DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (d96ee8115c5a)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#if !defined(MediaData_h)
#define MediaData_h

#include "AudioSampleFormat.h"
#include "ImageTypes.h"
#include "SharedBuffer.h"
#include "TimeUnits.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/PodOperations.h"
#include "mozilla/RefPtr.h"
#include "mozilla/Span.h"
#include "mozilla/UniquePtr.h"
#include "mozilla/UniquePtrExtensions.h"
#include "mozilla/gfx/Rect.h"
#include "nsString.h"
#include "nsTArray.h"

namespace mozilla {

namespace layers {
class Image;
class ImageContainer;
class KnowsCompositor;
}  // namespace layers

class MediaByteBuffer;
class TrackInfoSharedPtr;

// AlignedBuffer:
// Memory allocations are fallibles. Methods return a boolean indicating if
// memory allocations were successful. Return values should always be checked.
// AlignedBuffer::mData will be nullptr if no memory has been allocated or if
// an error occurred during construction.
// Existing data is only ever modified if new memory allocation has succeeded
// and preserved if not.
//
// The memory referenced by mData will always be Alignment bytes aligned and the
// underlying buffer will always have a size such that Alignment bytes blocks
// can be used to read the content, regardless of the mSize value. Buffer is
// zeroed on creation, elements are not individually constructed.
// An Alignment value of 0 means that the data isn't aligned.
//
// Type must be trivially copyable.
//
// AlignedBuffer can typically be used in place of UniquePtr<Type[]> however
// care must be taken as all memory allocations are fallible.
// Example:
// auto buffer = MakeUniqueFallible<float[]>(samples)
// becomes: AlignedFloatBuffer buffer(samples)
//
// auto buffer = MakeUnique<float[]>(samples)
// becomes:
// AlignedFloatBuffer buffer(samples);
// if (!buffer) { return NS_ERROR_OUT_OF_MEMORY; }

template <typename Type, int Alignment = 32>
class AlignedBuffer {
 public:
  AlignedBuffer()
      : mData(nullptr), mLength(0), mBuffer(nullptr), mCapacity(0) {}

  explicit AlignedBuffer(size_t aLength)
      : mData(nullptr), mLength(0), mBuffer(nullptr), mCapacity(0) {
    if (EnsureCapacity(aLength)) {
      mLength = aLength;
    }
  }

  AlignedBuffer(const Type* aData, size_t aLength) : AlignedBuffer(aLength) {
    if (!mData) {
      return;
    }
    PodCopy(mData, aData, aLength);
  }

  AlignedBuffer(const AlignedBuffer& aOther)
      : AlignedBuffer(aOther.Data(), aOther.Length()) {}

  AlignedBuffer(AlignedBuffer&& aOther)
      : mData(aOther.mData),
        mLength(aOther.mLength),
        mBuffer(Move(aOther.mBuffer)),
        mCapacity(aOther.mCapacity) {
    aOther.mData = nullptr;
    aOther.mLength = 0;
    aOther.mCapacity = 0;
  }

  AlignedBuffer& operator=(AlignedBuffer&& aOther) {
    this->~AlignedBuffer();
    new (this) AlignedBuffer(Move(aOther));
    return *this;
  }

  Type* Data() const { return mData; }
  size_t Length() const { return mLength; }
  size_t Size() const { return mLength * sizeof(Type); }
  Type& operator[](size_t aIndex) {
    MOZ_ASSERT(aIndex < mLength);
    return mData[aIndex];
  }
  const Type& operator[](size_t aIndex) const {
    MOZ_ASSERT(aIndex < mLength);
    return mData[aIndex];
  }
  // Set length of buffer, allocating memory as required.
  // If length is increased, new buffer area is filled with 0.
  bool SetLength(size_t aLength) {
    if (aLength > mLength && !EnsureCapacity(aLength)) {
      return false;
    }
    mLength = aLength;
    return true;
  }
  // Add aData at the beginning of buffer.
  bool Prepend(const Type* aData, size_t aLength) {
    if (!EnsureCapacity(aLength + mLength)) {
      return false;
    }

    // Shift the data to the right by aLength to leave room for the new data.
    PodMove(mData + aLength, mData, mLength);
    PodCopy(mData, aData, aLength);

    mLength += aLength;
    return true;
  }
  // Add aData at the end of buffer.
  bool Append(const Type* aData, size_t aLength) {
    if (!EnsureCapacity(aLength + mLength)) {
      return false;
    }

    PodCopy(mData + mLength, aData, aLength);

    mLength += aLength;
    return true;
  }
  // Replace current content with aData.
  bool Replace(const Type* aData, size_t aLength) {
    // If aLength is smaller than our current length, we leave the buffer as is,
    // only adjusting the reported length.
    if (!EnsureCapacity(aLength)) {
      return false;
    }

    PodCopy(mData, aData, aLength);
    mLength = aLength;
    return true;
  }
  // Clear the memory buffer. Will set target mData and mLength to 0.
  void Clear() {
    mLength = 0;
    mData = nullptr;
  }

  // Methods for reporting memory.
  size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
    size_t size = aMallocSizeOf(this);
    size += aMallocSizeOf(mBuffer.get());
    return size;
  }
  // AlignedBuffer is typically allocated on the stack. As such, you likely
  // want to use SizeOfExcludingThis
  size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const {
    return aMallocSizeOf(mBuffer.get());
  }
  size_t ComputedSizeOfExcludingThis() const { return mCapacity; }

  // For backward compatibility with UniquePtr<Type[]>
  Type* get() const { return mData; }
  explicit operator bool() const { return mData != nullptr; }

  // Size in bytes of extra space allocated for padding.
  static size_t AlignmentPaddingSize() { return AlignmentOffset() * 2; }

  void PopFront(size_t aSize) {
    MOZ_ASSERT(mLength >= aSize);
    PodMove(mData, mData + aSize, mLength - aSize);
    mLength -= aSize;
  }

 private:
  static size_t AlignmentOffset() { return Alignment ? Alignment - 1 : 0; }

  // Ensure that the backend buffer can hold aLength data. Will update mData.
  // Will enforce that the start of allocated data is always Alignment bytes
  // aligned and that it has sufficient end padding to allow for Alignment bytes
  // block read as required by some data decoders.
  // Returns false if memory couldn't be allocated.
  bool EnsureCapacity(size_t aLength) {
    if (!aLength) {
      // No need to allocate a buffer yet.
      return true;
    }
    const CheckedInt<size_t> sizeNeeded =
        CheckedInt<size_t>(aLength) * sizeof(Type) + AlignmentPaddingSize();

    if (!sizeNeeded.isValid() || sizeNeeded.value() >= INT32_MAX) {
      // overflow or over an acceptable size.
      return false;
    }
    if (mData && mCapacity >= sizeNeeded.value()) {
      return true;
    }
    auto newBuffer = MakeUniqueFallible<uint8_t[]>(sizeNeeded.value());
    if (!newBuffer) {
      return false;
    }

    // Find alignment address.
    const uintptr_t alignmask = AlignmentOffset();
    Type* newData = reinterpret_cast<Type*>(
        (reinterpret_cast<uintptr_t>(newBuffer.get()) + alignmask) &
        ~alignmask);
    MOZ_ASSERT(uintptr_t(newData) % (AlignmentOffset() + 1) == 0);

    MOZ_ASSERT(!mLength || mData);

    PodZero(newData + mLength, aLength - mLength);
    if (mLength) {
      PodCopy(newData, mData, mLength);
    }

    mBuffer = Move(newBuffer);
    mCapacity = sizeNeeded.value();
    mData = newData;

    return true;
  }
  Type* mData;
  size_t mLength;
  UniquePtr<uint8_t[]> mBuffer;
  size_t mCapacity;
};

typedef AlignedBuffer<uint8_t> AlignedByteBuffer;
typedef AlignedBuffer<float> AlignedFloatBuffer;
typedef AlignedBuffer<int16_t> AlignedShortBuffer;
typedef AlignedBuffer<AudioDataValue> AlignedAudioBuffer;

// Container that holds media samples.
class MediaData {
 public:
  NS_INLINE_DECL_THREADSAFE_REFCOUNTING(MediaData)

  enum Type { AUDIO_DATA = 0, VIDEO_DATA, RAW_DATA, NULL_DATA };

  MediaData(Type aType, int64_t aOffset, const media::TimeUnit& aTimestamp,
            const media::TimeUnit& aDuration, uint32_t aFrames)
      : mType(aType),
        mOffset(aOffset),
        mTime(aTimestamp),
        mTimecode(aTimestamp),
        mDuration(aDuration),
        mFrames(aFrames),
        mKeyframe(false) {}

  // Type of contained data.
  const Type mType;

  // Approximate byte offset where this data was demuxed from its media.
  int64_t mOffset;

  // Start time of sample.
  media::TimeUnit mTime;

  // Codec specific internal time code. For Ogg based codecs this is the
  // granulepos.
  media::TimeUnit mTimecode;

  // Duration of sample, in microseconds.
  media::TimeUnit mDuration;

  // Amount of frames for contained data.
  const uint32_t mFrames;

  bool mKeyframe;

  media::TimeUnit GetEndTime() const { return mTime + mDuration; }

  bool AdjustForStartTime(int64_t aStartTime) {
    mTime = mTime - media::TimeUnit::FromMicroseconds(aStartTime);
    return !mTime.IsNegative();
  }

  template <typename ReturnType>
  const ReturnType* As() const {
    MOZ_ASSERT(this->mType == ReturnType::sType);
    return static_cast<const ReturnType*>(this);
  }

  template <typename ReturnType>
  ReturnType* As() {
    MOZ_ASSERT(this->mType == ReturnType::sType);
    return static_cast<ReturnType*>(this);
  }

 protected:
  MediaData(Type aType, uint32_t aFrames)
      : mType(aType), mOffset(0), mFrames(aFrames), mKeyframe(false) {}

  virtual ~MediaData() {}
};

// NullData is for decoder generating a sample which doesn't need to be
// rendered.
class NullData : public MediaData {
 public:
  NullData(int64_t aOffset, const media::TimeUnit& aTime,
           const media::TimeUnit& aDuration)
      : MediaData(NULL_DATA, aOffset, aTime, aDuration, 0) {}

  static const Type sType = NULL_DATA;
};

// Holds chunk a decoded audio frames.
class AudioData : public MediaData {
 public:
  AudioData(int64_t aOffset, const media::TimeUnit& aTime,
            const media::TimeUnit& aDuration, uint32_t aFrames,
            AlignedAudioBuffer&& aData, uint32_t aChannels, uint32_t aRate)
      : MediaData(sType, aOffset, aTime, aDuration, aFrames),
        mChannels(aChannels),
        mRate(aRate),
        mAudioData(Move(aData)) {}

  static const Type sType = AUDIO_DATA;
  static const char* sTypeName;

  // Creates a new AudioData identical to aOther, but with a different
  // specified timestamp and duration. All data from aOther is copied
  // into the new AudioData but the audio data which is transferred.
  // After such call, the original aOther is unusable.
  static already_AddRefed<AudioData> TransferAndUpdateTimestampAndDuration(
      AudioData* aOther, const media::TimeUnit& aTimestamp,
      const media::TimeUnit& aDuration);

  size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const;

  // If mAudioBuffer is null, creates it from mAudioData.
  void EnsureAudioBuffer();

  // To check whether mAudioData has audible signal, it's used to distinguish
  // the audiable data and silent data.
  bool IsAudible() const;

  const uint32_t mChannels;
  const uint32_t mRate;
  // At least one of mAudioBuffer/mAudioData must be non-null.
  // mChannels channels, each with mFrames frames
  RefPtr<SharedBuffer> mAudioBuffer;
  // mFrames frames, each with mChannels values
  AlignedAudioBuffer mAudioData;

 protected:
  ~AudioData() {}
};

namespace layers {
class TextureClient;
class PlanarYCbCrImage;
}  // namespace layers

class VideoInfo;

// Holds a decoded video frame, in YCbCr format. These are queued in the reader.
class VideoData : public MediaData {
 public:
  typedef gfx::IntRect IntRect;
  typedef gfx::IntSize IntSize;
  typedef layers::ImageContainer ImageContainer;
  typedef layers::Image Image;
  typedef layers::PlanarYCbCrImage PlanarYCbCrImage;

  static const Type sType = VIDEO_DATA;
  static const char* sTypeName;

  // YCbCr data obtained from decoding the video. The index's are:
  //   0 = Y
  //   1 = Cb
  //   2 = Cr
  struct YCbCrBuffer {
    struct Plane {
      uint8_t* mData;
      uint32_t mWidth;
      uint32_t mHeight;
      uint32_t mStride;
      uint32_t mOffset;
      uint32_t mSkip;
    };

    Plane mPlanes[3];
    YUVColorSpace mYUVColorSpace = YUVColorSpace::BT601;
    uint32_t mBitDepth = 8;
  };

  class Listener {
   public:
    virtual void OnSentToCompositor() = 0;
    virtual ~Listener() {}
  };

  // Constructs a VideoData object. If aImage is nullptr, creates a new Image
  // holding a copy of the YCbCr data passed in aBuffer. If aImage is not
  // nullptr, it's stored as the underlying video image and aBuffer is assumed
  // to point to memory within aImage so no copy is made. aTimecode is a codec
  // specific number representing the timestamp of the frame of video data.
  // Returns nsnull if an error occurs. This may indicate that memory couldn't
  // be allocated to create the VideoData object, or it may indicate some
  // problem with the input data (e.g. negative stride).

  // Creates a new VideoData containing a deep copy of aBuffer. May use
  // aContainer to allocate an Image to hold the copied data.
  static already_AddRefed<VideoData> CreateAndCopyData(
      const VideoInfo& aInfo, ImageContainer* aContainer, int64_t aOffset,
      const media::TimeUnit& aTime, const media::TimeUnit& aDuration,
      const YCbCrBuffer& aBuffer, bool aKeyframe,
      const media::TimeUnit& aTimecode, const IntRect& aPicture,
      layers::KnowsCompositor* aAllocator = nullptr);

  static already_AddRefed<VideoData> CreateAndCopyData(
      const VideoInfo& aInfo, ImageContainer* aContainer, int64_t aOffset,
      const media::TimeUnit& aTime, const media::TimeUnit& aDuration,
      const YCbCrBuffer& aBuffer, const YCbCrBuffer::Plane& aAlphaPlane,
      bool aKeyframe, const media::TimeUnit& aTimecode,
      const IntRect& aPicture);

  static already_AddRefed<VideoData> CreateFromImage(
      const IntSize& aDisplay, int64_t aOffset, const media::TimeUnit& aTime,
      const media::TimeUnit& aDuration, const RefPtr<Image>& aImage,
      bool aKeyframe, const media::TimeUnit& aTimecode);

  // Initialize PlanarYCbCrImage. Only When aCopyData is true,
  // video data is copied to PlanarYCbCrImage.
  static bool SetVideoDataToImage(PlanarYCbCrImage* aVideoImage,
                                  const VideoInfo& aInfo,
                                  const YCbCrBuffer& aBuffer,
                                  const IntRect& aPicture, bool aCopyData);

  size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const;

  // Dimensions at which to display the video frame. The picture region
  // will be scaled to this size. This is should be the picture region's
  // dimensions scaled with respect to its aspect ratio.
  const IntSize mDisplay;

  // This frame's image.
  RefPtr<Image> mImage;

  int32_t mFrameID;

  VideoData(int64_t aOffset, const media::TimeUnit& aTime,
            const media::TimeUnit& aDuration, bool aKeyframe,
            const media::TimeUnit& aTimecode, IntSize aDisplay,
            uint32_t aFrameID);

  void SetListener(UniquePtr<Listener> aListener);
  void MarkSentToCompositor();
  bool IsSentToCompositor() { return mSentToCompositor; }

  void UpdateDuration(const media::TimeUnit& aDuration);
  void UpdateTimestamp(const media::TimeUnit& aTimestamp);

  void SetNextKeyFrameTime(const media::TimeUnit& aTime) {
    mNextKeyFrameTime = aTime;
  }

  const media::TimeUnit& NextKeyFrameTime() const { return mNextKeyFrameTime; }

 protected:
  ~VideoData();

  bool mSentToCompositor;
  UniquePtr<Listener> mListener;
  media::TimeUnit mNextKeyFrameTime;
};

class CryptoTrack {
 public:
  CryptoTrack() : mValid(false), mMode(0), mIVSize(0) {}
  bool mValid;
  int32_t mMode;
  int32_t mIVSize;
  nsTArray<uint8_t> mKeyId;
};

class CryptoSample : public CryptoTrack {
 public:
  nsTArray<uint16_t> mPlainSizes;
  nsTArray<uint32_t> mEncryptedSizes;
  nsTArray<uint8_t> mIV;
  nsTArray<nsTArray<uint8_t>> mInitDatas;
  nsString mInitDataType;
};

// MediaRawData is a MediaData container used to store demuxed, still compressed
// samples.
// Use MediaRawData::CreateWriter() to obtain a MediaRawDataWriter object that
// provides methods to modify and manipulate the data.
// Memory allocations are fallible. Methods return a boolean indicating if
// memory allocations were successful. Return values should always be checked.
// MediaRawData::mData will be nullptr if no memory has been allocated or if
// an error occurred during construction.
// Existing data is only ever modified if new memory allocation has succeeded
// and preserved if not.
//
// The memory referenced by mData will always be 32 bytes aligned and the
// underlying buffer will always have a size such that 32 bytes blocks can be
// used to read the content, regardless of the mSize value. Buffer is zeroed
// on creation.
//
// Typical usage: create new MediaRawData; create the associated
// MediaRawDataWriter, call SetSize() to allocate memory, write to mData,
// up to mSize bytes.

class MediaRawData;

class MediaRawDataWriter {
 public:
  // Pointer to data or null if not-yet allocated
  uint8_t* Data();
  // Writeable size of buffer.
  size_t Size();
  // Writeable reference to MediaRawData::mCryptoInternal
  CryptoSample& mCrypto;

  // Data manipulation methods. mData and mSize may be updated accordingly.

  // Set size of buffer, allocating memory as required.
  // If size is increased, new buffer area is filled with 0.
  bool SetSize(size_t aSize);
  // Add aData at the beginning of buffer.
  bool Prepend(const uint8_t* aData, size_t aSize);
  // Replace current content with aData.
  bool Replace(const uint8_t* aData, size_t aSize);
  // Clear the memory buffer. Will set target mData and mSize to 0.
  void Clear();
  // Remove aSize bytes from the front of the sample.
  void PopFront(size_t aSize);

 private:
  friend class MediaRawData;
  explicit MediaRawDataWriter(MediaRawData* aMediaRawData);
  bool EnsureSize(size_t aSize);
  MediaRawData* mTarget;
};

class MediaRawData : public MediaData {
 public:
  MediaRawData();
  MediaRawData(const uint8_t* aData, size_t aSize);
  MediaRawData(const uint8_t* aData, size_t aSize, const uint8_t* aAlphaData,
               size_t aAlphaSize);

  // Pointer to data or null if not-yet allocated
  const uint8_t* Data() const { return mBuffer.Data(); }
  // Pointer to alpha data or null if not-yet allocated
  const uint8_t* AlphaData() const { return mAlphaBuffer.Data(); }
  // Size of buffer.
  size_t Size() const { return mBuffer.Length(); }
  size_t AlphaSize() const { return mAlphaBuffer.Length(); }
  size_t ComputedSizeOfIncludingThis() const {
    return sizeof(*this) + mBuffer.ComputedSizeOfExcludingThis() +
           mAlphaBuffer.ComputedSizeOfExcludingThis();
  }
  // Access the buffer as a Span.
  operator Span<const uint8_t>() { return MakeSpan(Data(), Size()); }

  const CryptoSample& mCrypto;
  RefPtr<MediaByteBuffer> mExtraData;

  // Used by the Vorbis decoder and Ogg demuxer.
  // Indicates that this is the last packet of the stream.
  bool mEOS = false;

  // Indicate to the audio decoder that mDiscardPadding frames should be
  // trimmed.
  uint32_t mDiscardPadding = 0;

  RefPtr<TrackInfoSharedPtr> mTrackInfo;

  // Return a deep copy or nullptr if out of memory.
  virtual already_AddRefed<MediaRawData> Clone() const;
  // Create a MediaRawDataWriter for this MediaRawData. The caller must
  // delete the writer once done. The writer is not thread-safe.
  virtual MediaRawDataWriter* CreateWriter();
  virtual size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const;

 protected:
  ~MediaRawData();

 private:
  friend class MediaRawDataWriter;
  AlignedByteBuffer mBuffer;
  AlignedByteBuffer mAlphaBuffer;
  CryptoSample mCryptoInternal;
  MediaRawData(const MediaRawData&);  // Not implemented
};

// MediaByteBuffer is a ref counted infallible TArray.
class MediaByteBuffer : public nsTArray<uint8_t> {
  NS_INLINE_DECL_THREADSAFE_REFCOUNTING(MediaByteBuffer);
  MediaByteBuffer() = default;
  explicit MediaByteBuffer(size_t aCapacity) : nsTArray<uint8_t>(aCapacity) {}

 private:
  ~MediaByteBuffer() {}
};

}  // namespace mozilla

#endif  // MediaData_h