DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "mozilla/dom/cache/AutoUtils.h"

#include "mozilla/Unused.h"
#include "mozilla/dom/InternalHeaders.h"
#include "mozilla/dom/InternalRequest.h"
#include "mozilla/dom/cache/CacheParent.h"
#include "mozilla/dom/cache/CacheStreamControlParent.h"
#include "mozilla/dom/cache/ReadStream.h"
#include "mozilla/dom/cache/SavedTypes.h"
#include "mozilla/dom/cache/StreamList.h"
#include "mozilla/dom/cache/TypeUtils.h"
#include "mozilla/ipc/IPCStreamUtils.h"
#include "mozilla/ipc/PBackgroundParent.h"
#include "nsCRT.h"
#include "nsHttp.h"

using mozilla::Unused;
using mozilla::dom::cache::CacheReadStream;
using mozilla::dom::cache::CacheReadStreamOrVoid;
using mozilla::ipc::AutoIPCStream;
using mozilla::ipc::PBackgroundParent;

namespace {

enum CleanupAction { Forget, Delete };

void CleanupChild(CacheReadStream& aReadStream, CleanupAction aAction) {
  // fds cleaned up by mStreamCleanupList
  // PChildToParentStream actors cleaned up by mStreamCleanupList
}

void CleanupChild(CacheReadStreamOrVoid& aReadStreamOrVoid,
                  CleanupAction aAction) {
  if (aReadStreamOrVoid.type() == CacheReadStreamOrVoid::Tvoid_t) {
    return;
  }

  CleanupChild(aReadStreamOrVoid.get_CacheReadStream(), aAction);
}

}  // namespace

namespace mozilla {
namespace dom {
namespace cache {

// --------------------------------------------

AutoChildOpArgs::AutoChildOpArgs(TypeUtils* aTypeUtils,
                                 const CacheOpArgs& aOpArgs,
                                 uint32_t aEntryCount)
    : mTypeUtils(aTypeUtils), mOpArgs(aOpArgs), mSent(false) {
  MOZ_DIAGNOSTIC_ASSERT(mTypeUtils);
  MOZ_RELEASE_ASSERT(aEntryCount != 0);
  // We are using AutoIPCStream objects to cleanup target IPCStream
  // structures embedded in our CacheOpArgs.  These IPCStream structs
  // must not move once we attach our AutoIPCStream to them.  Therefore,
  // its important that any arrays containing streams are pre-sized for
  // the number of entries we have in order to avoid realloc moving
  // things around on us.
  if (mOpArgs.type() == CacheOpArgs::TCachePutAllArgs) {
    CachePutAllArgs& args = mOpArgs.get_CachePutAllArgs();
    args.requestResponseList().SetCapacity(aEntryCount);
  } else {
    MOZ_DIAGNOSTIC_ASSERT(aEntryCount == 1);
  }
}

AutoChildOpArgs::~AutoChildOpArgs() {
  CleanupAction action = mSent ? Forget : Delete;

  switch (mOpArgs.type()) {
    case CacheOpArgs::TCacheMatchArgs: {
      CacheMatchArgs& args = mOpArgs.get_CacheMatchArgs();
      CleanupChild(args.request().body(), action);
      break;
    }
    case CacheOpArgs::TCacheMatchAllArgs: {
      CacheMatchAllArgs& args = mOpArgs.get_CacheMatchAllArgs();
      if (args.requestOrVoid().type() == CacheRequestOrVoid::Tvoid_t) {
        break;
      }
      CleanupChild(args.requestOrVoid().get_CacheRequest().body(), action);
      break;
    }
    case CacheOpArgs::TCachePutAllArgs: {
      CachePutAllArgs& args = mOpArgs.get_CachePutAllArgs();
      auto& list = args.requestResponseList();
      for (uint32_t i = 0; i < list.Length(); ++i) {
        CleanupChild(list[i].request().body(), action);
        CleanupChild(list[i].response().body(), action);
      }
      break;
    }
    case CacheOpArgs::TCacheDeleteArgs: {
      CacheDeleteArgs& args = mOpArgs.get_CacheDeleteArgs();
      CleanupChild(args.request().body(), action);
      break;
    }
    case CacheOpArgs::TCacheKeysArgs: {
      CacheKeysArgs& args = mOpArgs.get_CacheKeysArgs();
      if (args.requestOrVoid().type() == CacheRequestOrVoid::Tvoid_t) {
        break;
      }
      CleanupChild(args.requestOrVoid().get_CacheRequest().body(), action);
      break;
    }
    case CacheOpArgs::TStorageMatchArgs: {
      StorageMatchArgs& args = mOpArgs.get_StorageMatchArgs();
      CleanupChild(args.request().body(), action);
      break;
    }
    default:
      // Other types do not need cleanup
      break;
  }

  mStreamCleanupList.Clear();
}

void AutoChildOpArgs::Add(InternalRequest* aRequest, BodyAction aBodyAction,
                          SchemeAction aSchemeAction, ErrorResult& aRv) {
  MOZ_DIAGNOSTIC_ASSERT(!mSent);

  switch (mOpArgs.type()) {
    case CacheOpArgs::TCacheMatchArgs: {
      CacheMatchArgs& args = mOpArgs.get_CacheMatchArgs();
      mTypeUtils->ToCacheRequest(args.request(), aRequest, aBodyAction,
                                 aSchemeAction, mStreamCleanupList, aRv);
      break;
    }
    case CacheOpArgs::TCacheMatchAllArgs: {
      CacheMatchAllArgs& args = mOpArgs.get_CacheMatchAllArgs();
      MOZ_DIAGNOSTIC_ASSERT(args.requestOrVoid().type() ==
                            CacheRequestOrVoid::Tvoid_t);
      args.requestOrVoid() = CacheRequest();
      mTypeUtils->ToCacheRequest(args.requestOrVoid().get_CacheRequest(),
                                 aRequest, aBodyAction, aSchemeAction,
                                 mStreamCleanupList, aRv);
      break;
    }
    case CacheOpArgs::TCacheDeleteArgs: {
      CacheDeleteArgs& args = mOpArgs.get_CacheDeleteArgs();
      mTypeUtils->ToCacheRequest(args.request(), aRequest, aBodyAction,
                                 aSchemeAction, mStreamCleanupList, aRv);
      break;
    }
    case CacheOpArgs::TCacheKeysArgs: {
      CacheKeysArgs& args = mOpArgs.get_CacheKeysArgs();
      MOZ_DIAGNOSTIC_ASSERT(args.requestOrVoid().type() ==
                            CacheRequestOrVoid::Tvoid_t);
      args.requestOrVoid() = CacheRequest();
      mTypeUtils->ToCacheRequest(args.requestOrVoid().get_CacheRequest(),
                                 aRequest, aBodyAction, aSchemeAction,
                                 mStreamCleanupList, aRv);
      break;
    }
    case CacheOpArgs::TStorageMatchArgs: {
      StorageMatchArgs& args = mOpArgs.get_StorageMatchArgs();
      mTypeUtils->ToCacheRequest(args.request(), aRequest, aBodyAction,
                                 aSchemeAction, mStreamCleanupList, aRv);
      break;
    }
    default:
      MOZ_CRASH("Cache args type cannot send a Request!");
  }
}

namespace {

bool MatchInPutList(InternalRequest* aRequest,
                    const nsTArray<CacheRequestResponse>& aPutList) {
  MOZ_DIAGNOSTIC_ASSERT(aRequest);

  // This method implements the SW spec QueryCache algorithm against an
  // in memory array of Request/Response objects.  This essentially the
  // same algorithm that is implemented in DBSchema.cpp.  Unfortunately
  // we cannot unify them because when operating against the real database
  // we don't want to load all request/response objects into memory.

  // Note, we can skip the check for a invalid request method because
  // Cache should only call into here with a GET or HEAD.
#ifdef DEBUG
  nsAutoCString method;
  aRequest->GetMethod(method);
  MOZ_ASSERT(method.LowerCaseEqualsLiteral("get") ||
             method.LowerCaseEqualsLiteral("head"));
#endif

  RefPtr<InternalHeaders> requestHeaders = aRequest->Headers();

  for (uint32_t i = 0; i < aPutList.Length(); ++i) {
    const CacheRequest& cachedRequest = aPutList[i].request();
    const CacheResponse& cachedResponse = aPutList[i].response();

    nsAutoCString url;
    aRequest->GetURL(url);

    nsAutoCString requestUrl(cachedRequest.urlWithoutQuery());
    requestUrl.Append(cachedRequest.urlQuery());

    // If the URLs don't match, then just skip to the next entry.
    if (url != requestUrl) {
      continue;
    }

    RefPtr<InternalHeaders> cachedRequestHeaders =
        TypeUtils::ToInternalHeaders(cachedRequest.headers());

    RefPtr<InternalHeaders> cachedResponseHeaders =
        TypeUtils::ToInternalHeaders(cachedResponse.headers());

    nsCString varyHeaders;
    ErrorResult rv;
    cachedResponseHeaders->Get(NS_LITERAL_CSTRING("vary"), varyHeaders, rv);
    MOZ_ALWAYS_TRUE(!rv.Failed());

    // Assume the vary headers match until we find a conflict
    bool varyHeadersMatch = true;

    char* rawBuffer = varyHeaders.BeginWriting();
    char* token = nsCRT::strtok(rawBuffer, NS_HTTP_HEADER_SEPS, &rawBuffer);
    for (; token;
         token = nsCRT::strtok(rawBuffer, NS_HTTP_HEADER_SEPS, &rawBuffer)) {
      nsDependentCString header(token);
      MOZ_DIAGNOSTIC_ASSERT(!header.EqualsLiteral("*"),
                            "We should have already caught this in "
                            "TypeUtils::ToPCacheResponseWithoutBody()");

      ErrorResult headerRv;
      nsAutoCString value;
      requestHeaders->Get(header, value, headerRv);
      if (NS_WARN_IF(headerRv.Failed())) {
        headerRv.SuppressException();
        MOZ_DIAGNOSTIC_ASSERT(value.IsEmpty());
      }

      nsAutoCString cachedValue;
      cachedRequestHeaders->Get(header, cachedValue, headerRv);
      if (NS_WARN_IF(headerRv.Failed())) {
        headerRv.SuppressException();
        MOZ_DIAGNOSTIC_ASSERT(cachedValue.IsEmpty());
      }

      if (value != cachedValue) {
        varyHeadersMatch = false;
        break;
      }
    }

    // URL was equal and all vary headers match!
    if (varyHeadersMatch) {
      return true;
    }
  }

  return false;
}

}  // namespace

void AutoChildOpArgs::Add(JSContext* aCx, InternalRequest* aRequest,
                          BodyAction aBodyAction, SchemeAction aSchemeAction,
                          Response& aResponse, ErrorResult& aRv) {
  MOZ_DIAGNOSTIC_ASSERT(!mSent);

  switch (mOpArgs.type()) {
    case CacheOpArgs::TCachePutAllArgs: {
      CachePutAllArgs& args = mOpArgs.get_CachePutAllArgs();

      // Throw an error if a request/response pair would mask another
      // request/response pair in the same PutAll operation.  This is
      // step 2.3.2.3 from the "Batch Cache Operations" spec algorithm.
      if (MatchInPutList(aRequest, args.requestResponseList())) {
        aRv.Throw(NS_ERROR_DOM_INVALID_STATE_ERR);
        return;
      }

      // Ensure that we don't realloc the array since this can result
      // in our AutoIPCStream objects to reference the wrong memory
      // location.  This should never happen and is a UAF if it does.
      // Therefore make this a release assertion.
      MOZ_RELEASE_ASSERT(args.requestResponseList().Length() <
                         args.requestResponseList().Capacity());

      // The FileDescriptorSetChild asserts in its destructor that all fds have
      // been removed.  The copy constructor, however, simply duplicates the
      // fds without removing any.  This means each temporary and copy must be
      // explicitly cleaned up.
      //
      // Avoid a lot of this hassle by making sure we only create one here.  On
      // error we remove it.
      CacheRequestResponse& pair = *args.requestResponseList().AppendElement();
      pair.request().body() = void_t();
      pair.response().body() = void_t();

      mTypeUtils->ToCacheRequest(pair.request(), aRequest, aBodyAction,
                                 aSchemeAction, mStreamCleanupList, aRv);
      if (!aRv.Failed()) {
        mTypeUtils->ToCacheResponse(aCx, pair.response(), aResponse,
                                    mStreamCleanupList, aRv);
      }

      if (aRv.Failed()) {
        CleanupChild(pair.request().body(), Delete);
        args.requestResponseList().RemoveElementAt(
            args.requestResponseList().Length() - 1);
      }

      break;
    }
    default:
      MOZ_CRASH("Cache args type cannot send a Request/Response pair!");
  }
}

const CacheOpArgs& AutoChildOpArgs::SendAsOpArgs() {
  MOZ_DIAGNOSTIC_ASSERT(!mSent);
  mSent = true;
  for (UniquePtr<AutoIPCStream>& autoStream : mStreamCleanupList) {
    autoStream->TakeOptionalValue();
  }
  return mOpArgs;
}

// --------------------------------------------

AutoParentOpResult::AutoParentOpResult(
    mozilla::ipc::PBackgroundParent* aManager, const CacheOpResult& aOpResult,
    uint32_t aEntryCount)
    : mManager(aManager),
      mOpResult(aOpResult),
      mStreamControl(nullptr),
      mSent(false) {
  MOZ_DIAGNOSTIC_ASSERT(mManager);
  MOZ_RELEASE_ASSERT(aEntryCount != 0);
  // We are using AutoIPCStream objects to cleanup target IPCStream
  // structures embedded in our CacheOpArgs.  These IPCStream structs
  // must not move once we attach our AutoIPCStream to them.  Therefore,
  // its important that any arrays containing streams are pre-sized for
  // the number of entries we have in order to avoid realloc moving
  // things around on us.
  if (mOpResult.type() == CacheOpResult::TCacheMatchAllResult) {
    CacheMatchAllResult& result = mOpResult.get_CacheMatchAllResult();
    result.responseList().SetCapacity(aEntryCount);
  } else if (mOpResult.type() == CacheOpResult::TCacheKeysResult) {
    CacheKeysResult& result = mOpResult.get_CacheKeysResult();
    result.requestList().SetCapacity(aEntryCount);
  } else {
    MOZ_DIAGNOSTIC_ASSERT(aEntryCount == 1);
  }
}

AutoParentOpResult::~AutoParentOpResult() {
  CleanupAction action = mSent ? Forget : Delete;

  switch (mOpResult.type()) {
    case CacheOpResult::TStorageOpenResult: {
      StorageOpenResult& result = mOpResult.get_StorageOpenResult();
      if (action == Forget || result.actorParent() == nullptr) {
        break;
      }
      Unused << PCacheParent::Send__delete__(result.actorParent());
      break;
    }
    default:
      // other types do not need additional clean up
      break;
  }

  if (action == Delete && mStreamControl) {
    Unused << PCacheStreamControlParent::Send__delete__(mStreamControl);
  }

  mStreamCleanupList.Clear();
}

void AutoParentOpResult::Add(CacheId aOpenedCacheId, Manager* aManager) {
  MOZ_DIAGNOSTIC_ASSERT(mOpResult.type() == CacheOpResult::TStorageOpenResult);
  MOZ_DIAGNOSTIC_ASSERT(mOpResult.get_StorageOpenResult().actorParent() ==
                        nullptr);
  mOpResult.get_StorageOpenResult().actorParent() =
      mManager->SendPCacheConstructor(
          new CacheParent(aManager, aOpenedCacheId));
}

void AutoParentOpResult::Add(const SavedResponse& aSavedResponse,
                             StreamList* aStreamList) {
  MOZ_DIAGNOSTIC_ASSERT(!mSent);

  switch (mOpResult.type()) {
    case CacheOpResult::TCacheMatchResult: {
      CacheMatchResult& result = mOpResult.get_CacheMatchResult();
      MOZ_DIAGNOSTIC_ASSERT(result.responseOrVoid().type() ==
                            CacheResponseOrVoid::Tvoid_t);
      result.responseOrVoid() = aSavedResponse.mValue;
      SerializeResponseBody(aSavedResponse, aStreamList,
                            &result.responseOrVoid().get_CacheResponse());
      break;
    }
    case CacheOpResult::TCacheMatchAllResult: {
      CacheMatchAllResult& result = mOpResult.get_CacheMatchAllResult();
      // Ensure that we don't realloc the array since this can result
      // in our AutoIPCStream objects to reference the wrong memory
      // location.  This should never happen and is a UAF if it does.
      // Therefore make this a release assertion.
      MOZ_RELEASE_ASSERT(result.responseList().Length() <
                         result.responseList().Capacity());
      result.responseList().AppendElement(aSavedResponse.mValue);
      SerializeResponseBody(aSavedResponse, aStreamList,
                            &result.responseList().LastElement());
      break;
    }
    case CacheOpResult::TStorageMatchResult: {
      StorageMatchResult& result = mOpResult.get_StorageMatchResult();
      MOZ_DIAGNOSTIC_ASSERT(result.responseOrVoid().type() ==
                            CacheResponseOrVoid::Tvoid_t);
      result.responseOrVoid() = aSavedResponse.mValue;
      SerializeResponseBody(aSavedResponse, aStreamList,
                            &result.responseOrVoid().get_CacheResponse());
      break;
    }
    default:
      MOZ_CRASH("Cache result type cannot handle returning a Response!");
  }
}

void AutoParentOpResult::Add(const SavedRequest& aSavedRequest,
                             StreamList* aStreamList) {
  MOZ_DIAGNOSTIC_ASSERT(!mSent);

  switch (mOpResult.type()) {
    case CacheOpResult::TCacheKeysResult: {
      CacheKeysResult& result = mOpResult.get_CacheKeysResult();
      // Ensure that we don't realloc the array since this can result
      // in our AutoIPCStream objects to reference the wrong memory
      // location.  This should never happen and is a UAF if it does.
      // Therefore make this a release assertion.
      MOZ_RELEASE_ASSERT(result.requestList().Length() <
                         result.requestList().Capacity());
      result.requestList().AppendElement(aSavedRequest.mValue);
      CacheRequest& request = result.requestList().LastElement();

      if (!aSavedRequest.mHasBodyId) {
        request.body() = void_t();
        break;
      }

      request.body() = CacheReadStream();
      SerializeReadStream(aSavedRequest.mBodyId, aStreamList,
                          &request.body().get_CacheReadStream());
      break;
    }
    default:
      MOZ_CRASH("Cache result type cannot handle returning a Request!");
  }
}

const CacheOpResult& AutoParentOpResult::SendAsOpResult() {
  MOZ_DIAGNOSTIC_ASSERT(!mSent);
  mSent = true;
  for (UniquePtr<AutoIPCStream>& autoStream : mStreamCleanupList) {
    autoStream->TakeOptionalValue();
  }
  return mOpResult;
}

void AutoParentOpResult::SerializeResponseBody(
    const SavedResponse& aSavedResponse, StreamList* aStreamList,
    CacheResponse* aResponseOut) {
  MOZ_DIAGNOSTIC_ASSERT(aResponseOut);

  if (!aSavedResponse.mHasBodyId) {
    aResponseOut->body() = void_t();
    return;
  }

  aResponseOut->body() = CacheReadStream();
  SerializeReadStream(aSavedResponse.mBodyId, aStreamList,
                      &aResponseOut->body().get_CacheReadStream());
}

void AutoParentOpResult::SerializeReadStream(const nsID& aId,
                                             StreamList* aStreamList,
                                             CacheReadStream* aReadStreamOut) {
  MOZ_DIAGNOSTIC_ASSERT(aStreamList);
  MOZ_DIAGNOSTIC_ASSERT(aReadStreamOut);
  MOZ_DIAGNOSTIC_ASSERT(!mSent);

  nsCOMPtr<nsIInputStream> stream = aStreamList->Extract(aId);

  if (!mStreamControl) {
    mStreamControl = static_cast<CacheStreamControlParent*>(
        mManager->SendPCacheStreamControlConstructor(
            new CacheStreamControlParent()));

    // If this failed, then the child process is gone.  Warn and allow actor
    // cleanup to proceed as normal.
    if (!mStreamControl) {
      NS_WARNING("Cache failed to create stream control actor.");
      return;
    }
  }

  aStreamList->SetStreamControl(mStreamControl);

  RefPtr<ReadStream> readStream =
      ReadStream::Create(mStreamControl, aId, stream);
  ErrorResult rv;
  readStream->Serialize(aReadStreamOut, mStreamCleanupList, rv);
  MOZ_DIAGNOSTIC_ASSERT(!rv.Failed());
}

}  // namespace cache
}  // namespace dom
}  // namespace mozilla