DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (dcc6d7a0dc00)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
*/
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "ds/TraceableFifo.h"
#include "js/GCHashTable.h"
#include "js/RootingAPI.h"
#include "js/TraceableVector.h"

#include "jsapi-tests/tests.h"

using namespace js;

BEGIN_TEST(testGCExactRooting)
{
    JS::RootedObject rootCx(cx, JS_NewPlainObject(cx));
    JS::RootedObject rootRt(cx->runtime(), JS_NewPlainObject(cx));

    JS_GC(cx->runtime());

    /* Use the objects we just created to ensure that they are still alive. */
    JS_DefineProperty(cx, rootCx, "foo", JS::UndefinedHandleValue, 0);
    JS_DefineProperty(cx, rootRt, "foo", JS::UndefinedHandleValue, 0);

    return true;
}
END_TEST(testGCExactRooting)

BEGIN_TEST(testGCSuppressions)
{
    JS::AutoAssertOnGC nogc;
    JS::AutoCheckCannotGC checkgc;
    JS::AutoSuppressGCAnalysis noanalysis;

    JS::AutoAssertOnGC nogcRt(cx->runtime());
    JS::AutoCheckCannotGC checkgcRt(cx->runtime());
    JS::AutoSuppressGCAnalysis noanalysisRt(cx->runtime());

    return true;
}
END_TEST(testGCSuppressions)

struct MyContainer : public JS::Traceable
{
    RelocatablePtrObject obj;
    RelocatablePtrString str;

    MyContainer() : obj(nullptr), str(nullptr) {}
    static void trace(MyContainer* self, JSTracer* trc) {
        if (self->obj)
            js::TraceEdge(trc, &self->obj, "test container");
        if (self->str)
            js::TraceEdge(trc, &self->str, "test container");
    }
};

namespace js {
template <>
struct RootedBase<MyContainer> {
    RelocatablePtrObject& obj() { return static_cast<Rooted<MyContainer>*>(this)->get().obj; }
    RelocatablePtrString& str() { return static_cast<Rooted<MyContainer>*>(this)->get().str; }
};
template <>
struct PersistentRootedBase<MyContainer> {
    RelocatablePtrObject& obj() {
        return static_cast<PersistentRooted<MyContainer>*>(this)->get().obj;
    }
    RelocatablePtrString& str() {
        return static_cast<PersistentRooted<MyContainer>*>(this)->get().str;
    }
};
} // namespace js

BEGIN_TEST(testGCRootedStaticStructInternalStackStorageAugmented)
{
    JS::Rooted<MyContainer> container(cx);
    container.obj() = JS_NewObject(cx, nullptr);
    container.str() = JS_NewStringCopyZ(cx, "Hello");

    JS_GC(cx->runtime());
    JS_GC(cx->runtime());

    JS::RootedObject obj(cx, container.obj());
    JS::RootedValue val(cx, StringValue(container.str()));
    CHECK(JS_SetProperty(cx, obj, "foo", val));
    obj = nullptr;
    val = UndefinedValue();

    {
        JS::RootedString actual(cx);
        bool same;

        // Automatic move from stack to heap.
        JS::PersistentRooted<MyContainer> heap(cx, container);

        // clear prior rooting.
        container.obj() = nullptr;
        container.str() = nullptr;

        obj = heap.obj();
        CHECK(JS_GetProperty(cx, obj, "foo", &val));
        actual = val.toString();
        CHECK(JS_StringEqualsAscii(cx, actual, "Hello", &same));
        CHECK(same);
        obj = nullptr;
        actual = nullptr;

        JS_GC(cx->runtime());
        JS_GC(cx->runtime());

        obj = heap.obj();
        CHECK(JS_GetProperty(cx, obj, "foo", &val));
        actual = val.toString();
        CHECK(JS_StringEqualsAscii(cx, actual, "Hello", &same));
        CHECK(same);
        obj = nullptr;
        actual = nullptr;
    }

    return true;
}
END_TEST(testGCRootedStaticStructInternalStackStorageAugmented)

using MyHashMap = js::GCHashMap<js::Shape*, JSObject*>;

BEGIN_TEST(testGCRootedHashMap)
{
    JS::Rooted<MyHashMap> map(cx, MyHashMap(cx));
    CHECK(map.init(15));
    CHECK(map.initialized());

    for (size_t i = 0; i < 10; ++i) {
        RootedObject obj(cx, JS_NewObject(cx, nullptr));
        RootedValue val(cx, UndefinedValue());
        // Construct a unique property name to ensure that the object creates a
        // new shape.
        char buffer[2];
        buffer[0] = 'a' + i;
        buffer[1] = '\0';
        CHECK(JS_SetProperty(cx, obj, buffer, val));
        CHECK(map.putNew(obj->as<NativeObject>().lastProperty(), obj));
    }

    JS_GC(rt);
    JS_GC(rt);

    for (auto r = map.all(); !r.empty(); r.popFront()) {
        RootedObject obj(cx, r.front().value());
        CHECK(obj->as<NativeObject>().lastProperty() == r.front().key());
    }

    return true;
}
END_TEST(testGCRootedHashMap)

static bool
FillMyHashMap(JSContext* cx, MutableHandle<MyHashMap> map)
{
    for (size_t i = 0; i < 10; ++i) {
        RootedObject obj(cx, JS_NewObject(cx, nullptr));
        RootedValue val(cx, UndefinedValue());
        // Construct a unique property name to ensure that the object creates a
        // new shape.
        char buffer[2];
        buffer[0] = 'a' + i;
        buffer[1] = '\0';
        if (!JS_SetProperty(cx, obj, buffer, val))
            return false;
        if (!map.putNew(obj->as<NativeObject>().lastProperty(), obj))
            return false;
    }
    return true;
}

static bool
CheckMyHashMap(JSContext* cx, Handle<MyHashMap> map)
{
    for (auto r = map.all(); !r.empty(); r.popFront()) {
        RootedObject obj(cx, r.front().value());
        if (obj->as<NativeObject>().lastProperty() != r.front().key())
            return false;
    }
    return true;
}

BEGIN_TEST(testGCHandleHashMap)
{
    JS::Rooted<MyHashMap> map(cx, MyHashMap(cx));
    CHECK(map.init(15));
    CHECK(map.initialized());

    CHECK(FillMyHashMap(cx, &map));

    JS_GC(rt);
    JS_GC(rt);

    CHECK(CheckMyHashMap(cx, map));

    return true;
}
END_TEST(testGCHandleHashMap)

using ShapeVec = TraceableVector<Shape*>;

BEGIN_TEST(testGCRootedVector)
{
    JS::Rooted<ShapeVec> shapes(cx, ShapeVec(cx));

    for (size_t i = 0; i < 10; ++i) {
        RootedObject obj(cx, JS_NewObject(cx, nullptr));
        RootedValue val(cx, UndefinedValue());
        // Construct a unique property name to ensure that the object creates a
        // new shape.
        char buffer[2];
        buffer[0] = 'a' + i;
        buffer[1] = '\0';
        CHECK(JS_SetProperty(cx, obj, buffer, val));
        CHECK(shapes.append(obj->as<NativeObject>().lastProperty()));
    }

    JS_GC(rt);
    JS_GC(rt);

    for (size_t i = 0; i < 10; ++i) {
        // Check the shape to ensure it did not get collected.
        char buffer[2];
        buffer[0] = 'a' + i;
        buffer[1] = '\0';
        bool match;
        CHECK(JS_StringEqualsAscii(cx, JSID_TO_STRING(shapes[i]->propid()), buffer, &match));
        CHECK(match);
    }

    // Ensure iterator enumeration works through the rooted.
    for (auto shape : shapes) {
        CHECK(shape);
    }

    CHECK(receiveConstRefToShapeVector(shapes));

    // Ensure rooted converts to handles.
    CHECK(receiveHandleToShapeVector(shapes));
    CHECK(receiveMutableHandleToShapeVector(&shapes));

    return true;
}

bool
receiveConstRefToShapeVector(const JS::Rooted<TraceableVector<Shape*>>& rooted)
{
    // Ensure range enumeration works through the reference.
    for (auto shape : rooted) {
        CHECK(shape);
    }
    return true;
}

bool
receiveHandleToShapeVector(JS::Handle<TraceableVector<Shape*>> handle)
{
    // Ensure range enumeration works through the handle.
    for (auto shape : handle) {
        CHECK(shape);
    }
    return true;
}

bool
receiveMutableHandleToShapeVector(JS::MutableHandle<TraceableVector<Shape*>> handle)
{
    // Ensure range enumeration works through the handle.
    for (auto shape : handle) {
        CHECK(shape);
    }
    return true;
}
END_TEST(testGCRootedVector)

BEGIN_TEST(testTraceableFifo)
{
    using ShapeFifo = TraceableFifo<Shape*>;
    JS::Rooted<ShapeFifo> shapes(cx, ShapeFifo(cx));
    CHECK(shapes.empty());

    for (size_t i = 0; i < 10; ++i) {
        RootedObject obj(cx, JS_NewObject(cx, nullptr));
        RootedValue val(cx, UndefinedValue());
        // Construct a unique property name to ensure that the object creates a
        // new shape.
        char buffer[2];
        buffer[0] = 'a' + i;
        buffer[1] = '\0';
        CHECK(JS_SetProperty(cx, obj, buffer, val));
        CHECK(shapes.pushBack(obj->as<NativeObject>().lastProperty()));
    }

    CHECK(shapes.length() == 10);

    JS_GC(rt);
    JS_GC(rt);

    for (size_t i = 0; i < 10; ++i) {
        // Check the shape to ensure it did not get collected.
        char buffer[2];
        buffer[0] = 'a' + i;
        buffer[1] = '\0';
        bool match;
        CHECK(JS_StringEqualsAscii(cx, JSID_TO_STRING(shapes.front()->propid()), buffer, &match));
        CHECK(match);
        CHECK(shapes.popFront());
    }

    CHECK(shapes.empty());
    return true;
}
END_TEST(testTraceableFifo)

using ShapeVec = TraceableVector<Shape*>;

static bool
FillVector(JSContext* cx, MutableHandle<ShapeVec> shapes)
{
    for (size_t i = 0; i < 10; ++i) {
        RootedObject obj(cx, JS_NewObject(cx, nullptr));
        RootedValue val(cx, UndefinedValue());
        // Construct a unique property name to ensure that the object creates a
        // new shape.
        char buffer[2];
        buffer[0] = 'a' + i;
        buffer[1] = '\0';
        if (!JS_SetProperty(cx, obj, buffer, val))
            return false;
        if (!shapes.append(obj->as<NativeObject>().lastProperty()))
            return false;
    }

    // Ensure iterator enumeration works through the mutable handle.
    for (auto shape : shapes) {
        if (!shape)
            return false;
    }

    return true;
}

static bool
CheckVector(JSContext* cx, Handle<ShapeVec> shapes)
{
    for (size_t i = 0; i < 10; ++i) {
        // Check the shape to ensure it did not get collected.
        char buffer[2];
        buffer[0] = 'a' + i;
        buffer[1] = '\0';
        bool match;
        if (!JS_StringEqualsAscii(cx, JSID_TO_STRING(shapes[i]->propid()), buffer, &match))
            return false;
        if (!match)
            return false;
    }

    // Ensure iterator enumeration works through the handle.
    for (auto shape : shapes) {
        if (!shape)
            return false;
    }

    return true;
}

BEGIN_TEST(testGCHandleVector)
{
    JS::Rooted<ShapeVec> vec(cx, ShapeVec(cx));

    CHECK(FillVector(cx, &vec));

    JS_GC(rt);
    JS_GC(rt);

    CHECK(CheckVector(cx, vec));

    return true;
}
END_TEST(testGCHandleVector)