DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (5350524bb654)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef frontend_SyntaxParseHandler_h
#define frontend_SyntaxParseHandler_h

#include "mozilla/Attributes.h"

#include "frontend/ParseNode.h"
#include "frontend/TokenStream.h"

namespace js {
namespace frontend {

template <typename ParseHandler>
class Parser;

// Parse handler used when processing the syntax in a block of code, to generate
// the minimal information which is required to detect syntax errors and allow
// bytecode to be emitted for outer functions.
//
// When parsing, we start at the top level with a full parse, and when possible
// only check the syntax for inner functions, so that they can be lazily parsed
// into bytecode when/if they first run. Checking the syntax of a function is
// several times faster than doing a full parse/emit, and lazy parsing improves
// both performance and memory usage significantly when pages contain large
// amounts of code that never executes (which happens often).
class SyntaxParseHandler
{
    // Remember the last encountered name or string literal during syntax parses.
    JSAtom* lastAtom;
    TokenPos lastStringPos;
    TokenStream& tokenStream;

  public:
    enum Node {
        NodeFailure = 0,
        NodeGeneric,
        NodeGetProp,
        NodeStringExprStatement,
        NodeReturn,
        NodeBreak,
        NodeThrow,
        NodeEmptyStatement,

        NodeVarDeclaration,
        NodeLexicalDeclaration,

        NodeFunctionDefinition,

        // This is needed for proper assignment-target handling.  ES6 formally
        // requires function calls *not* pass IsValidSimpleAssignmentTarget,
        // but at last check there were still sites with |f() = 5| and similar
        // in code not actually executed (or at least not executed enough to be
        // noticed).
        NodeFunctionCall,

        // Nodes representing *parenthesized* IsValidSimpleAssignmentTarget
        // nodes.  We can't simply treat all such parenthesized nodes
        // identically, because in assignment and increment/decrement contexts
        // ES6 says that parentheses constitute a syntax error.
        //
        //   var obj = {};
        //   var val;
        //   (val) = 3; (obj.prop) = 4;       // okay per ES5's little mind
        //   [(a)] = [3]; [(obj.prop)] = [4]; // invalid ES6 syntax
        //   // ...and so on for the other IsValidSimpleAssignmentTarget nodes
        //
        // We don't know in advance in the current parser when we're parsing
        // in a place where name parenthesization changes meaning, so we must
        // have multiple node values for these cases.
        NodeParenthesizedArgumentsName,
        NodeParenthesizedEvalName,
        NodeParenthesizedName,

        NodeDottedProperty,
        NodeElement,

        // Destructuring target patterns can't be parenthesized: |([a]) = [3];|
        // must be a syntax error.  (We can't use NodeGeneric instead of these
        // because that would trigger invalid-left-hand-side ReferenceError
        // semantics when SyntaxError semantics are desired.)
        NodeParenthesizedArray,
        NodeParenthesizedObject,

        // In rare cases a parenthesized |node| doesn't have the same semantics
        // as |node|.  Each such node has a special Node value, and we use a
        // different Node value to represent the parenthesized form.  See also
        // is{Unp,P}arenthesized*(Node), parenthesize(Node), and the various
        // functions that deal in NodeUnparenthesized* below.

        // Nodes representing unparenthesized names.
        NodeUnparenthesizedArgumentsName,
        NodeUnparenthesizedAsyncName,
        NodeUnparenthesizedEvalName,
        NodeUnparenthesizedName,

        // Valuable for recognizing potential destructuring patterns.
        NodeUnparenthesizedArray,
        NodeUnparenthesizedObject,

        // The directive prologue at the start of a FunctionBody or ScriptBody
        // is the longest sequence (possibly empty) of string literal
        // expression statements at the start of a function.  Thus we need this
        // to treat |"use strict";| as a possible Use Strict Directive and
        // |("use strict");| as a useless statement.
        NodeUnparenthesizedString,

        // Legacy generator expressions of the form |(expr for (...))| and
        // array comprehensions of the form |[expr for (...)]|) don't permit
        // |expr| to be a comma expression.  Thus we need this to treat
        // |(a(), b for (x in []))| as a syntax error and
        // |((a(), b) for (x in []))| as a generator that calls |a| and then
        // yields |b| each time it's resumed.
        NodeUnparenthesizedCommaExpr,

        // Assignment expressions in condition contexts could be typos for
        // equality checks.  (Think |if (x = y)| versus |if (x == y)|.)  Thus
        // we need this to treat |if (x = y)| as a possible typo and
        // |if ((x = y))| as a deliberate assignment within a condition.
        //
        // (Technically this isn't needed, as these are *only* extraWarnings
        // warnings, and parsing with that option disables syntax parsing.  But
        // it seems best to be consistent, and perhaps the syntax parser will
        // eventually enforce extraWarnings and will require this then.)
        NodeUnparenthesizedAssignment,

        // This node is necessary to determine if the base operand in an
        // exponentiation operation is an unparenthesized unary expression.
        // We want to reject |-2 ** 3|, but still need to allow |(-2) ** 3|.
        NodeUnparenthesizedUnary,

        // This node is necessary to determine if the LHS of a property access is
        // super related.
        NodeSuperBase
    };

    bool isPropertyAccess(Node node) {
        return node == NodeDottedProperty || node == NodeElement;
    }

    bool isFunctionCall(Node node) {
        // Note: super() is a special form, *not* a function call.
        return node == NodeFunctionCall;
    }

    static bool isUnparenthesizedDestructuringPattern(Node node) {
        return node == NodeUnparenthesizedArray || node == NodeUnparenthesizedObject;
    }

    static bool isParenthesizedDestructuringPattern(Node node) {
        // Technically this isn't a destructuring target at all -- the grammar
        // doesn't treat it as such.  But we need to know when this happens to
        // consider it a SyntaxError rather than an invalid-left-hand-side
        // ReferenceError.
        return node == NodeParenthesizedArray || node == NodeParenthesizedObject;
    }

    static bool isDestructuringPatternAnyParentheses(Node node) {
        return isUnparenthesizedDestructuringPattern(node) ||
                isParenthesizedDestructuringPattern(node);
    }

  public:
    SyntaxParseHandler(ExclusiveContext* cx, LifoAlloc& alloc,
                       TokenStream& tokenStream, Parser<SyntaxParseHandler>* syntaxParser,
                       LazyScript* lazyOuterFunction)
      : lastAtom(nullptr),
        tokenStream(tokenStream)
    {}

    static Node null() { return NodeFailure; }

    void prepareNodeForMutation(Node node) {}
    void freeTree(Node node) {}

    void trace(JSTracer* trc) {}

    Node newName(PropertyName* name, const TokenPos& pos, ExclusiveContext* cx) {
        lastAtom = name;
        if (name == cx->names().arguments)
            return NodeUnparenthesizedArgumentsName;
        if (name == cx->names().async)
            return NodeUnparenthesizedAsyncName;
        if (name == cx->names().eval)
            return NodeUnparenthesizedEvalName;
        return NodeUnparenthesizedName;
    }

    Node newComputedName(Node expr, uint32_t start, uint32_t end) {
        return NodeGeneric;
    }

    Node newObjectLiteralPropertyName(JSAtom* atom, const TokenPos& pos) {
        return NodeUnparenthesizedName;
    }

    Node newNumber(double value, DecimalPoint decimalPoint, const TokenPos& pos) { return NodeGeneric; }
    Node newBooleanLiteral(bool cond, const TokenPos& pos) { return NodeGeneric; }

    Node newStringLiteral(JSAtom* atom, const TokenPos& pos) {
        lastAtom = atom;
        lastStringPos = pos;
        return NodeUnparenthesizedString;
    }

    Node newTemplateStringLiteral(JSAtom* atom, const TokenPos& pos) {
        return NodeGeneric;
    }

    Node newCallSiteObject(uint32_t begin) {
        return NodeGeneric;
    }

    void addToCallSiteObject(Node callSiteObj, Node rawNode, Node cookedNode) {}

    Node newThisLiteral(const TokenPos& pos, Node thisName) { return NodeGeneric; }
    Node newNullLiteral(const TokenPos& pos) { return NodeGeneric; }

    template <class Boxer>
    Node newRegExp(RegExpObject* reobj, const TokenPos& pos, Boxer& boxer) { return NodeGeneric; }

    Node newConditional(Node cond, Node thenExpr, Node elseExpr) { return NodeGeneric; }

    Node newElision() { return NodeGeneric; }

    Node newDelete(uint32_t begin, Node expr) {
        return NodeUnparenthesizedUnary;
    }

    Node newTypeof(uint32_t begin, Node kid) {
        return NodeUnparenthesizedUnary;
    }

    Node newUnary(ParseNodeKind kind, JSOp op, uint32_t begin, Node kid) {
        return NodeUnparenthesizedUnary;
    }

    Node newUpdate(ParseNodeKind kind, uint32_t begin, Node kid) {
        return NodeGeneric;
    }

    Node newSpread(uint32_t begin, Node kid) {
        return NodeGeneric;
    }

    Node newArrayPush(uint32_t begin, Node kid) {
        return NodeGeneric;
    }

    Node newBinary(ParseNodeKind kind, JSOp op = JSOP_NOP) { return NodeGeneric; }
    Node newBinary(ParseNodeKind kind, Node left, JSOp op = JSOP_NOP) { return NodeGeneric; }
    Node newBinary(ParseNodeKind kind, Node left, Node right, JSOp op = JSOP_NOP) {
        return NodeGeneric;
    }
    Node appendOrCreateList(ParseNodeKind kind, Node left, Node right,
                            ParseContext* pc, JSOp op = JSOP_NOP) {
        return NodeGeneric;
    }

    Node newTernary(ParseNodeKind kind, Node first, Node second, Node third, JSOp op = JSOP_NOP) {
        return NodeGeneric;
    }

    // Expressions

    Node newArrayComprehension(Node body, const TokenPos& pos) { return NodeGeneric; }
    Node newArrayLiteral(uint32_t begin) { return NodeUnparenthesizedArray; }
    MOZ_MUST_USE bool addElision(Node literal, const TokenPos& pos) { return true; }
    MOZ_MUST_USE bool addSpreadElement(Node literal, uint32_t begin, Node inner) { return true; }
    void addArrayElement(Node literal, Node element) { }

    Node newCall() { return NodeFunctionCall; }
    Node newTaggedTemplate() { return NodeGeneric; }

    Node newObjectLiteral(uint32_t begin) { return NodeUnparenthesizedObject; }
    Node newClassMethodList(uint32_t begin) { return NodeGeneric; }
    Node newClassNames(Node outer, Node inner, const TokenPos& pos) { return NodeGeneric; }
    Node newClass(Node name, Node heritage, Node methodBlock) { return NodeGeneric; }

    Node newNewTarget(Node newHolder, Node targetHolder) { return NodeGeneric; }
    Node newPosHolder(const TokenPos& pos) { return NodeGeneric; }
    Node newSuperBase(Node thisName, const TokenPos& pos) { return NodeSuperBase; }

    MOZ_MUST_USE bool addPrototypeMutation(Node literal, uint32_t begin, Node expr) { return true; }
    MOZ_MUST_USE bool addPropertyDefinition(Node literal, Node name, Node expr) { return true; }
    MOZ_MUST_USE bool addShorthand(Node literal, Node name, Node expr) { return true; }
    MOZ_MUST_USE bool addObjectMethodDefinition(Node literal, Node name, Node fn, JSOp op) { return true; }
    MOZ_MUST_USE bool addClassMethodDefinition(Node literal, Node name, Node fn, JSOp op, bool isStatic) { return true; }
    Node newYieldExpression(uint32_t begin, Node value, Node gen) { return NodeGeneric; }
    Node newYieldStarExpression(uint32_t begin, Node value, Node gen) { return NodeGeneric; }
    Node newAwaitExpression(uint32_t begin, Node value, Node gen) { return NodeGeneric; }

    // Statements

    Node newStatementList(const TokenPos& pos) { return NodeGeneric; }
    void addStatementToList(Node list, Node stmt) {}
    void addCaseStatementToList(Node list, Node stmt) {}
    MOZ_MUST_USE bool prependInitialYield(Node stmtList, Node gen) { return true; }
    Node newEmptyStatement(const TokenPos& pos) { return NodeEmptyStatement; }

    Node newSetThis(Node thisName, Node value) { return value; }

    Node newExprStatement(Node expr, uint32_t end) {
        return expr == NodeUnparenthesizedString ? NodeStringExprStatement : NodeGeneric;
    }

    Node newIfStatement(uint32_t begin, Node cond, Node then, Node else_) { return NodeGeneric; }
    Node newDoWhileStatement(Node body, Node cond, const TokenPos& pos) { return NodeGeneric; }
    Node newWhileStatement(uint32_t begin, Node cond, Node body) { return NodeGeneric; }
    Node newSwitchStatement(uint32_t begin, Node discriminant, Node caseList) { return NodeGeneric; }
    Node newCaseOrDefault(uint32_t begin, Node expr, Node body) { return NodeGeneric; }
    Node newContinueStatement(PropertyName* label, const TokenPos& pos) { return NodeGeneric; }
    Node newBreakStatement(PropertyName* label, const TokenPos& pos) { return NodeBreak; }
    Node newReturnStatement(Node expr, const TokenPos& pos) { return NodeReturn; }
    Node newWithStatement(uint32_t begin, Node expr, Node body) { return NodeGeneric; }

    Node newLabeledStatement(PropertyName* label, Node stmt, uint32_t begin) {
        return NodeGeneric;
    }

    Node newThrowStatement(Node expr, const TokenPos& pos) { return NodeThrow; }
    Node newTryStatement(uint32_t begin, Node body, Node catchList, Node finallyBlock) {
        return NodeGeneric;
    }
    Node newDebuggerStatement(const TokenPos& pos) { return NodeGeneric; }

    Node newPropertyAccess(Node pn, PropertyName* name, uint32_t end) {
        lastAtom = name;
        return NodeDottedProperty;
    }

    Node newPropertyByValue(Node pn, Node kid, uint32_t end) { return NodeElement; }

    MOZ_MUST_USE bool addCatchBlock(Node catchList, Node letBlock, Node catchName,
                                    Node catchGuard, Node catchBody) { return true; }

    MOZ_MUST_USE bool setLastFunctionFormalParameterDefault(Node funcpn, Node pn) { return true; }
    Node newFunctionDefinition() { return NodeFunctionDefinition; }
    bool setComprehensionLambdaBody(Node pn, Node body) { return true; }
    void setFunctionFormalParametersAndBody(Node pn, Node kid) {}
    void setFunctionBody(Node pn, Node kid) {}
    void setFunctionBox(Node pn, FunctionBox* funbox) {}
    void addFunctionFormalParameter(Node pn, Node argpn) {}

    Node newForStatement(uint32_t begin, Node forHead, Node body, unsigned iflags) {
        return NodeGeneric;
    }

    Node newComprehensionFor(uint32_t begin, Node forHead, Node body) {
        return NodeGeneric;
    }

    Node newComprehensionBinding(Node kid) {
        // Careful: we're asking this well after the name was parsed, so the
        // value returned may not correspond to |kid|'s actual name.  But it
        // *will* be truthy iff |kid| was a name, so we're safe.
        MOZ_ASSERT(isUnparenthesizedName(kid));
        return NodeGeneric;
    }

    Node newForHead(Node init, Node test, Node update, const TokenPos& pos) {
        return NodeGeneric;
    }

    Node newForInOrOfHead(ParseNodeKind kind, Node target, Node iteratedExpr, const TokenPos& pos) {
        return NodeGeneric;
    }

    MOZ_MUST_USE bool finishInitializerAssignment(Node pn, Node init) { return true; }

    void setBeginPosition(Node pn, Node oth) {}
    void setBeginPosition(Node pn, uint32_t begin) {}

    void setEndPosition(Node pn, Node oth) {}
    void setEndPosition(Node pn, uint32_t end) {}

    void setPosition(Node pn, const TokenPos& pos) {}
    TokenPos getPosition(Node pn) {
        return tokenStream.currentToken().pos;
    }

    Node newList(ParseNodeKind kind, JSOp op = JSOP_NOP) {
        MOZ_ASSERT(kind != PNK_VAR);
        MOZ_ASSERT(kind != PNK_LET);
        MOZ_ASSERT(kind != PNK_CONST);
        return NodeGeneric;
    }
    Node newList(ParseNodeKind kind, uint32_t begin, JSOp op = JSOP_NOP) {
        return newList(kind, op);
    }
    Node newList(ParseNodeKind kind, Node kid, JSOp op = JSOP_NOP) {
        return newList(kind, op);
    }

    Node newDeclarationList(ParseNodeKind kind, JSOp op = JSOP_NOP) {
        if (kind == PNK_VAR)
            return NodeVarDeclaration;
        MOZ_ASSERT(kind == PNK_LET || kind == PNK_CONST);
        return NodeLexicalDeclaration;
    }
    Node newDeclarationList(ParseNodeKind kind, Node kid, JSOp op = JSOP_NOP) {
        return newDeclarationList(kind, op);
    }

    bool isDeclarationList(Node node) {
        return node == NodeVarDeclaration || node == NodeLexicalDeclaration;
    }

    Node singleBindingFromDeclaration(Node decl) {
        MOZ_ASSERT(isDeclarationList(decl));

        // This is, unfortunately, very dodgy.  Obviously NodeVarDeclaration
        // and NodeLexicalDeclaration can store no info on the arbitrary
        // number of bindings it could contain.
        //
        // But this method is called only for cloning for-in/of declarations
        // as initialization targets.  That context simplifies matters.  If the
        // binding is a single name, it'll always syntax-parse (or it would
        // already have been rejected as assigning/binding a forbidden name).
        // Otherwise the binding is a destructuring pattern.  But syntax
        // parsing would *already* have aborted when it saw a destructuring
        // pattern.  So we can just say any old thing here, because the only
        // time we'll be wrong is a case that syntax parsing has already
        // rejected.  Use NodeUnparenthesizedName so the SyntaxParseHandler
        // Parser::cloneLeftHandSide can assert it sees only this.
        return NodeUnparenthesizedName;
    }

    Node newCatchList() {
        return newList(PNK_CATCHLIST, JSOP_NOP);
    }

    Node newCommaExpressionList(Node kid) {
        return NodeUnparenthesizedCommaExpr;
    }

    void addList(Node list, Node kid) {
        MOZ_ASSERT(list == NodeGeneric ||
                   list == NodeUnparenthesizedArray ||
                   list == NodeUnparenthesizedObject ||
                   list == NodeUnparenthesizedCommaExpr ||
                   list == NodeVarDeclaration ||
                   list == NodeLexicalDeclaration ||
                   list == NodeFunctionCall);
    }

    Node newAssignment(ParseNodeKind kind, Node lhs, Node rhs, JSOp op) {
        if (kind == PNK_ASSIGN)
            return NodeUnparenthesizedAssignment;
        return newBinary(kind, lhs, rhs, op);
    }

    bool isUnparenthesizedCommaExpression(Node node) {
        return node == NodeUnparenthesizedCommaExpr;
    }

    bool isUnparenthesizedAssignment(Node node) {
        return node == NodeUnparenthesizedAssignment;
    }

    bool isUnparenthesizedUnaryExpression(Node node) {
        return node == NodeUnparenthesizedUnary;
    }

    bool isReturnStatement(Node node) {
        return node == NodeReturn;
    }

    bool isStatementPermittedAfterReturnStatement(Node pn) {
        return pn == NodeFunctionDefinition || pn == NodeVarDeclaration ||
               pn == NodeBreak ||
               pn == NodeThrow ||
               pn == NodeEmptyStatement;
    }

    bool isSuperBase(Node pn) {
        return pn == NodeSuperBase;
    }

    void setOp(Node pn, JSOp op) {}
    void setListFlag(Node pn, unsigned flag) {}
    MOZ_MUST_USE Node parenthesize(Node node) {
        // A number of nodes have different behavior upon parenthesization, but
        // only in some circumstances.  Convert these nodes to special
        // parenthesized forms.
        if (node == NodeUnparenthesizedArgumentsName)
            return NodeParenthesizedArgumentsName;
        if (node == NodeUnparenthesizedEvalName)
            return NodeParenthesizedEvalName;
        if (node == NodeUnparenthesizedName || node == NodeUnparenthesizedAsyncName)
            return NodeParenthesizedName;

        if (node == NodeUnparenthesizedArray)
            return NodeParenthesizedArray;
        if (node == NodeUnparenthesizedObject)
            return NodeParenthesizedObject;

        // Other nodes need not be recognizable after parenthesization; convert
        // them to a generic node.
        if (node == NodeUnparenthesizedString ||
            node == NodeUnparenthesizedCommaExpr ||
            node == NodeUnparenthesizedAssignment ||
            node == NodeUnparenthesizedUnary)
        {
            return NodeGeneric;
        }

        // In all other cases, the parenthesized form of |node| is equivalent
        // to the unparenthesized form: return |node| unchanged.
        return node;
    }
    MOZ_MUST_USE Node setLikelyIIFE(Node pn) {
        return pn; // Remain in syntax-parse mode.
    }
    void setPrologue(Node pn) {}

    bool isConstant(Node pn) { return false; }

    bool isUnparenthesizedName(Node node) {
        return node == NodeUnparenthesizedArgumentsName ||
               node == NodeUnparenthesizedAsyncName ||
               node == NodeUnparenthesizedEvalName ||
               node == NodeUnparenthesizedName;
    }

    bool isNameAnyParentheses(Node node) {
        if (isUnparenthesizedName(node))
            return true;
        return node == NodeParenthesizedArgumentsName ||
               node == NodeParenthesizedEvalName ||
               node == NodeParenthesizedName;
    }

    bool nameIsEvalAnyParentheses(Node node, ExclusiveContext* cx) {
        MOZ_ASSERT(isNameAnyParentheses(node),
                   "must only call this function on known names");
        return node == NodeUnparenthesizedEvalName || node == NodeParenthesizedEvalName;
    }

    const char* nameIsArgumentsEvalAnyParentheses(Node node, ExclusiveContext* cx) {
        MOZ_ASSERT(isNameAnyParentheses(node),
                   "must only call this method on known names");

        if (nameIsEvalAnyParentheses(node, cx))
            return js_eval_str;
        if (node == NodeUnparenthesizedArgumentsName || node == NodeParenthesizedArgumentsName)
            return js_arguments_str;
        return nullptr;
    }

    bool nameIsUnparenthesizedAsync(Node node, ExclusiveContext* cx) {
        MOZ_ASSERT(isNameAnyParentheses(node),
                   "must only call this function on known names");
        return node == NodeUnparenthesizedAsyncName;
    }

    PropertyName* maybeDottedProperty(Node node) {
        // Note: |super.apply(...)| is a special form that calls an "apply"
        // method retrieved from one value, but using a *different* value as
        // |this|.  It's not really eligible for the funapply/funcall
        // optimizations as they're currently implemented (assuming a single
        // value is used for both retrieval and |this|).
        if (node != NodeDottedProperty)
            return nullptr;
        return lastAtom->asPropertyName();
    }

    JSAtom* isStringExprStatement(Node pn, TokenPos* pos) {
        if (pn == NodeStringExprStatement) {
            *pos = lastStringPos;
            return lastAtom;
        }
        return nullptr;
    }

    bool canSkipLazyInnerFunctions() {
        return false;
    }
    bool canSkipLazyClosedOverBindings() {
        return false;
    }
    JSAtom* nextLazyClosedOverBinding() {
        MOZ_CRASH("SyntaxParseHandler::canSkipLazyClosedOverBindings must return false");
    }

    void adjustGetToSet(Node node) {}

    void disableSyntaxParser() {
    }
};

} // namespace frontend
} // namespace js

#endif /* frontend_SyntaxParseHandler_h */