kVideoTrack)) {
    return InitPromise::CreateAndReject(NS_ERROR_DOM_MEDIA_METADATA_ERR,
                                        __func__);
  }

  return InitPromise::CreateAndResolve(NS_OK, __func__);
}

OggCodecState* OggDemuxer::GetTrackCodecState(
    TrackInfo::TrackType aType) const {
  switch (aType) {
    case TrackInfo::kAudioTrack:
      if (mVorbisState) {
        return mVorbisState;
      } else if (mOpusState) {
        return mOpusState;
      } else {
        return mFlacState;
      }
    case TrackInfo::kVideoTrack:
      return mTheoraState;
    default:
      return 0;
  }
}

TrackInfo::TrackType OggDemuxer::GetCodecStateType(
    OggCodecState* aState) const {
  switch (aState->GetType()) {
    case OggCodecState::TYPE_THEORA:
      return TrackInfo::kVideoTrack;
    case OggCodecState::TYPE_OPUS:
    case OggCodecState::TYPE_VORBIS:
    case OggCodecState::TYPE_FLAC:
      return TrackInfo::kAudioTrack;
    default:
      return TrackInfo::kUndefinedTrack;
  }
}

uint32_t OggDemuxer::GetNumberTracks(TrackInfo::TrackType aType) const {
  switch (aType) {
    case TrackInfo::kAudioTrack:
      return HasAudio() ? 1 : 0;
    case TrackInfo::kVideoTrack:
      return HasVideo() ? 1 : 0;
    default:
      return 0;
  }
}

UniquePtr<TrackInfo> OggDemuxer::GetTrackInfo(TrackInfo::TrackType aType,
                                              size_t aTrackNumber) const {
  switch (aType) {
    case TrackInfo::kAudioTrack:
      return mInfo.mAudio.Clone();
    case TrackInfo::kVideoTrack:
      return mInfo.mVideo.Clone();
    default:
      return nullptr;
  }
}

already_AddRefed<MediaTrackDemuxer> OggDemuxer::GetTrackDemuxer(
    TrackInfo::TrackType aType, uint32_t aTrackNumber) {
  if (GetNumberTracks(aType) <= aTrackNumber) {
    return nullptr;
  }
  RefPtr<OggTrackDemuxer> e = new OggTrackDemuxer(this, aType, aTrackNumber);
  DDLINKCHILD("track demuxer", e.get());
  mDemuxers.AppendElement(e);

  return e.forget();
}

nsresult OggDemuxer::Reset(TrackInfo::TrackType aType) {
  // Discard any previously buffered packets/pages.
  ogg_sync_reset(OggSyncState(aType));
  OggCodecState* trackState = GetTrackCodecState(aType);
  if (trackState) {
    return trackState->Reset();
  }
  OggState(aType).mNeedKeyframe = true;
  return NS_OK;
}

bool OggDemuxer::ReadHeaders(TrackInfo::TrackType aType,
                             OggCodecState* aState) {
  while (!aState->DoneReadingHeaders()) {
    DemuxUntilPacketAvailable(aType, aState);
    OggPacketPtr packet = aState->PacketOut();
    if (!packet) {
      OGG_DEBUG("Ran out of header packets early; deactivating stream %" PRIu32,
                aState->mSerial);
      aState->Deactivate();
      return false;
    }

    // Local OggCodecState needs to decode headers in order to process
    // packet granulepos -> time mappings, etc.
    if (!aState->DecodeHeader(Move(packet))) {
      OGG_DEBUG(
          "Failed to decode ogg header packet; deactivating stream %" PRIu32,
          aState->mSerial);
      aState->Deactivate();
      return false;
    }
  }

  return aState->Init();
}

void OggDemuxer::BuildSerialList(nsTArray<uint32_t>& aTracks) {
  // Obtaining seek index information for currently active bitstreams.
  if (HasVideo()) {
    aTracks.AppendElement(mTheoraState->mSerial);
  }
  if (HasAudio()) {
    if (mVorbisState) {
      aTracks.AppendElement(mVorbisState->mSerial);
    } else if (mOpusState) {
      aTracks.AppendElement(mOpusState->mSerial);
    }
  }
}

void OggDemuxer::SetupTarget(OggCodecState** aSavedState,
                             OggCodecState* aNewState) {
  if (*aSavedState) {
    (*aSavedState)->Reset();
  }

  if (aNewState->GetInfo()->GetAsAudioInfo()) {
    mInfo.mAudio = *aNewState->GetInfo()->GetAsAudioInfo();
  } else {
    mInfo.mVideo = *aNewState->GetInfo()->GetAsVideoInfo();
  }
  *aSavedState = aNewState;
}

void OggDemuxer::SetupTargetSkeleton() {
  // Setup skeleton related information after mVorbisState & mTheroState
  // being set (if they exist).
  if (mSkeletonState) {
    if (!HasAudio() && !HasVideo()) {
      // We have a skeleton track, but no audio or video, may as well disable
      // the skeleton, we can't do anything useful with this media.
      OGG_DEBUG("Deactivating skeleton stream %" PRIu32,
                mSkeletonState->mSerial);
      mSkeletonState->Deactivate();
    } else if (ReadHeaders(TrackInfo::kAudioTrack, mSkeletonState) &&
               mSkeletonState->HasIndex()) {
      // We don't particularly care about which track we are currently using
      // as both MediaResource points to the same content.
      // Extract the duration info out of the index, so we don't need to seek to
      // the end of resource to get it.
      nsTArray<uint32_t> tracks;
      BuildSerialList(tracks);
      int64_t duration = 0;
      if (NS_SUCCEEDED(mSkeletonState->GetDuration(tracks, duration))) {
        OGG_DEBUG("Got duration from Skeleton index %" PRId64, duration);
        mInfo.mMetadataDuration.emplace(TimeUnit::FromMicroseconds(duration));
      }
    }
  }
}

void OggDemuxer::SetupMediaTracksInfo(const nsTArray<uint32_t>& aSerials) {
  // For each serial number
  // 1. Retrieve a codecState from mCodecStore by this serial number.
  // 2. Retrieve a message field from mMsgFieldStore by this serial number.
  // 3. For now, skip if the serial number refers to a non-primary bitstream.
  // 4. Setup track and other audio/video related information per different
  // types.
  for (size_t i = 0; i < aSerials.Length(); i++) {
    uint32_t serial = aSerials[i];
    OggCodecState* codecState = mCodecStore.Get(serial);

    MessageField* msgInfo = nullptr;
    if (mSkeletonState) {
      mSkeletonState->mMsgFieldStore.Get(serial, &msgInfo);
    }

    OggCodecState* primeState = nullptr;
    switch (codecState->GetType()) {
      case OggCodecState::TYPE_THEORA:
        primeState = mTheoraState;
        break;
      case OggCodecState::TYPE_VORBIS:
        primeState = mVorbisState;
        break;
      case OggCodecState::TYPE_OPUS:
        primeState = mOpusState;
        break;
      case OggCodecState::TYPE_FLAC:
        primeState = mFlacState;
        break;
      default:
        break;
    }
    if (primeState && primeState == codecState) {
      bool isAudio = primeState->GetInfo()->GetAsAudioInfo();
      if (msgInfo) {
        InitTrack(
            msgInfo,
            isAudio ? static_cast<TrackInfo*>(&mInfo.mAudio) : &mInfo.mVideo,
            true);
      }
      FillTags(isAudio ? static_cast<TrackInfo*>(&mInfo.mAudio) : &mInfo.mVideo,
               primeState->GetTags());
    }
  }
}

void OggDemuxer::FillTags(TrackInfo* aInfo, MetadataTags* aTags) {
  if (!aTags) {
    return;
  }
  nsAutoPtr<MetadataTags> tags(aTags);
  for (auto iter = aTags->Iter(); !iter.Done(); iter.Next()) {
    aInfo->mTags.AppendElement(MetadataTag(iter.Key(), iter.Data()));
  }
}

nsresult OggDemuxer::ReadMetadata() {
  OGG_DEBUG("OggDemuxer::ReadMetadata called!");

  // We read packets until all bitstreams have read all their header packets.
  // We record the offset of the first non-header page so that we know
  // what page to seek to when seeking to the media start.

  // @FIXME we have to read all the header packets on all the streams
  // and THEN we can run SetupTarget*
  // @fixme fixme

  TrackInfo::TrackType tracks[2] = {TrackInfo::kAudioTrack,
                                    TrackInfo::kVideoTrack};

  nsTArray<OggCodecState*> bitstreams;
  nsTArray<uint32_t> serials;

  for (uint32_t i = 0; i < ArrayLength(tracks); i++) {
    ogg_page page;
    bool readAllBOS = false;
    while (!readAllBOS) {
      if (!ReadOggPage(tracks[i], &page)) {
        // Some kind of error...
        OGG_DEBUG("OggDemuxer::ReadOggPage failed? leaving ReadMetadata...");
        return NS_ERROR_FAILURE;
      }

      int serial = ogg_page_serialno(&page);

      if (!ogg_page_bos(&page)) {
        // We've encountered a non Beginning Of Stream page. No more BOS pages
        // can follow in this Ogg segment, so there will be no other bitstreams
        // in the Ogg (unless it's invalid).
        readAllBOS = true;
      } else if (!mCodecStore.Contains(serial)) {
        // We've not encountered a stream with this serial number before. Create
        // an OggCodecState to demux it, and map that to the OggCodecState
        // in mCodecStates.
        OggCodecState* codecState = OggCodecState::Create(&page);
        mCodecStore.Add(serial, codecState);
        bitstreams.AppendElement(codecState);
        serials.AppendElement(serial);
      }
      if (NS_FAILED(DemuxOggPage(tracks[i], &page))) {
        return NS_ERROR_FAILURE;
      }
    }
  }

  // We've read all BOS pages, so we know the streams contained in the media.
  // 1. Find the first encountered Theora/Vorbis/Opus bitstream, and configure
  //    it as the target A/V bitstream.
  // 2. Deactivate the rest of bitstreams for now, until we have MediaInfo
  //    support multiple track infos.
  for (uint32_t i = 0; i < bitstreams.Length(); ++i) {
    OggCodecState* s = bitstreams[i];
    if (s) {
      if (s->GetType() == OggCodecState::TYPE_THEORA &&
          ReadHeaders(TrackInfo::kVideoTrack, s)) {
        if (!mTheoraState) {
          SetupTarget(&mTheoraState, s);
        } else {
          s->Deactivate();
        }
      } else if (s->GetType() == OggCodecState::TYPE_VORBIS &&
                 ReadHeaders(TrackInfo::kAudioTrack, s)) {
        if (!mVorbisState) {
          SetupTarget(&mVorbisState, s);
        } else {
          s->Deactivate();
        }
      } else if (s->GetType() == OggCodecState::TYPE_OPUS &&
                 ReadHeaders(TrackInfo::kAudioTrack, s)) {
        if (mOpusEnabled) {
          if (!mOpusState) {
            SetupTarget(&mOpusState, s);
          } else {
            s->Deactivate();
          }
        } else {
          NS_WARNING(
              "Opus decoding disabled."
              " See media.opus.enabled in about:config");
        }
      } else if (MediaPrefs::FlacInOgg() &&
                 s->GetType() == OggCodecState::TYPE_FLAC &&
                 ReadHeaders(TrackInfo::kAudioTrack, s)) {
        if (!mFlacState) {
          SetupTarget(&mFlacState, s);
        } else {
          s->Deactivate();
        }
      } else if (s->GetType() == OggCodecState::TYPE_SKELETON &&
                 !mSkeletonState) {
        mSkeletonState = static_cast<SkeletonState*>(s);
      } else {
        // Deactivate any non-primary bitstreams.
        s->Deactivate();
      }
    }
  }

  SetupTargetSkeleton();
  SetupMediaTracksInfo(serials);

  if (HasAudio() || HasVideo()) {
    int64_t startTime = -1;
    FindStartTime(startTime);
    if (startTime >= 0) {
      OGG_DEBUG("Detected stream start time %" PRId64, startTime);
      mStartTime.emplace(startTime);
    }

    if (mInfo.mMetadataDuration.isNothing() &&
        Resource(TrackInfo::kAudioTrack)->GetLength() >= 0) {
      // We didn't get a duration from the index or a Content-Duration header.
      // Seek to the end of file to find the end time.
      int64_t length = Resource(TrackInfo::kAudioTrack)->GetLength();

      MOZ_ASSERT(length > 0, "Must have a content length to get end time");

      int64_t endTime = RangeEndTime(TrackInfo::kAudioTrack, length);

      if (endTime != -1) {
        mInfo.mUnadjustedMetadataEndTime.emplace(
            TimeUnit::FromMicroseconds(endTime));
        mInfo.mMetadataDuration.emplace(
            TimeUnit::FromMicroseconds(endTime - mStartTime.refOr(0)));
        OGG_DEBUG("Got Ogg duration from seeking to end %" PRId64, endTime);
      }
    }
    if (mInfo.mMetadataDuration.isNothing()) {
      mInfo.mMetadataDuration.emplace(TimeUnit::FromInfinity());
    }
    if (HasAudio()) {
      mInfo.mAudio.mDuration = mInfo.mMetadataDuration.ref();
    }
    if (HasVideo()) {
      mInfo.mVideo.mDuration = mInfo.mMetadataDuration.ref();
    }
  } else {
    OGG_DEBUG("no audio or video tracks");
    return NS_ERROR_FAILURE;
  }

  OGG_DEBUG("success?!");
  return NS_OK;
}

void OggDemuxer::SetChained() {
  {
    if (mIsChained) {
      return;
    }
    mIsChained = true;
  }
  if (mOnSeekableEvent) {
    mOnSeekableEvent->Notify();
  }
}

bool OggDemuxer::ReadOggChain(const media::TimeUnit& aLastEndTime) {
  bool chained = false;
  OpusState* newOpusState = nullptr;
  VorbisState* newVorbisState = nullptr;
  FlacState* newFlacState = nullptr;
  nsAutoPtr<MetadataTags> tags;

  if (HasVideo() || HasSkeleton() || !HasAudio()) {
    return false;
  }

  ogg_page page;
  if (!ReadOggPage(TrackInfo::kAudioTrack, &page) || !ogg_page_bos(&page)) {
    // Chaining is only supported for audio only ogg files.
    return false;
  }

  int serial = ogg_page_serialno(&page);
  if (mCodecStore.Contains(serial)) {
    return false;
  }

  nsAutoPtr<OggCodecState> codecState;
  codecState = OggCodecState::Create(&page);
  if (!codecState) {
    return false;
  }

  if (mVorbisState && (codecState->GetType() == OggCodecState::TYPE_VORBIS)) {
    newVorbisState = static_cast<VorbisState*>(codecState.get());
  } else if (mOpusState &&
             (codecState->GetType() == OggCodecState::TYPE_OPUS)) {
    newOpusState = static_cast<OpusState*>(codecState.get());
  } else if (mFlacState &&
             (codecState->GetType() == OggCodecState::TYPE_FLAC)) {
    newFlacState = static_cast<FlacState*>(codecState.get());
  } else {
    return false;
  }

  OggCodecState* state;

  mCodecStore.Add(serial, codecState.forget());
  state = mCodecStore.Get(serial);

  NS_ENSURE_TRUE(state != nullptr, false);

  if (NS_FAILED(state->PageIn(&page))) {
    return false;
  }

  MessageField* msgInfo = nullptr;
  if (mSkeletonState) {
    mSkeletonState->mMsgFieldStore.Get(serial, &msgInfo);
  }

  if ((newVorbisState && ReadHeaders(TrackInfo::kAudioTrack, newVorbisState)) &&
      (mVorbisState->GetInfo()->GetAsAudioInfo()->mRate ==
       newVorbisState->GetInfo()->GetAsAudioInfo()->mRate) &&
      (mVorbisState->GetInfo()->GetAsAudioInfo()->mChannels ==
       newVorbisState->GetInfo()->GetAsAudioInfo()->mChannels)) {
    SetupTarget(&mVorbisState, newVorbisState);
    OGG_DEBUG("New vorbis ogg link, serial=%d\n", mVorbisState->mSerial);

    if (msgInfo) {
      InitTrack(msgInfo, &mInfo.mAudio, true);
    }

    chained = true;
    tags = newVorbisState->GetTags();
  }

  if ((newOpusState && ReadHeaders(TrackInfo::kAudioTrack, newOpusState)) &&
      (mOpusState->GetInfo()->GetAsAudioInfo()->mRate ==
       newOpusState->GetInfo()->GetAsAudioInfo()->mRate) &&
      (mOpusState->GetInfo()->GetAsAudioInfo()->mChannels ==
       newOpusState->GetInfo()->GetAsAudioInfo()->mChannels)) {
    SetupTarget(&mOpusState, newOpusState);

    if (msgInfo) {
      InitTrack(msgInfo, &mInfo.mAudio, true);
    }

    chained = true;
    tags = newOpusState->GetTags();
  }

  if ((newFlacState && ReadHeaders(TrackInfo::kAudioTrack, newFlacState)) &&
      (mFlacState->GetInfo()->GetAsAudioInfo()->mRate ==
       newFlacState->GetInfo()->GetAsAudioInfo()->mRate) &&
      (mFlacState->GetInfo()->GetAsAudioInfo()->mChannels ==
       newFlacState->GetInfo()->GetAsAudioInfo()->mChannels)) {
    SetupTarget(&mFlacState, newFlacState);
    OGG_DEBUG("New flac ogg link, serial=%d\n", mFlacState->mSerial);

    if (msgInfo) {
      InitTrack(msgInfo, &mInfo.mAudio, true);
    }

    chained = true;
    tags = newFlacState->GetTags();
  }

  if (chained) {
    SetChained();
    mInfo.mMediaSeekable = false;
    mDecodedAudioDuration += aLastEndTime;
    if (mTimedMetadataEvent) {
      mTimedMetadataEvent->Notify(
          TimedMetadata(mDecodedAudioDuration, Move(tags),
                        nsAutoPtr<MediaInfo>(new MediaInfo(mInfo))));
    }
    // Setup a new TrackInfo so that the MediaFormatReader will flush the
    // current decoder.
    mSharedAudioTrackInfo =
        new TrackInfoSharedPtr(mInfo.mAudio, ++sStreamSourceID);
    return true;
  }

  return false;
}

OggDemuxer::OggStateContext& OggDemuxer::OggState(TrackInfo::TrackType aType) {
  if (aType == TrackInfo::kVideoTrack) {
    return mVideoOggState;
  }
  return mAudioOggState;
}

ogg_sync_state* OggDemuxer::OggSyncState(TrackInfo::TrackType aType) {
  return &OggState(aType).mOggState.mState;
}

MediaResourceIndex* OggDemuxer::Resource(TrackInfo::TrackType aType) {
  return &OggState(aType).mResource;
}

MediaResourceIndex* OggDemuxer::CommonResource() {
  return &mAudioOggState.mResource;
}

bool OggDemuxer::ReadOggPage(TrackInfo::TrackType aType, ogg_page* aPage) {
  int ret = 0;
  while ((ret = ogg_sync_pageseek(OggSyncState(aType), aPage)) <= 0) {
    if (ret < 0) {
      // Lost page sync, have to skip up to next page.
      continue;
    }
    // Returns a buffer that can be written too
    // with the given size. This buffer is stored
    // in the ogg synchronisation structure.
    char* buffer = ogg_sync_buffer(OggSyncState(aType), 4096);
    MOZ_ASSERT(buffer, "ogg_sync_buffer failed");

    // Read from the resource into the buffer
    uint32_t bytesRead = 0;

    nsresult rv = Resource(aType)->Read(buffer, 4096, &bytesRead);
    if (NS_FAILED(rv) || !bytesRead) {
      // End of file or error.
      return false;
    }

    // Update the synchronisation layer with the number
    // of bytes written to the buffer
    ret = ogg_sync_wrote(OggSyncState(aType), bytesRead);
    NS_ENSURE_TRUE(ret == 0, false);
  }

  return true;
}

nsresult OggDemuxer::DemuxOggPage(TrackInfo::TrackType aType, ogg_page* aPage) {
  int serial = ogg_page_serialno(aPage);
  OggCodecState* codecState = mCodecStore.Get(serial);
  if (codecState == nullptr) {
    OGG_DEBUG("encountered packet for unrecognized codecState");
    return NS_ERROR_FAILURE;
  }
  if (GetCodecStateType(codecState) != aType &&
      codecState->GetType() != OggCodecState::TYPE_SKELETON) {
    // Not a page we're interested in.
    return NS_OK;
  }
  if (NS_FAILED(codecState->PageIn(aPage))) {
    OGG_DEBUG("codecState->PageIn failed");
    return NS_ERROR_FAILURE;
  }
  return NS_OK;
}

bool OggDemuxer::IsSeekable() const {
  if (mIsChained) {
    return false;
  }
  return true;
}

UniquePtr<EncryptionInfo> OggDemuxer::GetCrypto() { return nullptr; }

ogg_packet* OggDemuxer::GetNextPacket(TrackInfo::TrackType aType) {
  OggCodecState* state = GetTrackCodecState(aType);
  ogg_packet* packet = nullptr;
  OggStateContext& context = OggState(aType);

  while (true) {
    if (packet) {
      Unused << state->PacketOut();
    }
    DemuxUntilPacketAvailable(aType, state);

    packet = state->PacketPeek();
    if (!packet) {
      break;
    }
    if (state->IsHeader(packet)) {
      continue;
    }
    if (context.mNeedKeyframe && !state->IsKeyframe(packet)) {
      continue;
    }
    context.mNeedKeyframe = false;
    break;
  }

  return packet;
}

void OggDemuxer::DemuxUntilPacketAvailable(TrackInfo::TrackType aType,
                                           OggCodecState* aState) {
  while (!aState->IsPacketReady()) {
    OGG_DEBUG("no packet yet, reading some more");
    ogg_page page;
    if (!ReadOggPage(aType, &page)) {
      OGG_DEBUG("no more pages to read in resource?");
      return;
    }
    DemuxOggPage(aType, &page);
  }
}

TimeIntervals OggDemuxer::GetBuffered(TrackInfo::TrackType aType) {
  if (!HaveStartTime(aType)) {
    return TimeIntervals();
  }
  if (mIsChained) {
    return TimeIntervals::Invalid();
  }
  TimeIntervals buffered;
  // HasAudio and HasVideo are not used here as they take a lock and cause
  // a deadlock. Accessing mInfo doesn't require a lock - it doesn't change
  // after metadata is read.
  if (!mInfo.HasValidMedia()) {
    // No need to search through the file if there are no audio or video tracks
    return buffered;
  }

  AutoPinned<MediaResource> resource(Resource(aType)->GetResource());
  MediaByteRangeSet ranges;
  nsresult res = resource->GetCachedRanges(ranges);
  NS_ENSURE_SUCCESS(res, TimeIntervals::Invalid());

  // Traverse across the buffered byte ranges, determining the time ranges
  // they contain. MediaResource::GetNextCachedData(offset) returns -1 when
  // offset is after the end of the media resource, or there's no more cached
  // data after the offset. This loop will run until we've checked every
  // buffered range in the media, in increasing order of offset.
  nsAutoOggSyncState sync;
  for (uint32_t index = 0; index < ranges.Length(); index++) {
    // Ensure the offsets are after the header pages.
    int64_t startOffset = ranges[index].mStart;
    int64_t endOffset = ranges[index].mEnd;

    // Because the granulepos time is actually the end time of the page,
    // we special-case (startOffset == 0) so that the first
    // buffered range always appears to be buffered from the media start
    // time, rather than from the end-time of the first page.
    int64_t startTime = (startOffset == 0) ? StartTime() : -1;

    // Find the start time of the range. Read pages until we find one with a
    // granulepos which we can convert into a timestamp to use as the time of
    // the start of the buffered range.
    ogg_sync_reset(&sync.mState);
    while (startTime == -1) {
      ogg_page page;
      int32_t discard;
      PageSyncResult pageSyncResult =
          PageSync(Resource(aType), &sync.mState, true, startOffset, endOffset,
                   &page, discard);
      if (pageSyncResult == PAGE_SYNC_ERROR) {
        return TimeIntervals::Invalid();
      } else if (pageSyncResult == PAGE_SYNC_END_OF_RANGE) {
        // Hit the end of range without reading a page, give up trying to
        // find a start time for this buffered range, skip onto the next one.
        break;
      }

      int64_t granulepos = ogg_page_granulepos(&page);
      if (granulepos == -1) {
        // Page doesn't have an end time, advance to the next page
        // until we find one.
        startOffset += page.header_len + page.body_len;
        continue;
      }

      uint32_t serial = ogg_page_serialno(&page);
      if (aType == TrackInfo::kAudioTrack && mVorbisState &&
          serial == mVorbisState->mSerial) {
        startTime = mVorbisState->Time(granulepos);
        MOZ_ASSERT(startTime > 0, "Must have positive start time");
      } else if (aType == TrackInfo::kAudioTrack && mOpusState &&
                 serial == mOpusState->mSerial) {
        startTime = mOpusState->Time(granulepos);
        MOZ_ASSERT(startTime > 0, "Must have positive start time");
      } else if (aType == TrackInfo::kAudioTrack && mFlacState &&
                 serial == mFlacState->mSerial) {
        startTime = mFlacState->Time(granulepos);
        MOZ_ASSERT(startTime > 0, "Must have positive start time");
      } else if (aType == TrackInfo::kVideoTrack && mTheoraState &&
                 serial == mTheoraState->mSerial) {
        startTime = mTheoraState->Time(granulepos);
        MOZ_ASSERT(startTime > 0, "Must have positive start time");
      } else if (mCodecStore.Contains(serial)) {
        // Stream is not the theora or vorbis stream we're playing,
        // but is one that we have header data for.
        startOffset += page.header_len + page.body_len;
        continue;
      } else {
        // Page is for a stream we don't know about (possibly a chained
        // ogg), return OK to abort the finding any further ranges. This
        // prevents us searching through the rest of the media when we
        // may not be able to extract timestamps from it.
        SetChained();
        return buffered;
      }
    }

    if (startTime != -1) {
      // We were able to find a start time for that range, see if we can
      // find an end time.
      int64_t endTime = RangeEndTime(aType, startOffset, endOffset, true);
      if (endTime > startTime) {
        buffered +=
            TimeInterval(TimeUnit::FromMicroseconds(startTime - StartTime()),
                         TimeUnit::FromMicroseconds(endTime - StartTime()));
      }
    }
  }

  return buffered;
}

void OggDemuxer::FindStartTime(int64_t& aOutStartTime) {
  // Extract the start times of the bitstreams in order to calculate
  // the duration.
  int64_t videoStartTime = INT64_MAX;
  int64_t audioStartTime = INT64_MAX;

  if (HasVideo()) {
    FindStartTime(TrackInfo::kVideoTrack, videoStartTime);
    if (videoStartTime != INT64_MAX) {
      OGG_DEBUG("OggDemuxer::FindStartTime() video=%" PRId64, videoStartTime);
      mVideoOggState.mStartTime =
          Some(TimeUnit::FromMicroseconds(videoStartTime));
    }
  }
  if (HasAudio()) {
    FindStartTime(TrackInfo::kAudioTrack, audioStartTime);
    if (audioStartTime != INT64_MAX) {
      OGG_DEBUG("OggDemuxer::FindStartTime() audio=%" PRId64, audioStartTime);
      mAudioOggState.mStartTime =
          Some(TimeUnit::FromMicroseconds(audioStartTime));
    }
  }

  int64_t startTime = std::min(videoStartTime, audioStartTime);
  if (startTime != INT64_MAX) {
    aOutStartTime = startTime;
  }
}

void OggDemuxer::FindStartTime(TrackInfo::TrackType aType,
                               int64_t& aOutStartTime) {
  int64_t startTime = INT64_MAX;

  OggCodecState* state = GetTrackCodecState(aType);
  ogg_packet* pkt = GetNextPacket(aType);
  if (pkt) {
    startTime = state->PacketStartTime(pkt);
  }

  if (startTime != INT64_MAX) {
    aOutStartTime = startTime;
  }
}

nsresult OggDemuxer::SeekInternal(TrackInfo::TrackType aType,
                                  const TimeUnit& aTarget) {
  int64_t target = aTarget.ToMicroseconds();
  OGG_DEBUG("About to seek to %" PRId64, target);
  nsresult res;
  int64_t adjustedTarget = target;
  int64_t startTime = StartTime(aType);
  int64_t endTime = mInfo.mMetadataDuration->ToMicroseconds() + startTime;
  if (aType == TrackInfo::kAudioTrack && mOpusState) {
    adjustedTarget = std::max(startTime, target - OGG_SEEK_OPUS_PREROLL);
  }

  if (!HaveStartTime(aType) || adjustedTarget == startTime) {
    // We've seeked to the media start or we can't seek.
    // Just seek to the offset of the first content page.
    res = Resource(aType)->Seek(nsISeekableStream::NS_SEEK_SET, 0);
    NS_ENSURE_SUCCESS(res, res);

    res = Reset(aType);
    NS_ENSURE_SUCCESS(res, res);
  } else {
    // TODO: This may seek back unnecessarily far in the video, but we don't
    // have a way of asking Skeleton to seek to a different target for each
    // stream yet. Using adjustedTarget here is at least correct, if slow.
    IndexedSeekResult sres = SeekToKeyframeUsingIndex(aType, adjustedTarget);
    NS_ENSURE_TRUE(sres != SEEK_FATAL_ERROR, NS_ERROR_FAILURE);
    if (sres == SEEK_INDEX_FAIL) {
      // No index or other non-fatal index-related failure. Try to seek
      // using a bisection search. Determine the already downloaded data
      // in the media cache, so we can try to seek in the cached data first.
      AutoTArray<SeekRange, 16> ranges;
      res = GetSeekRanges(aType, ranges);
      NS_ENSURE_SUCCESS(res, res);

      // Figure out if the seek target lies in a buffered range.
      SeekRange r =
          SelectSeekRange(aType, ranges, target, startTime, endTime, true);

      if (!r.IsNull()) {
        // We know the buffered range in which the seek target lies, do a
        // bisection search in that buffered range.
        res = SeekInBufferedRange(aType, target, adjustedTarget, startTime,
                                  endTime, ranges, r);
        NS_ENSURE_SUCCESS(res, res);
      } else {
        // The target doesn't lie in a buffered range. Perform a bisection
        // search over the whole media, using the known buffered ranges to
        // reduce the search space.
        res = SeekInUnbuffered(aType, target, startTime, endTime, ranges);
        NS_ENSURE_SUCCESS(res, res);
      }
    }
  }

  // Demux forwards until we find the first keyframe prior the target.
  // there may be non-keyframes in the page before the keyframe.
  // Additionally, we may have seeked to the first page referenced by the
  // page index which may be quite far off the target.
  // When doing fastSeek we display the first frame after the seek, so
  // we need to advance the decode to the keyframe otherwise we'll get
  // visual artifacts in the first frame output after the seek.
  OggCodecState* state = GetTrackCodecState(aType);
  OggPacketQueue tempPackets;
  bool foundKeyframe = false;
  while (true) {
    DemuxUntilPacketAvailable(aType, state);
    ogg_packet* packet = state->PacketPeek();
    if (packet == nullptr) {
      OGG_DEBUG("End of stream reached before keyframe found in indexed seek");
      break;
    }
    int64_t startTstamp = state->PacketStartTime(packet);
    if (foundKeyframe && startTstamp > adjustedTarget) {
      break;
    }
    if (state->IsKeyframe(packet)) {
      OGG_DEBUG("keyframe found after seeking at %" PRId64, startTstamp);
      tempPackets.Erase();
      foundKeyframe = true;
    }
    if (foundKeyframe && startTstamp == adjustedTarget) {
      break;
    }
    if (foundKeyframe) {
      tempPackets.Append(state->PacketOut());
    } else {
      // Discard video packets before the first keyframe.
      Unused << state->PacketOut();
    }
  }
  // Re-add all packet into the codec state in order.
  state->PushFront(Move(tempPackets));

  return NS_OK;
}

OggDemuxer::IndexedSeekResult OggDemuxer::RollbackIndexedSeek(
    TrackInfo::TrackType aType, int64_t aOffset) {
  if (mSkeletonState) {
    mSkeletonState->Deactivate();
  }
  nsresult res = Resource(aType)->Seek(nsISeekableStream::NS_SEEK_SET, aOffset);
  NS_ENSURE_SUCCESS(res, SEEK_FATAL_ERROR);
  return SEEK_INDEX_FAIL;
}

OggDemuxer::IndexedSeekResult OggDemuxer::SeekToKeyframeUsingIndex(
    TrackInfo::TrackType aType, int64_t aTarget) {
  if (!HasSkeleton() || !mSkeletonState->HasIndex()) {
    return SEEK_INDEX_FAIL;
  }
  // We have an index from the Skeleton track, try to use it to seek.
  AutoTArray<uint32_t, 2> tracks;
  BuildSerialList(tracks);
  SkeletonState::nsSeekTarget keyframe;
  if (NS_FAILED(mSkeletonState->IndexedSeekTarget(aTarget, tracks, keyframe))) {
    // Could not locate a keypoint for the target in the index.
    return SEEK_INDEX_FAIL;
  }

  // Remember original resource read cursor position so we can rollback on
  // failure.
  int64_t tell = Resource(aType)->Tell();

  // Seek to the keypoint returned by the index.
  if (keyframe.mKeyPoint.mOffset > Resource(aType)->GetLength() ||
      keyframe.mKeyPoint.mOffset < 0) {
    // Index must be invalid.
    return RollbackIndexedSeek(aType, tell);
  }
  OGG_DEBUG("Seeking using index to keyframe at offset %" PRId64 "\n",
            keyframe.mKeyPoint.mOffset);
  nsresult res = Resource(aType)->Seek(nsISeekableStream::NS_SEEK_SET,
                                       keyframe.mKeyPoint.mOffset);
  NS_ENSURE_SUCCESS(res, SEEK_FATAL_ERROR);

  // We've moved the read set, so reset decode.
  res = Reset(aType);
  NS_ENSURE_SUCCESS(res, SEEK_FATAL_ERROR);

  // Check that the page the index thinks is exactly here is actually exactly
  // here. If not, the index is invalid.
  ogg_page page;
  int skippedBytes = 0;
  PageSyncResult syncres = PageSync(
      Resource(aType), OggSyncState(aType), false, keyframe.mKeyPoint.mOffset,
      Resource(aType)->GetLength(), &page, skippedBytes);
  NS_ENSURE_TRUE(syncres != PAGE_SYNC_ERROR, SEEK_FATAL_ERROR);
  if (syncres != PAGE_SYNC_OK || skippedBytes != 0) {
    OGG_DEBUG(
        "Indexed-seek failure: Ogg Skeleton Index is invalid "
        "or sync error after seek");
    return RollbackIndexedSeek(aType, tell);
  }
  uint32_t serial = ogg_page_serialno(&page);
  if (serial != keyframe.mSerial) {
    // Serialno of page at offset isn't what the index told us to expect.
    // Assume the index is invalid.
    return RollbackIndexedSeek(aType, tell);
  }
  OggCodecState* codecState = mCodecStore.Get(serial);
  if (codecState && codecState->mActive &&
      ogg_stream_pagein(&codecState->mState, &page) != 0) {
    // Couldn't insert page into the ogg resource, or somehow the resource
    // is no longer active.
    return RollbackIndexedSeek(aType, tell);
  }
  return SEEK_OK;
}

// Reads a page from the media resource.
OggDemuxer::PageSyncResult OggDemuxer::PageSync(
    MediaResourceIndex* aResource, ogg_sync_state* aState, bool aCachedDataOnly,
    int64_t aOffset, int64_t aEndOffset, ogg_page* aPage, int& aSkippedBytes) {
  aSkippedBytes = 0;
  // Sync to the next page.
  int ret = 0;
  uint32_t bytesRead = 0;
  int64_t readHead = aOffset;
  while (ret <= 0) {
    ret = ogg_sync_pageseek(aState, aPage);
    if (ret == 0) {
      char* buffer = ogg_sync_buffer(aState, PAGE_STEP);
      MOZ_ASSERT(buffer, "Must have a buffer");

      // Read from the file into the buffer
      int64_t bytesToRead =
          std::min(static_cast<int64_t>(PAGE_STEP), aEndOffset - readHead);
      MOZ_ASSERT(bytesToRead <= UINT32_MAX, "bytesToRead range check");
      if (bytesToRead <= 0) {
        return PAGE_SYNC_END_OF_RANGE;
      }
      nsresult rv = NS_OK;
      if (aCachedDataOnly) {
        rv = aResource->GetResource()->ReadFromCache(
            buffer, readHead, static_cast<uint32_t>(bytesToRead));
        NS_ENSURE_SUCCESS(rv, PAGE_SYNC_ERROR);
        bytesRead = static_cast<uint32_t>(bytesToRead);
      } else {
        rv = aResource->Seek(nsISeekableStream::NS_SEEK_SET, readHead);
        NS_ENSURE_SUCCESS(rv, PAGE_SYNC_ERROR);
        rv = aResource->Read(buffer, static_cast<uint32_t>(bytesToRead),
                             &bytesRead);
        NS_ENSURE_SUCCESS(rv, PAGE_SYNC_ERROR);
      }
      if (bytesRead == 0 && NS_SUCCEEDED(rv)) {
        // End of file.
        return PAGE_SYNC_END_OF_RANGE;
      }
      readHead += bytesRead;

      // Update the synchronisation layer with the number
      // of bytes written to the buffer
      ret = ogg_sync_wrote(aState, bytesRead);
      NS_ENSURE_TRUE(ret == 0, PAGE_SYNC_ERROR);
      continue;
    }

    if (ret < 0) {
      MOZ_ASSERT(aSkippedBytes >= 0, "Offset >= 0");
      aSkippedBytes += -ret;
      MOZ_ASSERT(aSkippedBytes >= 0, "Offset >= 0");
      continue;
    }
  }

  return PAGE_SYNC_OK;
}

// OggTrackDemuxer
OggTrackDemuxer::OggTrackDemuxer(OggDemuxer* aParent,
                                 TrackInfo::TrackType aType,
                                 uint32_t aTrackNumber)
    : mParent(aParent), mType(aType) {
  mInfo = mParent->GetTrackInfo(aType, aTrackNumber);
  MOZ_ASSERT(mInfo);
}

OggTrackDemuxer::~OggTrackDemuxer() {}

UniquePtr<TrackInfo> OggTrackDemuxer::GetInfo() const { return mInfo->Clone(); }

RefPtr<OggTrackDemuxer::SeekPromise> OggTrackDemuxer::Seek(
    const TimeUnit& aTime) {
  // Seeks to aTime. Upon success, SeekPromise will be resolved with the
  // actual time seeked to. Typically the random access point time
  mQueuedSample = nullptr;
  TimeUnit seekTime = aTime;
  if (mParent->SeekInternal(mType, aTime) == NS_OK) {
    RefPtr<MediaRawData> sample(NextSample());

    // Check what time we actually seeked to.
    if (sample != nullptr) {
      seekTime = sample->mTime;
      OGG_DEBUG("%p seeked to time %" PRId64, this, seekTime.ToMicroseconds());
    }
    mQueuedSample = sample;

    return SeekPromise::CreateAndResolve(seekTime, __func__);
  } else {
    return SeekPromise::CreateAndReject(NS_ERROR_DOM_MEDIA_DEMUXER_ERR,
                                        __func__);
  }
}

RefPtr<MediaRawData> OggTrackDemuxer::NextSample() {
  if (mQueuedSample) {
    RefPtr<MediaRawData> nextSample = mQueuedSample;
    mQueuedSample = nullptr;
    if (mType == TrackInfo::kAudioTrack) {
      nextSample->mTrackInfo = mParent->mSharedAudioTrackInfo;
    }
    return nextSample;
  }
  ogg_packet* packet = mParent->GetNextPacket(mType);
  if (!packet) {
    return nullptr;
  }
  // Check the eos state in case we need to look for chained streams.
  bool eos = packet->e_o_s;
  OggCodecState* state = mParent->GetTrackCodecState(mType);
  RefPtr<MediaRawData> data = state->PacketOutAsMediaRawData();
  if (!data) {
    return nullptr;
  }
  if (mType == TrackInfo::kAudioTrack) {
    data->mTrackInfo = mParent->mSharedAudioTrackInfo;
  }
  // mDecodedAudioDuration gets adjusted during ReadOggChain().
  TimeUnit totalDuration = mParent->mDecodedAudioDuration;
  if (eos) {
    // We've encountered an end of bitstream packet; check for a chained
    // bitstream following this one.
    // This will also update mSharedAudioTrackInfo.
    mParent->ReadOggChain(data->GetEndTime());
  }
  data->mOffset = mParent->Resource(mType)->Tell();
  // We adjust the start time of the sample to account for the potential ogg
  // chaining.
  data->mTime += totalDuration;
  return data;
}

RefPtr<OggTrackDemuxer::SamplesPromise> OggTrackDemuxer::GetSamples(
    int32_t aNumSamples) {
  RefPtr<SamplesHolder> samples = new SamplesHolder;
  if (!aNumSamples) {
    return SamplesPromise::CreateAndReject(NS_ERROR_DOM_MEDIA_DEMUXER_ERR,
                                           __func__);
  }

  while (aNumSamples) {
    RefPtr<MediaRawData> sample(NextSample());
    if (!sample) {
      break;
    }
    samples->mSamples.AppendElement(sample);
    aNumSamples--;
  }

  if (samples->mSamples.IsEmpty()) {
    return SamplesPromise::CreateAndReject(NS_ERROR_DOM_MEDIA_END_OF_STREAM,
                                           __func__);
  } else {
    return SamplesPromise::CreateAndResolve(samples, __func__);
  }
}

void OggTrackDemuxer::Reset() {
  mParent->Reset(mType);
  mQueuedSample = nullptr;
}

RefPtr<OggTrackDemuxer::SkipAccessPointPromise>
OggTrackDemuxer::SkipToNextRandomAccessPoint(const TimeUnit& aTimeThreshold) {
  uint32_t parsed = 0;
  bool found = false;
  RefPtr<MediaRawData> sample;

  OGG_DEBUG("TimeThreshold: %f", aTimeThreshold.ToSeconds());
  while (!found && (sample = NextSample())) {
    parsed++;
    if (sample->mKeyframe && sample->mTime >= aTimeThreshold) {
      found = true;
      mQueuedSample = sample;
    }
  }
  if (found) {
    OGG_DEBUG("next sample: %f (parsed: %d)", sample->mTime.ToSeconds(),
              parsed);
    return SkipAccessPointPromise::CreateAndResolve(parsed, __func__);
  } else {
    SkipFailureHolder failure(NS_ERROR_DOM_MEDIA_END_OF_STREAM, parsed);
    return SkipAccessPointPromise::CreateAndReject(Move(failure), __func__);
  }
}

TimeIntervals OggTrackDemuxer::GetBuffered() {
  return mParent->GetBuffered(mType);
}

void OggTrackDemuxer::BreakCycles() { mParent = nullptr; }

// Returns an ogg page's checksum.
ogg_uint32_t OggDemuxer::GetPageChecksum(ogg_page* page) {
  if (page == 0 || page->header == 0 || page->header_len < 25) {
    return 0;
  }
  const unsigned char* p = page->header + 22;
  uint32_t c = p[0] + (p[1] << 8) + (p[2] << 16) + (p[3] << 24);
  return c;
}

int64_t OggDemuxer::RangeStartTime(TrackInfo::TrackType aType,
                                   int64_t aOffset) {
  int64_t position = Resource(aType)->Tell();
  nsresult res = Resource(aType)->Seek(nsISeekableStream::NS_SEEK_SET, aOffset);
  NS_ENSURE_SUCCESS(res, 0);
  int64_t startTime = 0;
  FindStartTime(aType, startTime);
  res = Resource(aType)->Seek(nsISeekableStream::NS_SEEK_SET, position);
  NS_ENSURE_SUCCESS(res, -1);
  return startTime;
}

struct nsDemuxerAutoOggSyncState {
  nsDemuxerAutoOggSyncState() { ogg_sync_init(&mState); }
  ~nsDemuxerAutoOggSyncState() { ogg_sync_clear(&mState); }
  ogg_sync_state mState;
};

int64_t OggDemuxer::RangeEndTime(TrackInfo::TrackType aType,
                                 int64_t aEndOffset) {
  int64_t position = Resource(aType)->Tell();
  int64_t endTime = RangeEndTime(aType, 0, aEndOffset, false);
  nsresult res =
      Resource(aType)->Seek(nsISeekableStream::NS_SEEK_SET, position);
  NS_ENSURE_SUCCESS(res, -1);
  return endTime;
}

int64_t OggDemuxer::RangeEndTime(TrackInfo::TrackType aType,
                                 int64_t aStartOffset, int64_t aEndOffset,
                                 bool aCachedDataOnly) {
  nsDemuxerAutoOggSyncState sync;

  // We need to find the last page which ends before aEndOffset that
  // has a granulepos that we can convert to a timestamp. We do this by
  // backing off from aEndOffset until we encounter a page on which we can
  // interpret the granulepos. If while backing off we encounter a page which
  // we've previously encountered before, we'll either backoff again if we
  // haven't found an end time yet, or return the last end time found.
  const int step = 5000;
  const int maxOggPageSize = 65306;
  int64_t readStartOffset = aEndOffset;
  int64_t readLimitOffset = aEndOffset;
  int64_t readHead = aEndOffset;
  int64_t endTime = -1;
  uint32_t checksumAfterSeek = 0;
  uint32_t prevChecksumAfterSeek = 0;
  bool mustBackOff = false;
  while (true) {
    ogg_page page;
    int ret = ogg_sync_pageseek(&sync.mState, &page);
    if (ret == 0) {
      // We need more data if we've not encountered a page we've seen before,
      // or we've read to the end of file.
      if (mustBackOff || readHead == aEndOffset || readHead == aStartOffset) {
        if (endTime != -1 || readStartOffset == 0) {
          // We have encountered a page before, or we're at the end of file.
          break;
        }
        mustBackOff = false;
        prevChecksumAfterSeek = checksumAfterSeek;
        checksumAfterSeek = 0;
        ogg_sync_reset(&sync.mState);
        readStartOffset =
            std::max(static_cast<int64_t>(0), readStartOffset - step);
        // There's no point reading more than the maximum size of
        // an Ogg page into data we've previously scanned. Any data
        // between readLimitOffset and aEndOffset must be garbage
        // and we can ignore it thereafter.
        readLimitOffset =
            std::min(readLimitOffset, readStartOffset + maxOggPageSize);
        readHead = std::max(aStartOffset, readStartOffset);
      }

      int64_t limit =
          std::min(static_cast<int64_t>(UINT32_MAX), aEndOffset - readHead);
      limit = std::max(static_cast<int64_t>(0), limit);
      limit = std::min(limit, static_cast<int64_t>(step));
      uint32_t bytesToRead = static_cast<uint32_t>(limit);
      uint32_t bytesRead = 0;
      char* buffer = ogg_sync_buffer(&sync.mState, bytesToRead);
      MOZ_ASSERT(buffer, "Must have buffer");
      nsresult res;
      if (aCachedDataOnly) {
        res = Resource(aType)->GetResource()->ReadFromCache(buffer, readHead,
                                                            bytesToRead);
        NS_ENSURE_SUCCESS(res, -1);
        bytesRead = bytesToRead;
      } else {
        MOZ_ASSERT(readHead < aEndOffset,
                   "resource pos must be before range end");
        res = Resource(aType)->Seek(nsISeekableStream::NS_SEEK_SET, readHead);
        NS_ENSURE_SUCCESS(res, -1);
        res = Resource(aType)->Read(buffer, bytesToRead, &bytesRead);
        NS_ENSURE_SUCCESS(res, -1);
      }
      readHead += bytesRead;
      if (readHead > readLimitOffset) {
        mustBackOff = true;
      }

      // Update the synchronisation layer with the number
      // of bytes written to the buffer
      ret = ogg_sync_wrote(&sync.mState, bytesRead);
      if (ret != 0) {
        endTime = -1;
        break;
      }
      continue;
    }

    if (ret < 0 || ogg_page_granulepos(&page) < 0) {
      continue;
    }

    uint32_t checksum = GetPageChecksum(&page);
    if (checksumAfterSeek == 0) {
      // This is the first page we've decoded after a backoff/seek. Remember
      // the page checksum. If we backoff further and encounter this page
      // again, we'll know that we won't find a page with an end time after
      // this one, so we'll know to back off again.
      checksumAfterSeek = checksum;
    }
    if (checksum == prevChecksumAfterSeek) {
      // This page has the same checksum as the first page we encountered
      // after the last backoff/seek. Since we've already scanned after this
      // page and failed to find an end time, we may as well backoff again and
      // try to find an end time from an earlier page.
      mustBackOff = true;
      continue;
    }

    int64_t granulepos = ogg_page_granulepos(&page);
    int serial = ogg_page_serialno(&page);

    OggCodecState* codecState = nullptr;
    codecState = mCodecStore.Get(serial);
    if (!codecState) {
      // This page is from a bitstream which we haven't encountered yet.
      // It's probably from a new "link" in a "chained" ogg. Don't
      // bother even trying to find a duration...
      SetChained();
      endTime = -1;
      break;
    }

    int64_t t = codecState->Time(granulepos);
    if (t != -1) {
      endTime = t;
    }
  }

  return endTime;
}

nsresult OggDemuxer::GetSeekRanges(TrackInfo::TrackType aType,
                                   nsTArray<SeekRange>& aRanges) {
  AutoPinned<MediaResource> resource(Resource(aType)->GetResource());
  MediaByteRangeSet cached;
  nsresult res = resource->GetCachedRanges(cached);
  NS_ENSURE_SUCCESS(res, res);

  for (uint32_t index = 0; index < cached.Length(); index++) {
    auto& range = cached[index];
    int64_t startTime = -1;
    int64_t endTime = -1;
    if (NS_FAILED(Reset(aType))) {
      return NS_ERROR_FAILURE;
    }
    int64_t startOffset = range.mStart;
    int64_t endOffset = range.mEnd;
    startTime = RangeStartTime(aType, startOffset);
    if (startTime != -1 && ((endTime = RangeEndTime(aType, endOffset)) != -1)) {
      NS_WARNING_ASSERTION(startTime < endTime,
                           "Start time must be before end time");
      aRanges.AppendElement(
          SeekRange(startOffset, endOffset, startTime, endTime));
    }
  }
  if (NS_FAILED(Reset(aType))) {
    return NS_ERROR_FAILURE;
  }
  return NS_OK;
}

OggDemuxer::SeekRange OggDemuxer::SelectSeekRange(
    TrackInfo::TrackType aType, const nsTArray<SeekRange>& ranges,
    int64_t aTarget, int64_t aStartTime, int64_t aEndTime, bool aExact) {
  int64_t so = 0;
  int64_t eo = Resource(aType)->GetLength();
  int64_t st = aStartTime;
  int64_t et = aEndTime;
  for (uint32_t i = 0; i < ranges.Length(); i++) {
    const SeekRange& r = ranges[i];
    if (r.mTimeStart < aTarget) {
      so = r.mOffsetStart;
      st = r.mTimeStart;
    }
    if (r.mTimeEnd >= aTarget && r.mTimeEnd < et) {
      eo = r.mOffsetEnd;
      et = r.mTimeEnd;
    }

    if (r.mTimeStart < aTarget && aTarget <= r.mTimeEnd) {
      // Target lies exactly in this range.
      return ranges[i];
    }
  }
  if (aExact || eo == -1) {
    return SeekRange();
  }
  return SeekRange(so, eo, st, et);
}

nsresult OggDemuxer::SeekInBufferedRange(TrackInfo::TrackType aType,
                                         int64_t aTarget,
                                         int64_t aAdjustedTarget,
                                         int64_t aStartTime, int64_t aEndTime,
                                         const nsTArray<SeekRange>& aRanges,
                                         const SeekRange& aRange) {
  OGG_DEBUG("Seeking in buffered data to %" PRId64 " using bisection search",
            aTarget);
  if (aType == TrackInfo::kVideoTrack || aAdjustedTarget >= aTarget) {
    // We know the exact byte range in which the target must lie. It must
    // be buffered in the media cache. Seek there.
    nsresult res = SeekBisection(aType, aTarget, aRange, 0);
    if (NS_FAILED(res) || aType != TrackInfo::kVideoTrack) {
      return res;
    }

    // We have an active Theora bitstream. Peek the next Theora frame, and
    // extract its keyframe's time.
    DemuxUntilPacketAvailable(aType, mTheoraState);
    ogg_packet* packet = mTheoraState->PacketPeek();
    if (packet && !mTheoraState->IsKeyframe(packet)) {
      // First post-seek frame isn't a keyframe, seek back to previous keyframe,
      // otherwise we'll get visual artifacts.
      MOZ_ASSERT(packet->granulepos != -1, "Must have a granulepos");
      int shift = mTheoraState->KeyFrameGranuleJobs();
      int64_t keyframeGranulepos = (packet->granulepos >> shift) << shift;
      int64_t keyframeTime = mTheoraState->StartTime(keyframeGranulepos);
      SEEK_LOG(LogLevel::Debug,
               ("Keyframe for %lld is at %lld, seeking back to it", frameTime,
                keyframeTime));
      aAdjustedTarget = std::min(aAdjustedTarget, keyframeTime);
    }
  }

  nsresult res = NS_OK;
  if (aAdjustedTarget < aTarget) {
    SeekRange k = SelectSeekRange(aType, aRanges, aAdjustedTarget, aStartTime,
                                  aEndTime, false);
    res = SeekBisection(aType, aAdjustedTarget, k, OGG_SEEK_FUZZ_USECS);
  }
  return res;
}

nsresult OggDemuxer::SeekInUnbuffered(TrackInfo::TrackType aType,
                                      int64_t aTarget, int64_t aStartTime,
                                      int64_t aEndTime,
                                      const nsTArray<SeekRange>& aRanges) {
  OGG_DEBUG("Seeking in unbuffered data to %" PRId64 " using bisection search",
            aTarget);

  // If we've got an active Theora bitstream, determine the maximum possible
  // time in usecs which a keyframe could be before a given interframe. We
  // subtract this from our seek target, seek to the new target, and then
  // will decode forward to the original seek target. We should encounter a
  // keyframe in that interval. This prevents us from needing to run two
  // bisections; one for the seek target frame, and another to find its
  // keyframe. It's usually faster to just download this extra data, rather
  // tham perform two bisections to find the seek target's keyframe. We
  // don't do this offsetting when seeking in a buffered range,
  // as the extra decoding causes a noticeable speed hit when all the data
  // is buffered (compared to just doing a bisection to exactly find the
  // keyframe).
  int64_t keyframeOffsetMs = 0;
  if (aType == TrackInfo::kVideoTrack && mTheoraState) {
    keyframeOffsetMs = mTheoraState->MaxKeyframeOffset();
  }
  // Add in the Opus pre-roll if necessary, as well.
  if (aType == TrackInfo::kAudioTrack && mOpusState) {
    keyframeOffsetMs = std::max(keyframeOffsetMs, OGG_SEEK_OPUS_PREROLL);
  }
  int64_t seekTarget = std::max(aStartTime, aTarget - keyframeOffsetMs);
  // Minimize the bisection search space using the known timestamps from the
  // buffered ranges.
  SeekRange k =
      SelectSeekRange(aType, aRanges, seekTarget, aStartTime, aEndTime, false);
  return SeekBisection(aType, seekTarget, k, OGG_SEEK_FUZZ_USECS);
}

nsresult OggDemuxer::SeekBisection(TrackInfo::TrackType aType, int64_t aTarget,
                                   const SeekRange& aRange, uint32_t aFuzz) {
  nsresult res;

  if (aTarget <= aRange.mTimeStart) {
    if (NS_FAILED(Reset(aType))) {
      return NS_ERROR_FAILURE;
    }
    res = Resource(aType)->Seek(nsISeekableStream::NS_SEEK_SET, 0);
    NS_ENSURE_SUCCESS(res, res);
    return NS_OK;
  }

  // Bisection search, find start offset of last page with end time less than
  // the seek target.
  ogg_int64_t startOffset = aRange.mOffsetStart;
  ogg_int64_t startTime = aRange.mTimeStart;
  ogg_int64_t startLength = 0;  // Length of the page at startOffset.
  ogg_int64_t endOffset = aRange.mOffsetEnd;
  ogg_int64_t endTime = aRange.mTimeEnd;

  ogg_int64_t seekTarget = aTarget;
  int64_t seekLowerBound = std::max(static_cast<int64_t>(0), aTarget - aFuzz);
  int hops = 0;
  DebugOnly<ogg_int64_t> previousGuess = -1;
  int backsteps = 0;
  const int maxBackStep = 10;
  MOZ_ASSERT(
      static_cast<uint64_t>(PAGE_STEP) * pow(2.0, maxBackStep) < INT32_MAX,
      "Backstep calculation must not overflow");

  // Seek via bisection search. Loop until we find the offset where the page
  // before the offset is before the seek target, and the page after the offset
  // is after the seek target.
  while (true) {
    ogg_int64_t duration = 0;
    double target = 0;
    ogg_int64_t interval = 0;
    ogg_int64_t guess = 0;
    ogg_page page;
    int skippedBytes = 0;
    ogg_int64_t pageOffset = 0;
    ogg_int64_t pageLength = 0;
    ogg_int64_t granuleTime = -1;
    bool mustBackoff = false;

    // Guess where we should bisect to, based on the bit rate and the time
    // remaining in the interval. Loop until we can determine the time at
    // the guess offset.
    while (true) {
      // Discard any previously buffered packets/pages.
      if (NS_FAILED(Reset(aType))) {
        return NS_ERROR_FAILURE;
      }

      interval = endOffset - startOffset - startLength;
      if (interval == 0) {
        // Our interval is empty, we've found the optimal seek point, as the
        // page at the start offset is before the seek target, and the page
        // at the end offset is after the seek target.
        SEEK_LOG(LogLevel::Debug,
                 ("Interval narrowed, terminating bisection."));
        break;
      }

      // Guess bisection point.
      duration = endTime - startTime;
      target = (double)(seekTarget - startTime) / (double)duration;
      guess = startOffset + startLength +
              static_cast<ogg_int64_t>((double)interval * target);
      guess = std::min(guess, endOffset - PAGE_STEP);
      if (mustBackoff) {
        // We previously failed to determine the time at the guess offset,
        // probably because we ran out of data to decode. This usually happens
        // when we guess very close to the end offset. So reduce the guess
        // offset using an exponential backoff until we determine the time.
        SEEK_LOG(
            LogLevel::Debug,
            ("Backing off %d bytes, backsteps=%d",
             static_cast<int32_t>(PAGE_STEP * pow(2.0, backsteps)), backsteps));
        guess -= PAGE_STEP * static_cast<ogg_int64_t>(pow(2.0, backsteps));

        if (guess <= startOffset) {
          // We've tried to backoff to before the start offset of our seek
          // range. This means we couldn't find a seek termination position
          // near the end of the seek range, so just set the seek termination
          // condition, and break out of the bisection loop. We'll begin
          // decoding from the start of the seek range.
          interval = 0;
          break;
        }

        backsteps = std::min(backsteps + 1, maxBackStep);
        // We reset mustBackoff. If we still need to backoff further, it will
        // be set to true again.
        mustBackoff = false;
      } else {
        backsteps = 0;
      }
      guess = std::max(guess, startOffset + startLength);

      SEEK_LOG(LogLevel::Debug,
               ("Seek loop start[o=%lld..%lld t=%lld] "
                "end[o=%lld t=%lld] "
                "interval=%lld target=%lf guess=%lld",
                startOffset, (startOffset + startLength), startTime, endOffset,
                endTime, interval, target, guess));

      MOZ_ASSERT(guess >= startOffset + startLength,
                 "Guess must be after range start");
      MOZ_ASSERT(guess < endOffset, "Guess must be before range end");
      MOZ_ASSERT(guess != previousGuess,
                 "Guess should be different to previous");
      previousGuess = guess;

      hops++;

      // Locate the next page after our seek guess, and then figure out the
      // granule time of the audio and video bitstreams there. We can then
      // make a bisection decision based on our location in the media.
      PageSyncResult pageSyncResult =
          PageSync(Resource(aType), OggSyncState(aType), false, guess,
                   endOffset, &page, skippedBytes);
      NS_ENSURE_TRUE(pageSyncResult != PAGE_SYNC_ERROR, NS_ERROR_FAILURE);

      if (pageSyncResult == PAGE_SYNC_END_OF_RANGE) {
        // Our guess was too close to the end, we've ended up reading the end
        // page. Backoff exponentially from the end point, in case the last
        // page/frame/sample is huge.
        mustBackoff = true;
        SEEK_LOG(LogLevel::Debug, ("Hit the end of range, backing off"));
        continue;
      }

      // We've located a page of length |ret| at |guess + skippedBytes|.
      // Remember where the page is located.
      pageOffset = guess + skippedBytes;
      pageLength = page.header_len + page.body_len;

      // Read pages until we can determine the granule time of the audio and
      // video bitstream.
      ogg_int64_t audioTime = -1;
      ogg_int64_t videoTime = -1;
      do {
        // Add the page to its codec state, determine its granule time.
        uint32_t serial = ogg_page_serialno(&page);
        OggCodecState* codecState = mCodecStore.Get(serial);
        if (codecState && GetCodecStateType(codecState) == aType) {
          if (codecState->mActive) {
            int ret = ogg_stream_pagein(&codecState->mState, &page);
            NS_ENSURE_TRUE(ret == 0, NS_ERROR_FAILURE);
          }

          ogg_int64_t granulepos = ogg_page_granulepos(&page);

          if (aType == TrackInfo::kAudioTrack && granulepos > 0 &&
              audioTime == -1) {
            if (mVorbisState && serial == mVorbisState->mSerial) {
              audioTime = mVorbisState->Time(granulepos);
            } else if (mOpusState && serial == mOpusState->mSerial) {
              audioTime = mOpusState->Time(granulepos);
            } else if (mFlacState && serial == mFlacState->mSerial) {
              audioTime = mFlacState->Time(granulepos);
            }
          }

          if (aType == TrackInfo::kVideoTrack && granulepos > 0 &&
              serial == mTheoraState->mSerial && videoTime == -1) {
            videoTime = mTheoraState->Time(granulepos);
          }

          if (pageOffset + pageLength >= endOffset) {
            // Hit end of readable data.
            break;
          }
        }
        if (!ReadOggPage(aType, &page)) {
          break;
        }

      } while ((aType == TrackInfo::kAudioTrack && audioTime == -1) ||
               (aType == TrackInfo::kVideoTrack && videoTime == -1));

      if ((aType == TrackInfo::kAudioTrack && audioTime == -1) ||
          (aType == TrackInfo::kVideoTrack && videoTime == -1)) {
        // We don't have timestamps for all active tracks...
        if (pageOffset == startOffset + startLength &&
            pageOffset + pageLength >= endOffset) {
          // We read the entire interval without finding timestamps for all
          // active tracks. We know the interval start offset is before the seek
          // target, and the interval end is after the seek target, and we can't
          // terminate inside the interval, so we terminate the seek at the
          // start of the interval.
          interval = 0;
          break;
        }

        // We should backoff; cause the guess to back off from the end, so
        // that we've got more room to capture.
        mustBackoff = true;
        continue;
      }

      // We've found appropriate time stamps here. Proceed to bisect
      // the search space.
      granuleTime = aType == TrackInfo::kAudioTrack ? audioTime : videoTime;
      MOZ_ASSERT(granuleTime > 0, "Must get a granuletime");
      break;
    }  // End of "until we determine time at guess offset" loop.

    if (interval == 0) {
      // Seek termination condition; we've found the page boundary of the
      // last page before the target, and the first page after the target.
      SEEK_LOG(LogLevel::Debug,
               ("Terminating seek at offset=%lld", startOffset));
      MOZ_ASSERT(startTime < aTarget,
                 "Start time must always be less than target");
      res = Resource(aType)->Seek(nsISeekableStream::NS_SEEK_SET, startOffset);
      NS_ENSURE_SUCCESS(res, res);
      if (NS_FAILED(Reset(aType))) {
        return NS_ERROR_FAILURE;
      }
      break;
    }

    SEEK_LOG(LogLevel::Debug,
             ("Time at offset %lld is %lld", guess, granuleTime));
    if (granuleTime < seekTarget && granuleTime > seekLowerBound) {
      // We're within the fuzzy region in which we want to terminate the search.
      res = Resource(aType)->Seek(nsISeekableStream::NS_SEEK_SET, pageOffset);
      NS_ENSURE_SUCCESS(res, res);
      if (NS_FAILED(Reset(aType))) {
        return NS_ERROR_FAILURE;
      }
      SEEK_LOG(LogLevel::Debug,
               ("Terminating seek at offset=%lld", pageOffset));
      break;
    }

    if (granuleTime >= seekTarget) {
      // We've landed after the seek target.
      MOZ_ASSERT(pageOffset < endOffset, "offset_end must decrease");
      endOffset = pageOffset;
      endTime = granuleTime;
    } else if (granuleTime < seekTarget) {
      // Landed before seek target.
      MOZ_ASSERT(pageOffset >= startOffset + startLength,
                 "Bisection point should be at or after end of first page in "
                 "interval");
      startOffset = pageOffset;
      startLength = pageLength;
      startTime = granuleTime;
    }
    MOZ_ASSERT(startTime <= seekTarget, "Must be before seek target");
    MOZ_ASSERT(endTime >= seekTarget, "End must be after seek target");
  }

  SEEK_LOG(LogLevel::Debug, ("Seek complete in %d bisections.", hops));

  return NS_OK;
}

#undef OGG_DEBUG
#undef SEEK_DEBUG
}  // namespace mozilla