DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (dcc6d7a0dc00)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include <errno.h>
#include <stdio.h>

#include "nscore.h"
#include "nsStringGlue.h"
#include "private/pprio.h"
#include "mozilla/Assertions.h"
#include "mozilla/FileUtils.h"

#if defined(XP_MACOSX)
#include <fcntl.h>
#include <unistd.h>
#include <mach/machine.h>
#include <mach-o/fat.h>
#include <mach-o/loader.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <limits.h>
#elif defined(XP_UNIX)
#include <fcntl.h>
#include <unistd.h>
#if defined(LINUX)
#include <elf.h>
#endif
#include <sys/types.h>
#include <sys/stat.h>
#elif defined(XP_WIN)
#include <windows.h>
#endif

// Functions that are not to be used in standalone glue must be implemented
// within this #if block
#if !defined(XPCOM_GLUE)

bool
mozilla::fallocate(PRFileDesc* aFD, int64_t aLength)
{
#if defined(HAVE_POSIX_FALLOCATE)
  return posix_fallocate(PR_FileDesc2NativeHandle(aFD), 0, aLength) == 0;
#elif defined(XP_WIN)
  int64_t oldpos = PR_Seek64(aFD, 0, PR_SEEK_CUR);
  if (oldpos == -1) {
    return false;
  }

  if (PR_Seek64(aFD, aLength, PR_SEEK_SET) != aLength) {
    return false;
  }

  bool retval = (0 != SetEndOfFile((HANDLE)PR_FileDesc2NativeHandle(aFD)));

  PR_Seek64(aFD, oldpos, PR_SEEK_SET);
  return retval;
#elif defined(XP_MACOSX)
  int fd = PR_FileDesc2NativeHandle(aFD);
  fstore_t store = {F_ALLOCATECONTIG, F_PEOFPOSMODE, 0, aLength};
  // Try to get a continous chunk of disk space
  int ret = fcntl(fd, F_PREALLOCATE, &store);
  if (ret == -1) {
    // OK, perhaps we are too fragmented, allocate non-continuous
    store.fst_flags = F_ALLOCATEALL;
    ret = fcntl(fd, F_PREALLOCATE, &store);
    if (ret == -1) {
      return false;
    }
  }
  return ftruncate(fd, aLength) == 0;
#elif defined(XP_UNIX)
  // The following is copied from fcntlSizeHint in sqlite
  /* If the OS does not have posix_fallocate(), fake it. First use
  ** ftruncate() to set the file size, then write a single byte to
  ** the last byte in each block within the extended region. This
  ** is the same technique used by glibc to implement posix_fallocate()
  ** on systems that do not have a real fallocate() system call.
  */
  int64_t oldpos = PR_Seek64(aFD, 0, PR_SEEK_CUR);
  if (oldpos == -1) {
    return false;
  }

  struct stat buf;
  int fd = PR_FileDesc2NativeHandle(aFD);
  if (fstat(fd, &buf)) {
    return false;
  }

  if (buf.st_size >= aLength) {
    return false;
  }

  const int nBlk = buf.st_blksize;

  if (!nBlk) {
    return false;
  }

  if (ftruncate(fd, aLength)) {
    return false;
  }

  int nWrite; // Return value from write()
  int64_t iWrite = ((buf.st_size + 2 * nBlk - 1) / nBlk) * nBlk - 1; // Next offset to write to
  while (iWrite < aLength) {
    nWrite = 0;
    if (PR_Seek64(aFD, iWrite, PR_SEEK_SET) == iWrite) {
      nWrite = PR_Write(aFD, "", 1);
    }
    if (nWrite != 1) {
      break;
    }
    iWrite += nBlk;
  }

  PR_Seek64(aFD, oldpos, PR_SEEK_SET);
  return nWrite == 1;
#endif
  return false;
}

#ifdef ReadSysFile_PRESENT

bool
mozilla::ReadSysFile(
  const char* aFilename,
  char* aBuf,
  size_t aBufSize)
{
  int fd = MOZ_TEMP_FAILURE_RETRY(open(aFilename, O_RDONLY));
  if (fd < 0) {
    return false;
  }
  ScopedClose autoClose(fd);
  if (aBufSize == 0) {
    return true;
  }
  ssize_t bytesRead;
  size_t offset = 0;
  do {
    bytesRead = MOZ_TEMP_FAILURE_RETRY(read(fd, aBuf + offset,
                                            aBufSize - offset));
    if (bytesRead == -1) {
      return false;
    }
    offset += bytesRead;
  } while (bytesRead > 0 && offset < aBufSize);
  MOZ_ASSERT(offset <= aBufSize);
  if (offset > 0 && aBuf[offset - 1] == '\n') {
    offset--;
  }
  if (offset == aBufSize) {
    MOZ_ASSERT(offset > 0);
    offset--;
  }
  aBuf[offset] = '\0';
  return true;
}

bool
mozilla::ReadSysFile(
  const char* aFilename,
  int* aVal)
{
  char valBuf[32];
  if (!ReadSysFile(aFilename, valBuf, sizeof(valBuf))) {
    return false;
  }
  return sscanf(valBuf, "%d", aVal) == 1;
}

bool
mozilla::ReadSysFile(
  const char* aFilename,
  bool* aVal)
{
  int v;
  if (!ReadSysFile(aFilename, &v)) {
    return false;
  }
  *aVal = (v != 0);
  return true;
}

#endif /* ReadSysFile_PRESENT */

void
mozilla::ReadAheadLib(nsIFile* aFile)
{
#if defined(XP_WIN)
  nsAutoString path;
  if (!aFile || NS_FAILED(aFile->GetPath(path))) {
    return;
  }
  ReadAheadLib(path.get());
#elif defined(LINUX) && !defined(ANDROID) || defined(XP_MACOSX)
  nsAutoCString nativePath;
  if (!aFile || NS_FAILED(aFile->GetNativePath(nativePath))) {
    return;
  }
  ReadAheadLib(nativePath.get());
#endif
}

void
mozilla::ReadAheadFile(nsIFile* aFile, const size_t aOffset,
                       const size_t aCount, mozilla::filedesc_t* aOutFd)
{
#if defined(XP_WIN)
  nsAutoString path;
  if (!aFile || NS_FAILED(aFile->GetPath(path))) {
    return;
  }
  ReadAheadFile(path.get(), aOffset, aCount, aOutFd);
#elif defined(LINUX) && !defined(ANDROID) || defined(XP_MACOSX)
  nsAutoCString nativePath;
  if (!aFile || NS_FAILED(aFile->GetNativePath(nativePath))) {
    return;
  }
  ReadAheadFile(nativePath.get(), aOffset, aCount, aOutFd);
#endif
}

#endif // !defined(XPCOM_GLUE)

#if defined(LINUX) && !defined(ANDROID)

static const unsigned int bufsize = 4096;

#ifdef __LP64__
typedef Elf64_Ehdr Elf_Ehdr;
typedef Elf64_Phdr Elf_Phdr;
static const unsigned char ELFCLASS = ELFCLASS64;
typedef Elf64_Off Elf_Off;
#else
typedef Elf32_Ehdr Elf_Ehdr;
typedef Elf32_Phdr Elf_Phdr;
static const unsigned char ELFCLASS = ELFCLASS32;
typedef Elf32_Off Elf_Off;
#endif

#elif defined(XP_MACOSX)

#if defined(__i386__)
static const uint32_t CPU_TYPE = CPU_TYPE_X86;
#elif defined(__x86_64__)
static const uint32_t CPU_TYPE = CPU_TYPE_X86_64;
#elif defined(__ppc__)
static const uint32_t CPU_TYPE = CPU_TYPE_POWERPC;
#elif defined(__ppc64__)
static const uint32_t CPU_TYPE = CPU_TYPE_POWERPC64;
#else
#error Unsupported CPU type
#endif

#ifdef __LP64__
#undef LC_SEGMENT
#define LC_SEGMENT LC_SEGMENT_64
#undef MH_MAGIC
#define MH_MAGIC MH_MAGIC_64
#define cpu_mach_header mach_header_64
#define segment_command segment_command_64
#else
#define cpu_mach_header mach_header
#endif

class ScopedMMap
{
public:
  explicit ScopedMMap(const char* aFilePath)
    : buf(nullptr)
  {
    fd = open(aFilePath, O_RDONLY);
    if (fd < 0) {
      return;
    }
    struct stat st;
    if (fstat(fd, &st) < 0) {
      return;
    }
    size = st.st_size;
    buf = (char*)mmap(nullptr, size, PROT_READ, MAP_PRIVATE, fd, 0);
  }
  ~ScopedMMap()
  {
    if (buf) {
      munmap(buf, size);
    }
    if (fd >= 0) {
      close(fd);
    }
  }
  operator char*() { return buf; }
  int getFd() { return fd; }
private:
  int fd;
  char* buf;
  size_t size;
};
#endif

void
mozilla::ReadAhead(mozilla::filedesc_t aFd, const size_t aOffset,
                   const size_t aCount)
{
#if defined(XP_WIN)

  LARGE_INTEGER fpOriginal;
  LARGE_INTEGER fpOffset;
#if defined(HAVE_LONG_LONG)
  fpOffset.QuadPart = 0;
#else
  fpOffset.u.LowPart = 0;
  fpOffset.u.HighPart = 0;
#endif

  // Get the current file pointer so that we can restore it. This isn't
  // really necessary other than to provide the same semantics regarding the
  // file pointer that other platforms do
  if (!SetFilePointerEx(aFd, fpOffset, &fpOriginal, FILE_CURRENT)) {
    return;
  }

  if (aOffset) {
#if defined(HAVE_LONG_LONG)
    fpOffset.QuadPart = static_cast<LONGLONG>(aOffset);
#else
    fpOffset.u.LowPart = aOffset;
    fpOffset.u.HighPart = 0;
#endif

    if (!SetFilePointerEx(aFd, fpOffset, nullptr, FILE_BEGIN)) {
      return;
    }
  }

  char buf[64 * 1024];
  size_t totalBytesRead = 0;
  DWORD dwBytesRead;
  // Do dummy reads to trigger kernel-side readhead via FILE_FLAG_SEQUENTIAL_SCAN.
  // Abort when underfilling because during testing the buffers are read fully
  // A buffer that's not keeping up would imply that readahead isn't working right
  while (totalBytesRead < aCount &&
         ReadFile(aFd, buf, sizeof(buf), &dwBytesRead, nullptr) &&
         dwBytesRead == sizeof(buf)) {
    totalBytesRead += dwBytesRead;
  }

  // Restore the file pointer
  SetFilePointerEx(aFd, fpOriginal, nullptr, FILE_BEGIN);

#elif defined(LINUX) && !defined(ANDROID)

  readahead(aFd, aOffset, aCount);

#elif defined(XP_MACOSX)

  struct radvisory ra;
  ra.ra_offset = aOffset;
  ra.ra_count = aCount;
  // The F_RDADVISE fcntl is equivalent to Linux' readahead() system call.
  fcntl(aFd, F_RDADVISE, &ra);

#endif
}

void
mozilla::ReadAheadLib(mozilla::pathstr_t aFilePath)
{
  if (!aFilePath) {
    return;
  }
#if defined(XP_WIN)
  ReadAheadFile(aFilePath);
#elif defined(LINUX) && !defined(ANDROID)
  int fd = open(aFilePath, O_RDONLY);
  if (fd < 0) {
    return;
  }

  union
  {
    char buf[bufsize];
    Elf_Ehdr ehdr;
  } elf;
  // Read ELF header (ehdr) and program header table (phdr).
  // We check that the ELF magic is found, that the ELF class matches
  // our own, and that the program header table as defined in the ELF
  // headers fits in the buffer we read.
  if ((read(fd, elf.buf, bufsize) <= 0) ||
      (memcmp(elf.buf, ELFMAG, 4)) ||
      (elf.ehdr.e_ident[EI_CLASS] != ELFCLASS) ||
      // Upcast e_phentsize so the multiplication is done in the same precision
      // as the subsequent addition, to satisfy static analyzers and avoid
      // issues with abnormally large program header tables.
      (elf.ehdr.e_phoff + (static_cast<Elf_Off>(elf.ehdr.e_phentsize) *
                           elf.ehdr.e_phnum) >= bufsize)) {
    close(fd);
    return;
  }
  // The program header table contains segment definitions. One such
  // segment type is PT_LOAD, which describes how the dynamic loader
  // is going to map the file in memory. We use that information to
  // find the biggest offset from the library that will be mapped in
  // memory.
  Elf_Phdr* phdr = (Elf_Phdr*)&elf.buf[elf.ehdr.e_phoff];
  Elf_Off end = 0;
  for (int phnum = elf.ehdr.e_phnum; phnum; phdr++, phnum--) {
    if ((phdr->p_type == PT_LOAD) &&
        (end < phdr->p_offset + phdr->p_filesz)) {
      end = phdr->p_offset + phdr->p_filesz;
    }
  }
  // Let the kernel read ahead what the dynamic loader is going to
  // map in memory soon after.
  if (end > 0) {
    ReadAhead(fd, 0, end);
  }
  close(fd);
#elif defined(XP_MACOSX)
  ScopedMMap buf(aFilePath);
  char* base = buf;
  if (!base) {
    return;
  }

  // An OSX binary might either be a fat (universal) binary or a
  // Mach-O binary. A fat binary actually embeds several Mach-O
  // binaries. If we have a fat binary, find the offset where the
  // Mach-O binary for our CPU type can be found.
  struct fat_header* fh = (struct fat_header*)base;

  if (OSSwapBigToHostInt32(fh->magic) == FAT_MAGIC) {
    uint32_t nfat_arch = OSSwapBigToHostInt32(fh->nfat_arch);
    struct fat_arch* arch = (struct fat_arch*)&buf[sizeof(struct fat_header)];
    for (; nfat_arch; arch++, nfat_arch--) {
      if (OSSwapBigToHostInt32(arch->cputype) == CPU_TYPE) {
        base += OSSwapBigToHostInt32(arch->offset);
        break;
      }
    }
    if (base == buf) {
      return;
    }
  }

  // Check Mach-O magic in the Mach header
  struct cpu_mach_header* mh = (struct cpu_mach_header*)base;
  if (mh->magic != MH_MAGIC) {
    return;
  }

  // The Mach header is followed by a sequence of load commands.
  // Each command has a header containing the command type and the
  // command size. LD_SEGMENT commands describes how the dynamic
  // loader is going to map the file in memory. We use that
  // information to find the biggest offset from the library that
  // will be mapped in memory.
  char* cmd = &base[sizeof(struct cpu_mach_header)];
  uint32_t end = 0;
  for (uint32_t ncmds = mh->ncmds; ncmds; ncmds--) {
    struct segment_command* sh = (struct segment_command*)cmd;
    if (sh->cmd != LC_SEGMENT) {
      continue;
    }
    if (end < sh->fileoff + sh->filesize) {
      end = sh->fileoff + sh->filesize;
    }
    cmd += sh->cmdsize;
  }
  // Let the kernel read ahead what the dynamic loader is going to
  // map in memory soon after.
  if (end > 0) {
    ReadAhead(buf.getFd(), base - buf, end);
  }
#endif
}

void
mozilla::ReadAheadFile(mozilla::pathstr_t aFilePath, const size_t aOffset,
                       const size_t aCount, mozilla::filedesc_t* aOutFd)
{
#if defined(XP_WIN)
  if (!aFilePath) {
    if (aOutFd) {
      *aOutFd = INVALID_HANDLE_VALUE;
    }
    return;
  }
  HANDLE fd = CreateFileW(aFilePath, GENERIC_READ, FILE_SHARE_READ, nullptr,
                          OPEN_EXISTING, FILE_FLAG_SEQUENTIAL_SCAN, nullptr);
  if (aOutFd) {
    *aOutFd = fd;
  }
  if (fd == INVALID_HANDLE_VALUE) {
    return;
  }
  ReadAhead(fd, aOffset, aCount);
  if (!aOutFd) {
    CloseHandle(fd);
  }
#elif defined(LINUX) && !defined(ANDROID) || defined(XP_MACOSX)
  if (!aFilePath) {
    if (aOutFd) {
      *aOutFd = -1;
    }
    return;
  }
  int fd = open(aFilePath, O_RDONLY);
  if (aOutFd) {
    *aOutFd = fd;
  }
  if (fd < 0) {
    return;
  }
  size_t count;
  if (aCount == SIZE_MAX) {
    struct stat st;
    if (fstat(fd, &st) < 0) {
      if (!aOutFd) {
        close(fd);
      }
      return;
    }
    count = st.st_size;
  } else {
    count = aCount;
  }
  ReadAhead(fd, aOffset, count);
  if (!aOutFd) {
    close(fd);
  }
#endif
}