DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (dcc6d7a0dc00)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
// Copyright 2005 Google Inc. All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "snappy.h"
#include "snappy-internal.h"
#include "snappy-sinksource.h"

#include <stdio.h>

#include <algorithm>
#include <string>
#include <vector>


namespace snappy {

// Any hash function will produce a valid compressed bitstream, but a good
// hash function reduces the number of collisions and thus yields better
// compression for compressible input, and more speed for incompressible
// input. Of course, it doesn't hurt if the hash function is reasonably fast
// either, as it gets called a lot.
static inline uint32 HashBytes(uint32 bytes, int shift) {
  uint32 kMul = 0x1e35a7bd;
  return (bytes * kMul) >> shift;
}
static inline uint32 Hash(const char* p, int shift) {
  return HashBytes(UNALIGNED_LOAD32(p), shift);
}

size_t MaxCompressedLength(size_t source_len) {
  // Compressed data can be defined as:
  //    compressed := item* literal*
  //    item       := literal* copy
  //
  // The trailing literal sequence has a space blowup of at most 62/60
  // since a literal of length 60 needs one tag byte + one extra byte
  // for length information.
  //
  // Item blowup is trickier to measure.  Suppose the "copy" op copies
  // 4 bytes of data.  Because of a special check in the encoding code,
  // we produce a 4-byte copy only if the offset is < 65536.  Therefore
  // the copy op takes 3 bytes to encode, and this type of item leads
  // to at most the 62/60 blowup for representing literals.
  //
  // Suppose the "copy" op copies 5 bytes of data.  If the offset is big
  // enough, it will take 5 bytes to encode the copy op.  Therefore the
  // worst case here is a one-byte literal followed by a five-byte copy.
  // I.e., 6 bytes of input turn into 7 bytes of "compressed" data.
  //
  // This last factor dominates the blowup, so the final estimate is:
  return 32 + source_len + source_len/6;
}

enum {
  LITERAL = 0,
  COPY_1_BYTE_OFFSET = 1,  // 3 bit length + 3 bits of offset in opcode
  COPY_2_BYTE_OFFSET = 2,
  COPY_4_BYTE_OFFSET = 3
};

// Copy "len" bytes from "src" to "op", one byte at a time.  Used for
// handling COPY operations where the input and output regions may
// overlap.  For example, suppose:
//    src    == "ab"
//    op     == src + 2
//    len    == 20
// After IncrementalCopy(src, op, len), the result will have
// eleven copies of "ab"
//    ababababababababababab
// Note that this does not match the semantics of either memcpy()
// or memmove().
static inline void IncrementalCopy(const char* src, char* op, int len) {
  DCHECK_GT(len, 0);
  do {
    *op++ = *src++;
  } while (--len > 0);
}

// Equivalent to IncrementalCopy except that it can write up to ten extra
// bytes after the end of the copy, and that it is faster.
//
// The main part of this loop is a simple copy of eight bytes at a time until
// we've copied (at least) the requested amount of bytes.  However, if op and
// src are less than eight bytes apart (indicating a repeating pattern of
// length < 8), we first need to expand the pattern in order to get the correct
// results. For instance, if the buffer looks like this, with the eight-byte
// <src> and <op> patterns marked as intervals:
//
//    abxxxxxxxxxxxx
//    [------]           src
//      [------]         op
//
// a single eight-byte copy from <src> to <op> will repeat the pattern once,
// after which we can move <op> two bytes without moving <src>:
//
//    ababxxxxxxxxxx
//    [------]           src
//        [------]       op
//
// and repeat the exercise until the two no longer overlap.
//
// This allows us to do very well in the special case of one single byte
// repeated many times, without taking a big hit for more general cases.
//
// The worst case of extra writing past the end of the match occurs when
// op - src == 1 and len == 1; the last copy will read from byte positions
// [0..7] and write to [4..11], whereas it was only supposed to write to
// position 1. Thus, ten excess bytes.

namespace {

const int kMaxIncrementCopyOverflow = 10;

}  // namespace

static inline void IncrementalCopyFastPath(const char* src, char* op, int len) {
  while (op - src < 8) {
    UNALIGNED_STORE64(op, UNALIGNED_LOAD64(src));
    len -= op - src;
    op += op - src;
  }
  while (len > 0) {
    UNALIGNED_STORE64(op, UNALIGNED_LOAD64(src));
    src += 8;
    op += 8;
    len -= 8;
  }
}

static inline char* EmitLiteral(char* op,
                                const char* literal,
                                int len,
                                bool allow_fast_path) {
  int n = len - 1;      // Zero-length literals are disallowed
  if (n < 60) {
    // Fits in tag byte
    *op++ = LITERAL | (n << 2);

    // The vast majority of copies are below 16 bytes, for which a
    // call to memcpy is overkill. This fast path can sometimes
    // copy up to 15 bytes too much, but that is okay in the
    // main loop, since we have a bit to go on for both sides:
    //
    //   - The input will always have kInputMarginBytes = 15 extra
    //     available bytes, as long as we're in the main loop, and
    //     if not, allow_fast_path = false.
    //   - The output will always have 32 spare bytes (see
    //     MaxCompressedLength).
    if (allow_fast_path && len <= 16) {
      UNALIGNED_STORE64(op, UNALIGNED_LOAD64(literal));
      UNALIGNED_STORE64(op + 8, UNALIGNED_LOAD64(literal + 8));
      return op + len;
    }
  } else {
    // Encode in upcoming bytes
    char* base = op;
    int count = 0;
    op++;
    while (n > 0) {
      *op++ = n & 0xff;
      n >>= 8;
      count++;
    }
    assert(count >= 1);
    assert(count <= 4);
    *base = LITERAL | ((59+count) << 2);
  }
  memcpy(op, literal, len);
  return op + len;
}

static inline char* EmitCopyLessThan64(char* op, size_t offset, int len) {
  DCHECK_LE(len, 64);
  DCHECK_GE(len, 4);
  DCHECK_LT(offset, 65536);

  if ((len < 12) && (offset < 2048)) {
    size_t len_minus_4 = len - 4;
    assert(len_minus_4 < 8);            // Must fit in 3 bits
    *op++ = COPY_1_BYTE_OFFSET | ((len_minus_4) << 2) | ((offset >> 8) << 5);
    *op++ = offset & 0xff;
  } else {
    *op++ = COPY_2_BYTE_OFFSET | ((len-1) << 2);
    LittleEndian::Store16(op, offset);
    op += 2;
  }
  return op;
}

static inline char* EmitCopy(char* op, size_t offset, int len) {
  // Emit 64 byte copies but make sure to keep at least four bytes reserved
  while (len >= 68) {
    op = EmitCopyLessThan64(op, offset, 64);
    len -= 64;
  }

  // Emit an extra 60 byte copy if have too much data to fit in one copy
  if (len > 64) {
    op = EmitCopyLessThan64(op, offset, 60);
    len -= 60;
  }

  // Emit remainder
  op = EmitCopyLessThan64(op, offset, len);
  return op;
}


bool GetUncompressedLength(const char* start, size_t n, size_t* result) {
  uint32 v = 0;
  const char* limit = start + n;
  if (Varint::Parse32WithLimit(start, limit, &v) != NULL) {
    *result = v;
    return true;
  } else {
    return false;
  }
}

namespace internal {
uint16* WorkingMemory::GetHashTable(size_t input_size, int* table_size) {
  // Use smaller hash table when input.size() is smaller, since we
  // fill the table, incurring O(hash table size) overhead for
  // compression, and if the input is short, we won't need that
  // many hash table entries anyway.
  assert(kMaxHashTableSize >= 256);
  size_t htsize = 256;
  while (htsize < kMaxHashTableSize && htsize < input_size) {
    htsize <<= 1;
  }
  CHECK_EQ(0, htsize & (htsize - 1)) << ": must be power of two";
  CHECK_LE(htsize, kMaxHashTableSize) << ": hash table too large";

  uint16* table;
  if (htsize <= ARRAYSIZE(small_table_)) {
    table = small_table_;
  } else {
    if (large_table_ == NULL) {
      large_table_ = new uint16[kMaxHashTableSize];
    }
    table = large_table_;
  }

  *table_size = htsize;
  memset(table, 0, htsize * sizeof(*table));
  return table;
}
}  // end namespace internal

// For 0 <= offset <= 4, GetUint32AtOffset(UNALIGNED_LOAD64(p), offset) will
// equal UNALIGNED_LOAD32(p + offset).  Motivation: On x86-64 hardware we have
// empirically found that overlapping loads such as
//  UNALIGNED_LOAD32(p) ... UNALIGNED_LOAD32(p+1) ... UNALIGNED_LOAD32(p+2)
// are slower than UNALIGNED_LOAD64(p) followed by shifts and casts to uint32.
static inline uint32 GetUint32AtOffset(uint64 v, int offset) {
  DCHECK(0 <= offset && offset <= 4) << offset;
  return v >> (LittleEndian::IsLittleEndian() ? 8 * offset : 32 - 8 * offset);
}

// Flat array compression that does not emit the "uncompressed length"
// prefix. Compresses "input" string to the "*op" buffer.
//
// REQUIRES: "input" is at most "kBlockSize" bytes long.
// REQUIRES: "op" points to an array of memory that is at least
// "MaxCompressedLength(input.size())" in size.
// REQUIRES: All elements in "table[0..table_size-1]" are initialized to zero.
// REQUIRES: "table_size" is a power of two
//
// Returns an "end" pointer into "op" buffer.
// "end - op" is the compressed size of "input".
namespace internal {
char* CompressFragment(const char* input,
                       size_t input_size,
                       char* op,
                       uint16* table,
                       const int table_size) {
  // "ip" is the input pointer, and "op" is the output pointer.
  const char* ip = input;
  CHECK_LE(input_size, kBlockSize);
  CHECK_EQ(table_size & (table_size - 1), 0) << ": table must be power of two";
  const int shift = 32 - Bits::Log2Floor(table_size);
  DCHECK_EQ(static_cast<int>(kuint32max >> shift), table_size - 1);
  const char* ip_end = input + input_size;
  const char* base_ip = ip;
  // Bytes in [next_emit, ip) will be emitted as literal bytes.  Or
  // [next_emit, ip_end) after the main loop.
  const char* next_emit = ip;

  const size_t kInputMarginBytes = 15;
  if (PREDICT_TRUE(input_size >= kInputMarginBytes)) {
    const char* ip_limit = input + input_size - kInputMarginBytes;

    for (uint32 next_hash = Hash(++ip, shift); ; ) {
      DCHECK_LT(next_emit, ip);
      // The body of this loop calls EmitLiteral once and then EmitCopy one or
      // more times.  (The exception is that when we're close to exhausting
      // the input we goto emit_remainder.)
      //
      // In the first iteration of this loop we're just starting, so
      // there's nothing to copy, so calling EmitLiteral once is
      // necessary.  And we only start a new iteration when the
      // current iteration has determined that a call to EmitLiteral will
      // precede the next call to EmitCopy (if any).
      //
      // Step 1: Scan forward in the input looking for a 4-byte-long match.
      // If we get close to exhausting the input then goto emit_remainder.
      //
      // Heuristic match skipping: If 32 bytes are scanned with no matches
      // found, start looking only at every other byte. If 32 more bytes are
      // scanned, look at every third byte, etc.. When a match is found,
      // immediately go back to looking at every byte. This is a small loss
      // (~5% performance, ~0.1% density) for compressible data due to more
      // bookkeeping, but for non-compressible data (such as JPEG) it's a huge
      // win since the compressor quickly "realizes" the data is incompressible
      // and doesn't bother looking for matches everywhere.
      //
      // The "skip" variable keeps track of how many bytes there are since the
      // last match; dividing it by 32 (ie. right-shifting by five) gives the
      // number of bytes to move ahead for each iteration.
      uint32 skip = 32;

      const char* next_ip = ip;
      const char* candidate;
      do {
        ip = next_ip;
        uint32 hash = next_hash;
        DCHECK_EQ(hash, Hash(ip, shift));
        uint32 bytes_between_hash_lookups = skip++ >> 5;
        next_ip = ip + bytes_between_hash_lookups;
        if (PREDICT_FALSE(next_ip > ip_limit)) {
          goto emit_remainder;
        }
        next_hash = Hash(next_ip, shift);
        candidate = base_ip + table[hash];
        DCHECK_GE(candidate, base_ip);
        DCHECK_LT(candidate, ip);

        table[hash] = ip - base_ip;
      } while (PREDICT_TRUE(UNALIGNED_LOAD32(ip) !=
                            UNALIGNED_LOAD32(candidate)));

      // Step 2: A 4-byte match has been found.  We'll later see if more
      // than 4 bytes match.  But, prior to the match, input
      // bytes [next_emit, ip) are unmatched.  Emit them as "literal bytes."
      DCHECK_LE(next_emit + 16, ip_end);
      op = EmitLiteral(op, next_emit, ip - next_emit, true);

      // Step 3: Call EmitCopy, and then see if another EmitCopy could
      // be our next move.  Repeat until we find no match for the
      // input immediately after what was consumed by the last EmitCopy call.
      //
      // If we exit this loop normally then we need to call EmitLiteral next,
      // though we don't yet know how big the literal will be.  We handle that
      // by proceeding to the next iteration of the main loop.  We also can exit
      // this loop via goto if we get close to exhausting the input.
      uint64 input_bytes = 0;
      uint32 candidate_bytes = 0;

      do {
        // We have a 4-byte match at ip, and no need to emit any
        // "literal bytes" prior to ip.
        const char* base = ip;
        int matched = 4 + FindMatchLength(candidate + 4, ip + 4, ip_end);
        ip += matched;
        size_t offset = base - candidate;
        DCHECK_EQ(0, memcmp(base, candidate, matched));
        op = EmitCopy(op, offset, matched);
        // We could immediately start working at ip now, but to improve
        // compression we first update table[Hash(ip - 1, ...)].
        const char* insert_tail = ip - 1;
        next_emit = ip;
        if (PREDICT_FALSE(ip >= ip_limit)) {
          goto emit_remainder;
        }
        input_bytes = UNALIGNED_LOAD64(insert_tail);
        uint32 prev_hash = HashBytes(GetUint32AtOffset(input_bytes, 0), shift);
        table[prev_hash] = ip - base_ip - 1;
        uint32 cur_hash = HashBytes(GetUint32AtOffset(input_bytes, 1), shift);
        candidate = base_ip + table[cur_hash];
        candidate_bytes = UNALIGNED_LOAD32(candidate);
        table[cur_hash] = ip - base_ip;
      } while (GetUint32AtOffset(input_bytes, 1) == candidate_bytes);

      next_hash = HashBytes(GetUint32AtOffset(input_bytes, 2), shift);
      ++ip;
    }
  }

 emit_remainder:
  // Emit the remaining bytes as a literal
  if (next_emit < ip_end) {
    op = EmitLiteral(op, next_emit, ip_end - next_emit, false);
  }

  return op;
}
}  // end namespace internal

// Signature of output types needed by decompression code.
// The decompression code is templatized on a type that obeys this
// signature so that we do not pay virtual function call overhead in
// the middle of a tight decompression loop.
//
// class DecompressionWriter {
//  public:
//   // Called before decompression
//   void SetExpectedLength(size_t length);
//
//   // Called after decompression
//   bool CheckLength() const;
//
//   // Called repeatedly during decompression
//   bool Append(const char* ip, size_t length);
//   bool AppendFromSelf(uint32 offset, size_t length);
//
//   // The difference between TryFastAppend and Append is that TryFastAppend
//   // is allowed to read up to <available> bytes from the input buffer,
//   // whereas Append is allowed to read <length>.
//   //
//   // Also, TryFastAppend is allowed to return false, declining the append,
//   // without it being a fatal error -- just "return false" would be
//   // a perfectly legal implementation of TryFastAppend. The intention
//   // is for TryFastAppend to allow a fast path in the common case of
//   // a small append.
//   //
//   // NOTE(user): TryFastAppend must always return decline (return false)
//   // if <length> is 61 or more, as in this case the literal length is not
//   // decoded fully. In practice, this should not be a big problem,
//   // as it is unlikely that one would implement a fast path accepting
//   // this much data.
//   bool TryFastAppend(const char* ip, size_t available, size_t length);
// };

// -----------------------------------------------------------------------
// Lookup table for decompression code.  Generated by ComputeTable() below.
// -----------------------------------------------------------------------

// Mapping from i in range [0,4] to a mask to extract the bottom 8*i bits
static const uint32 wordmask[] = {
  0u, 0xffu, 0xffffu, 0xffffffu, 0xffffffffu
};

// Data stored per entry in lookup table:
//      Range   Bits-used       Description
//      ------------------------------------
//      1..64   0..7            Literal/copy length encoded in opcode byte
//      0..7    8..10           Copy offset encoded in opcode byte / 256
//      0..4    11..13          Extra bytes after opcode
//
// We use eight bits for the length even though 7 would have sufficed
// because of efficiency reasons:
//      (1) Extracting a byte is faster than a bit-field
//      (2) It properly aligns copy offset so we do not need a <<8
static const uint16 char_table[256] = {
  0x0001, 0x0804, 0x1001, 0x2001, 0x0002, 0x0805, 0x1002, 0x2002,
  0x0003, 0x0806, 0x1003, 0x2003, 0x0004, 0x0807, 0x1004, 0x2004,
  0x0005, 0x0808, 0x1005, 0x2005, 0x0006, 0x0809, 0x1006, 0x2006,
  0x0007, 0x080a, 0x1007, 0x2007, 0x0008, 0x080b, 0x1008, 0x2008,
  0x0009, 0x0904, 0x1009, 0x2009, 0x000a, 0x0905, 0x100a, 0x200a,
  0x000b, 0x0906, 0x100b, 0x200b, 0x000c, 0x0907, 0x100c, 0x200c,
  0x000d, 0x0908, 0x100d, 0x200d, 0x000e, 0x0909, 0x100e, 0x200e,
  0x000f, 0x090a, 0x100f, 0x200f, 0x0010, 0x090b, 0x1010, 0x2010,
  0x0011, 0x0a04, 0x1011, 0x2011, 0x0012, 0x0a05, 0x1012, 0x2012,
  0x0013, 0x0a06, 0x1013, 0x2013, 0x0014, 0x0a07, 0x1014, 0x2014,
  0x0015, 0x0a08, 0x1015, 0x2015, 0x0016, 0x0a09, 0x1016, 0x2016,
  0x0017, 0x0a0a, 0x1017, 0x2017, 0x0018, 0x0a0b, 0x1018, 0x2018,
  0x0019, 0x0b04, 0x1019, 0x2019, 0x001a, 0x0b05, 0x101a, 0x201a,
  0x001b, 0x0b06, 0x101b, 0x201b, 0x001c, 0x0b07, 0x101c, 0x201c,
  0x001d, 0x0b08, 0x101d, 0x201d, 0x001e, 0x0b09, 0x101e, 0x201e,
  0x001f, 0x0b0a, 0x101f, 0x201f, 0x0020, 0x0b0b, 0x1020, 0x2020,
  0x0021, 0x0c04, 0x1021, 0x2021, 0x0022, 0x0c05, 0x1022, 0x2022,
  0x0023, 0x0c06, 0x1023, 0x2023, 0x0024, 0x0c07, 0x1024, 0x2024,
  0x0025, 0x0c08, 0x1025, 0x2025, 0x0026, 0x0c09, 0x1026, 0x2026,
  0x0027, 0x0c0a, 0x1027, 0x2027, 0x0028, 0x0c0b, 0x1028, 0x2028,
  0x0029, 0x0d04, 0x1029, 0x2029, 0x002a, 0x0d05, 0x102a, 0x202a,
  0x002b, 0x0d06, 0x102b, 0x202b, 0x002c, 0x0d07, 0x102c, 0x202c,
  0x002d, 0x0d08, 0x102d, 0x202d, 0x002e, 0x0d09, 0x102e, 0x202e,
  0x002f, 0x0d0a, 0x102f, 0x202f, 0x0030, 0x0d0b, 0x1030, 0x2030,
  0x0031, 0x0e04, 0x1031, 0x2031, 0x0032, 0x0e05, 0x1032, 0x2032,
  0x0033, 0x0e06, 0x1033, 0x2033, 0x0034, 0x0e07, 0x1034, 0x2034,
  0x0035, 0x0e08, 0x1035, 0x2035, 0x0036, 0x0e09, 0x1036, 0x2036,
  0x0037, 0x0e0a, 0x1037, 0x2037, 0x0038, 0x0e0b, 0x1038, 0x2038,
  0x0039, 0x0f04, 0x1039, 0x2039, 0x003a, 0x0f05, 0x103a, 0x203a,
  0x003b, 0x0f06, 0x103b, 0x203b, 0x003c, 0x0f07, 0x103c, 0x203c,
  0x0801, 0x0f08, 0x103d, 0x203d, 0x1001, 0x0f09, 0x103e, 0x203e,
  0x1801, 0x0f0a, 0x103f, 0x203f, 0x2001, 0x0f0b, 0x1040, 0x2040
};

// In debug mode, allow optional computation of the table at startup.
// Also, check that the decompression table is correct.
#ifndef NDEBUG
DEFINE_bool(snappy_dump_decompression_table, false,
            "If true, we print the decompression table at startup.");

static uint16 MakeEntry(unsigned int extra,
                        unsigned int len,
                        unsigned int copy_offset) {
  // Check that all of the fields fit within the allocated space
  DCHECK_EQ(extra,       extra & 0x7);          // At most 3 bits
  DCHECK_EQ(copy_offset, copy_offset & 0x7);    // At most 3 bits
  DCHECK_EQ(len,         len & 0x7f);           // At most 7 bits
  return len | (copy_offset << 8) | (extra << 11);
}

static void ComputeTable() {
  uint16 dst[256];

  // Place invalid entries in all places to detect missing initialization
  int assigned = 0;
  for (int i = 0; i < 256; i++) {
    dst[i] = 0xffff;
  }

  // Small LITERAL entries.  We store (len-1) in the top 6 bits.
  for (unsigned int len = 1; len <= 60; len++) {
    dst[LITERAL | ((len-1) << 2)] = MakeEntry(0, len, 0);
    assigned++;
  }

  // Large LITERAL entries.  We use 60..63 in the high 6 bits to
  // encode the number of bytes of length info that follow the opcode.
  for (unsigned int extra_bytes = 1; extra_bytes <= 4; extra_bytes++) {
    // We set the length field in the lookup table to 1 because extra
    // bytes encode len-1.
    dst[LITERAL | ((extra_bytes+59) << 2)] = MakeEntry(extra_bytes, 1, 0);
    assigned++;
  }

  // COPY_1_BYTE_OFFSET.
  //
  // The tag byte in the compressed data stores len-4 in 3 bits, and
  // offset/256 in 5 bits.  offset%256 is stored in the next byte.
  //
  // This format is used for length in range [4..11] and offset in
  // range [0..2047]
  for (unsigned int len = 4; len < 12; len++) {
    for (unsigned int offset = 0; offset < 2048; offset += 256) {
      dst[COPY_1_BYTE_OFFSET | ((len-4)<<2) | ((offset>>8)<<5)] =
        MakeEntry(1, len, offset>>8);
      assigned++;
    }
  }

  // COPY_2_BYTE_OFFSET.
  // Tag contains len-1 in top 6 bits, and offset in next two bytes.
  for (unsigned int len = 1; len <= 64; len++) {
    dst[COPY_2_BYTE_OFFSET | ((len-1)<<2)] = MakeEntry(2, len, 0);
    assigned++;
  }

  // COPY_4_BYTE_OFFSET.
  // Tag contents len-1 in top 6 bits, and offset in next four bytes.
  for (unsigned int len = 1; len <= 64; len++) {
    dst[COPY_4_BYTE_OFFSET | ((len-1)<<2)] = MakeEntry(4, len, 0);
    assigned++;
  }

  // Check that each entry was initialized exactly once.
  CHECK_EQ(assigned, 256);
  for (int i = 0; i < 256; i++) {
    CHECK_NE(dst[i], 0xffff);
  }

  if (FLAGS_snappy_dump_decompression_table) {
    printf("static const uint16 char_table[256] = {\n  ");
    for (int i = 0; i < 256; i++) {
      printf("0x%04x%s",
             dst[i],
             ((i == 255) ? "\n" : (((i%8) == 7) ? ",\n  " : ", ")));
    }
    printf("};\n");
  }

  // Check that computed table matched recorded table
  for (int i = 0; i < 256; i++) {
    CHECK_EQ(dst[i], char_table[i]);
  }
}
#endif /* !NDEBUG */

// Helper class for decompression
class SnappyDecompressor {
 private:
  Source*       reader_;         // Underlying source of bytes to decompress
  const char*   ip_;             // Points to next buffered byte
  const char*   ip_limit_;       // Points just past buffered bytes
  uint32        peeked_;         // Bytes peeked from reader (need to skip)
  bool          eof_;            // Hit end of input without an error?
  char          scratch_[5];     // Temporary buffer for PeekFast() boundaries

  // Ensure that all of the tag metadata for the next tag is available
  // in [ip_..ip_limit_-1].  Also ensures that [ip,ip+4] is readable even
  // if (ip_limit_ - ip_ < 5).
  //
  // Returns true on success, false on error or end of input.
  bool RefillTag();

 public:
  explicit SnappyDecompressor(Source* reader)
      : reader_(reader),
        ip_(NULL),
        ip_limit_(NULL),
        peeked_(0),
        eof_(false) {
  }

  ~SnappyDecompressor() {
    // Advance past any bytes we peeked at from the reader
    reader_->Skip(peeked_);
  }

  // Returns true iff we have hit the end of the input without an error.
  bool eof() const {
    return eof_;
  }

  // Read the uncompressed length stored at the start of the compressed data.
  // On succcess, stores the length in *result and returns true.
  // On failure, returns false.
  bool ReadUncompressedLength(uint32* result) {
    DCHECK(ip_ == NULL);       // Must not have read anything yet
    // Length is encoded in 1..5 bytes
    *result = 0;
    uint32 shift = 0;
    while (true) {
      if (shift >= 32) return false;
      size_t n;
      const char* ip = reader_->Peek(&n);
      if (n == 0) return false;
      const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip));
      reader_->Skip(1);
      *result |= static_cast<uint32>(c & 0x7f) << shift;
      if (c < 128) {
        break;
      }
      shift += 7;
    }
    return true;
  }

  // Process the next item found in the input.
  // Returns true if successful, false on error or end of input.
  template <class Writer>
  void DecompressAllTags(Writer* writer) {
    const char* ip = ip_;

    // We could have put this refill fragment only at the beginning of the loop.
    // However, duplicating it at the end of each branch gives the compiler more
    // scope to optimize the <ip_limit_ - ip> expression based on the local
    // context, which overall increases speed.
    #define MAYBE_REFILL() \
        if (ip_limit_ - ip < 5) { \
          ip_ = ip; \
          if (!RefillTag()) return; \
          ip = ip_; \
        }

    MAYBE_REFILL();
    for ( ;; ) {
      const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip++));

      if ((c & 0x3) == LITERAL) {
        size_t literal_length = (c >> 2) + 1u;
        if (writer->TryFastAppend(ip, ip_limit_ - ip, literal_length)) {
          DCHECK_LT(literal_length, 61);
          ip += literal_length;
          MAYBE_REFILL();
          continue;
        }
        if (PREDICT_FALSE(literal_length >= 61)) {
          // Long literal.
          const size_t literal_length_length = literal_length - 60;
          literal_length =
              (LittleEndian::Load32(ip) & wordmask[literal_length_length]) + 1;
          ip += literal_length_length;
        }

        size_t avail = ip_limit_ - ip;
        while (avail < literal_length) {
          if (!writer->Append(ip, avail)) return;
          literal_length -= avail;
          reader_->Skip(peeked_);
          size_t n;
          ip = reader_->Peek(&n);
          avail = n;
          peeked_ = avail;
          if (avail == 0) return;  // Premature end of input
          ip_limit_ = ip + avail;
        }
        if (!writer->Append(ip, literal_length)) {
          return;
        }
        ip += literal_length;
        MAYBE_REFILL();
      } else {
        const uint32 entry = char_table[c];
        const uint32 trailer = LittleEndian::Load32(ip) & wordmask[entry >> 11];
        const uint32 length = entry & 0xff;
        ip += entry >> 11;

        // copy_offset/256 is encoded in bits 8..10.  By just fetching
        // those bits, we get copy_offset (since the bit-field starts at
        // bit 8).
        const uint32 copy_offset = entry & 0x700;
        if (!writer->AppendFromSelf(copy_offset + trailer, length)) {
          return;
        }
        MAYBE_REFILL();
      }
    }

#undef MAYBE_REFILL
  }
};

bool SnappyDecompressor::RefillTag() {
  const char* ip = ip_;
  if (ip == ip_limit_) {
    // Fetch a new fragment from the reader
    reader_->Skip(peeked_);   // All peeked bytes are used up
    size_t n;
    ip = reader_->Peek(&n);
    peeked_ = n;
    if (n == 0) {
      eof_ = true;
      return false;
    }
    ip_limit_ = ip + n;
  }

  // Read the tag character
  DCHECK_LT(ip, ip_limit_);
  const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip));
  const uint32 entry = char_table[c];
  const uint32 needed = (entry >> 11) + 1;  // +1 byte for 'c'
  DCHECK_LE(needed, sizeof(scratch_));

  // Read more bytes from reader if needed
  uint32 nbuf = ip_limit_ - ip;
  if (nbuf < needed) {
    // Stitch together bytes from ip and reader to form the word
    // contents.  We store the needed bytes in "scratch_".  They
    // will be consumed immediately by the caller since we do not
    // read more than we need.
    memmove(scratch_, ip, nbuf);
    reader_->Skip(peeked_);  // All peeked bytes are used up
    peeked_ = 0;
    while (nbuf < needed) {
      size_t length;
      const char* src = reader_->Peek(&length);
      if (length == 0) return false;
      uint32 to_add = min<uint32>(needed - nbuf, length);
      memcpy(scratch_ + nbuf, src, to_add);
      nbuf += to_add;
      reader_->Skip(to_add);
    }
    DCHECK_EQ(nbuf, needed);
    ip_ = scratch_;
    ip_limit_ = scratch_ + needed;
  } else if (nbuf < 5) {
    // Have enough bytes, but move into scratch_ so that we do not
    // read past end of input
    memmove(scratch_, ip, nbuf);
    reader_->Skip(peeked_);  // All peeked bytes are used up
    peeked_ = 0;
    ip_ = scratch_;
    ip_limit_ = scratch_ + nbuf;
  } else {
    // Pass pointer to buffer returned by reader_.
    ip_ = ip;
  }
  return true;
}

template <typename Writer>
static bool InternalUncompress(Source* r,
                               Writer* writer,
                               uint32 max_len) {
  // Read the uncompressed length from the front of the compressed input
  SnappyDecompressor decompressor(r);
  uint32 uncompressed_len = 0;
  if (!decompressor.ReadUncompressedLength(&uncompressed_len)) return false;
  // Protect against possible DoS attack
  if (static_cast<uint64>(uncompressed_len) > max_len) {
    return false;
  }

  writer->SetExpectedLength(uncompressed_len);

  // Process the entire input
  decompressor.DecompressAllTags(writer);
  return (decompressor.eof() && writer->CheckLength());
}

bool GetUncompressedLength(Source* source, uint32* result) {
  SnappyDecompressor decompressor(source);
  return decompressor.ReadUncompressedLength(result);
}

size_t Compress(Source* reader, Sink* writer) {
  size_t written = 0;
  size_t N = reader->Available();
  char ulength[Varint::kMax32];
  char* p = Varint::Encode32(ulength, N);
  writer->Append(ulength, p-ulength);
  written += (p - ulength);

  internal::WorkingMemory wmem;
  char* scratch = NULL;
  char* scratch_output = NULL;

  while (N > 0) {
    // Get next block to compress (without copying if possible)
    size_t fragment_size;
    const char* fragment = reader->Peek(&fragment_size);
    DCHECK_NE(fragment_size, 0) << ": premature end of input";
    const size_t num_to_read = min(N, kBlockSize);
    size_t bytes_read = fragment_size;

    size_t pending_advance = 0;
    if (bytes_read >= num_to_read) {
      // Buffer returned by reader is large enough
      pending_advance = num_to_read;
      fragment_size = num_to_read;
    } else {
      // Read into scratch buffer
      if (scratch == NULL) {
        // If this is the last iteration, we want to allocate N bytes
        // of space, otherwise the max possible kBlockSize space.
        // num_to_read contains exactly the correct value
        scratch = new char[num_to_read];
      }
      memcpy(scratch, fragment, bytes_read);
      reader->Skip(bytes_read);

      while (bytes_read < num_to_read) {
        fragment = reader->Peek(&fragment_size);
        size_t n = min<size_t>(fragment_size, num_to_read - bytes_read);
        memcpy(scratch + bytes_read, fragment, n);
        bytes_read += n;
        reader->Skip(n);
      }
      DCHECK_EQ(bytes_read, num_to_read);
      fragment = scratch;
      fragment_size = num_to_read;
    }
    DCHECK_EQ(fragment_size, num_to_read);

    // Get encoding table for compression
    int table_size;
    uint16* table = wmem.GetHashTable(num_to_read, &table_size);

    // Compress input_fragment and append to dest
    const int max_output = MaxCompressedLength(num_to_read);

    // Need a scratch buffer for the output, in case the byte sink doesn't
    // have room for us directly.
    if (scratch_output == NULL) {
      scratch_output = new char[max_output];
    } else {
      // Since we encode kBlockSize regions followed by a region
      // which is <= kBlockSize in length, a previously allocated
      // scratch_output[] region is big enough for this iteration.
    }
    char* dest = writer->GetAppendBuffer(max_output, scratch_output);
    char* end = internal::CompressFragment(fragment, fragment_size,
                                           dest, table, table_size);
    writer->Append(dest, end - dest);
    written += (end - dest);

    N -= num_to_read;
    reader->Skip(pending_advance);
  }

  delete[] scratch;
  delete[] scratch_output;

  return written;
}

// -----------------------------------------------------------------------
// Flat array interfaces
// -----------------------------------------------------------------------

// A type that writes to a flat array.
// Note that this is not a "ByteSink", but a type that matches the
// Writer template argument to SnappyDecompressor::DecompressAllTags().
class SnappyArrayWriter {
 private:
  char* base_;
  char* op_;
  char* op_limit_;

 public:
  inline explicit SnappyArrayWriter(char* dst)
      : base_(dst),
        op_(dst) {
  }

  inline void SetExpectedLength(size_t len) {
    op_limit_ = op_ + len;
  }

  inline bool CheckLength() const {
    return op_ == op_limit_;
  }

  inline bool Append(const char* ip, size_t len) {
    char* op = op_;
    const size_t space_left = op_limit_ - op;
    if (space_left < len) {
      return false;
    }
    memcpy(op, ip, len);
    op_ = op + len;
    return true;
  }

  inline bool TryFastAppend(const char* ip, size_t available, size_t len) {
    char* op = op_;
    const size_t space_left = op_limit_ - op;
    if (len <= 16 && available >= 16 && space_left >= 16) {
      // Fast path, used for the majority (about 95%) of invocations.
      UNALIGNED_STORE64(op, UNALIGNED_LOAD64(ip));
      UNALIGNED_STORE64(op + 8, UNALIGNED_LOAD64(ip + 8));
      op_ = op + len;
      return true;
    } else {
      return false;
    }
  }

  inline bool AppendFromSelf(size_t offset, size_t len) {
    char* op = op_;
    const size_t space_left = op_limit_ - op;

    if (op - base_ <= offset - 1u) {  // -1u catches offset==0
      return false;
    }
    if (len <= 16 && offset >= 8 && space_left >= 16) {
      // Fast path, used for the majority (70-80%) of dynamic invocations.
      UNALIGNED_STORE64(op, UNALIGNED_LOAD64(op - offset));
      UNALIGNED_STORE64(op + 8, UNALIGNED_LOAD64(op - offset + 8));
    } else {
      if (space_left >= len + kMaxIncrementCopyOverflow) {
        IncrementalCopyFastPath(op - offset, op, len);
      } else {
        if (space_left < len) {
          return false;
        }
        IncrementalCopy(op - offset, op, len);
      }
    }

    op_ = op + len;
    return true;
  }
};

bool RawUncompress(const char* compressed, size_t n, char* uncompressed) {
  ByteArraySource reader(compressed, n);
  return RawUncompress(&reader, uncompressed);
}

bool RawUncompress(Source* compressed, char* uncompressed) {
  SnappyArrayWriter output(uncompressed);
  return InternalUncompress(compressed, &output, kuint32max);
}

bool Uncompress(const char* compressed, size_t n, string* uncompressed) {
  size_t ulength;
  if (!GetUncompressedLength(compressed, n, &ulength)) {
    return false;
  }
  // Protect against possible DoS attack
  if ((static_cast<uint64>(ulength) + uncompressed->size()) >
      uncompressed->max_size()) {
    return false;
  }
  STLStringResizeUninitialized(uncompressed, ulength);
  return RawUncompress(compressed, n, string_as_array(uncompressed));
}


// A Writer that drops everything on the floor and just does validation
class SnappyDecompressionValidator {
 private:
  size_t expected_;
  size_t produced_;

 public:
  inline SnappyDecompressionValidator() : produced_(0) { }
  inline void SetExpectedLength(size_t len) {
    expected_ = len;
  }
  inline bool CheckLength() const {
    return expected_ == produced_;
  }
  inline bool Append(const char* ip, size_t len) {
    produced_ += len;
    return produced_ <= expected_;
  }
  inline bool TryFastAppend(const char* ip, size_t available, size_t length) {
    return false;
  }
  inline bool AppendFromSelf(size_t offset, size_t len) {
    if (produced_ <= offset - 1u) return false;  // -1u catches offset==0
    produced_ += len;
    return produced_ <= expected_;
  }
};

bool IsValidCompressedBuffer(const char* compressed, size_t n) {
  ByteArraySource reader(compressed, n);
  SnappyDecompressionValidator writer;
  return InternalUncompress(&reader, &writer, kuint32max);
}

void RawCompress(const char* input,
                 size_t input_length,
                 char* compressed,
                 size_t* compressed_length) {
  ByteArraySource reader(input, input_length);
  UncheckedByteArraySink writer(compressed);
  Compress(&reader, &writer);

  // Compute how many bytes were added
  *compressed_length = (writer.CurrentDestination() - compressed);
}

size_t Compress(const char* input, size_t input_length, string* compressed) {
  // Pre-grow the buffer to the max length of the compressed output
  compressed->resize(MaxCompressedLength(input_length));

  size_t compressed_length;
  RawCompress(input, input_length, string_as_array(compressed),
              &compressed_length);
  compressed->resize(compressed_length);
  return compressed_length;
}


} // end namespace snappy