DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (dcc6d7a0dc00)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef frontend_SharedContext_h
#define frontend_SharedContext_h

#include "jsatom.h"
#include "jsopcode.h"
#include "jspubtd.h"
#include "jsscript.h"
#include "jstypes.h"

#include "builtin/ModuleObject.h"
#include "frontend/ParseMaps.h"
#include "frontend/ParseNode.h"
#include "frontend/TokenStream.h"
#include "vm/ScopeObject.h"

namespace js {
namespace frontend {

// These flags apply to both global and function contexts.
class AnyContextFlags
{
    // This class's data is all private and so only visible to these friends.
    friend class SharedContext;

    // True if "use strict"; appears in the body instead of being inherited.
    bool            hasExplicitUseStrict:1;

    // The (static) bindings of this script need to support dynamic name
    // read/write access. Here, 'dynamic' means dynamic dictionary lookup on
    // the scope chain for a dynamic set of keys. The primary examples are:
    //  - direct eval
    //  - function::
    //  - with
    // since both effectively allow any name to be accessed. Non-examples are:
    //  - upvars of nested functions
    //  - function statement
    // since the set of assigned name is known dynamically. 'with' could be in
    // the non-example category, provided the set of all free variables within
    // the with block was noted. However, we do not optimize 'with' so, for
    // simplicity, 'with' is treated like eval.
    //
    // Note: access through the arguments object is not considered dynamic
    // binding access since it does not go through the normal name lookup
    // mechanism. This is debatable and could be changed (although care must be
    // taken not to turn off the whole 'arguments' optimization). To answer the
    // more general "is this argument aliased" question, script->needsArgsObj
    // should be tested (see JSScript::argIsAlised).
    //
    bool            bindingsAccessedDynamically:1;

    // Whether this script, or any of its inner scripts contains a debugger
    // statement which could potentially read or write anywhere along the
    // scope chain.
    bool            hasDebuggerStatement:1;

    // A direct eval occurs in the body of the script.
    bool            hasDirectEval:1;

  public:
    AnyContextFlags()
     :  hasExplicitUseStrict(false),
        bindingsAccessedDynamically(false),
        hasDebuggerStatement(false),
        hasDirectEval(false)
    { }
};

class FunctionContextFlags
{
    // This class's data is all private and so only visible to these friends.
    friend class FunctionBox;

    // The function or a function that encloses it may define new local names
    // at runtime through means other than calling eval.
    bool mightAliasLocals:1;

    // This function does something that can extend the set of bindings in its
    // call objects --- it does a direct eval in non-strict code, or includes a
    // function statement (as opposed to a function definition).
    //
    // This flag is *not* inherited by enclosed or enclosing functions; it
    // applies only to the function in whose flags it appears.
    //
    bool hasExtensibleScope:1;

    // This function refers directly to its name in a way which requires the
    // name to be a separate object on the scope chain.
    bool needsDeclEnvObject:1;

    // Technically, every function has a binding named 'arguments'. Internally,
    // this binding is only added when 'arguments' is mentioned by the function
    // body. This flag indicates whether 'arguments' has been bound either
    // through implicit use:
    //   function f() { return arguments }
    // or explicit redeclaration:
    //   function f() { var arguments; return arguments }
    //
    // Note 1: overwritten arguments (function() { arguments = 3 }) will cause
    // this flag to be set but otherwise require no special handling:
    // 'arguments' is just a local variable and uses of 'arguments' will just
    // read the local's current slot which may have been assigned. The only
    // special semantics is that the initial value of 'arguments' is the
    // arguments object (not undefined, like normal locals).
    //
    // Note 2: if 'arguments' is bound as a formal parameter, there will be an
    // 'arguments' in Bindings, but, as the "LOCAL" in the name indicates, this
    // flag will not be set. This is because, as a formal, 'arguments' will
    // have no special semantics: the initial value is unconditionally the
    // actual argument (or undefined if nactual < nformal).
    //
    bool argumentsHasLocalBinding:1;

    // In many cases where 'arguments' has a local binding (as described above)
    // we do not need to actually create an arguments object in the function
    // prologue: instead we can analyze how 'arguments' is used (using the
    // simple dataflow analysis in analyzeSSA) to determine that uses of
    // 'arguments' can just read from the stack frame directly. However, the
    // dataflow analysis only looks at how JSOP_ARGUMENTS is used, so it will
    // be unsound in several cases. The frontend filters out such cases by
    // setting this flag which eagerly sets script->needsArgsObj to true.
    //
    bool definitelyNeedsArgsObj:1;

    bool needsHomeObject:1;
    bool isDerivedClassConstructor:1;

    // Whether this function has a .this binding. If true, we need to emit
    // JSOP_FUNCTIONTHIS in the prologue to initialize it.
    bool hasThisBinding:1;

    FunctionContextFlags flagsForNestedGeneratorComprehensionLambda() const {
        FunctionContextFlags flags;
        flags.mightAliasLocals = mightAliasLocals;
        flags.hasExtensibleScope = false;
        flags.needsDeclEnvObject = false;
        flags.argumentsHasLocalBinding = false;
        flags.definitelyNeedsArgsObj = false;
        flags.needsHomeObject = false;
        flags.isDerivedClassConstructor = false;
        flags.hasThisBinding = false;
        return flags;
    }

  public:
    FunctionContextFlags()
     :  mightAliasLocals(false),
        hasExtensibleScope(false),
        needsDeclEnvObject(false),
        argumentsHasLocalBinding(false),
        definitelyNeedsArgsObj(false),
        needsHomeObject(false),
        isDerivedClassConstructor(false),
        hasThisBinding(false)
    { }
};

// List of directives that may be encountered in a Directive Prologue (ES5 15.1).
class Directives
{
    bool strict_;
    bool asmJS_;

  public:
    explicit Directives(bool strict) : strict_(strict), asmJS_(false) {}
    template <typename ParseHandler> explicit Directives(ParseContext<ParseHandler>* parent);

    void setStrict() { strict_ = true; }
    bool strict() const { return strict_; }

    void setAsmJS() { asmJS_ = true; }
    bool asmJS() const { return asmJS_; }

    Directives& operator=(Directives rhs) {
        strict_ = rhs.strict_;
        asmJS_ = rhs.asmJS_;
        return *this;
    }
    bool operator==(const Directives& rhs) const {
        return strict_ == rhs.strict_ && asmJS_ == rhs.asmJS_;
    }
    bool operator!=(const Directives& rhs) const {
        return !(*this == rhs);
    }
};

// The kind of this-binding for the current scope. Note that arrow functions
// (and generator expression lambdas) have a lexical this-binding so their
// ThisBinding is the same as the ThisBinding of their enclosing scope and can
// be any value.
enum class ThisBinding { Global, Function, Module };

/*
 * The struct SharedContext is part of the current parser context (see
 * ParseContext). It stores information that is reused between the parser and
 * the bytecode emitter. Note however, that this information is not shared
 * between the two; they simply reuse the same data structure.
 */
class SharedContext
{
  public:
    ExclusiveContext* const context;
    AnyContextFlags anyCxFlags;
    bool strictScript;
    bool localStrict;
    bool extraWarnings;

  private:
    ThisBinding thisBinding_;

    bool allowNewTarget_;
    bool allowSuperProperty_;
    bool allowSuperCall_;
    bool inWith_;
    bool needsThisTDZChecks_;
    bool superScopeAlreadyNeedsHomeObject_;

  public:
    SharedContext(ExclusiveContext* cx, Directives directives,
                  bool extraWarnings)
      : context(cx),
        anyCxFlags(),
        strictScript(directives.strict()),
        localStrict(false),
        extraWarnings(extraWarnings),
        thisBinding_(ThisBinding::Global),
        allowNewTarget_(false),
        allowSuperProperty_(false),
        allowSuperCall_(false),
        inWith_(false),
        needsThisTDZChecks_(false),
        superScopeAlreadyNeedsHomeObject_(false)
    { }

    // The unfortunate reason that staticScope() is a virtual is because
    // GlobalSharedContext and FunctionBox have different lifetimes.
    // GlobalSharedContexts are stack allocated and thus may use RootedObject
    // for the static scope. FunctionBoxes are LifoAlloc'd and need to
    // manually trace their static scope.
    virtual JSObject* staticScope() const = 0;
    void computeAllowSyntax(JSObject* staticScope);
    void computeInWith(JSObject* staticScope);
    void computeThisBinding(JSObject* staticScope);

    virtual ObjectBox* toObjectBox() { return nullptr; }
    bool isObjectBox() { return toObjectBox() != nullptr; }
    bool isFunctionBox() { return isObjectBox() && toObjectBox()->isFunctionBox(); }
    inline FunctionBox* asFunctionBox();
    bool isModuleBox() { return isObjectBox() && toObjectBox()->isModuleBox(); }
    inline ModuleBox* asModuleBox();
    bool isGlobalContext() { return !toObjectBox(); }

    ThisBinding thisBinding()          const { return thisBinding_; }

    bool allowNewTarget()              const { return allowNewTarget_; }
    bool allowSuperProperty()          const { return allowSuperProperty_; }
    bool allowSuperCall()              const { return allowSuperCall_; }
    bool inWith()                      const { return inWith_; }
    bool needsThisTDZChecks()          const { return needsThisTDZChecks_; }

    void markSuperScopeNeedsHomeObject();

    bool hasExplicitUseStrict()        const { return anyCxFlags.hasExplicitUseStrict; }
    bool bindingsAccessedDynamically() const { return anyCxFlags.bindingsAccessedDynamically; }
    bool hasDebuggerStatement()        const { return anyCxFlags.hasDebuggerStatement; }
    bool hasDirectEval()               const { return anyCxFlags.hasDirectEval; }

    void setExplicitUseStrict()           { anyCxFlags.hasExplicitUseStrict        = true; }
    void setBindingsAccessedDynamically() { anyCxFlags.bindingsAccessedDynamically = true; }
    void setHasDebuggerStatement()        { anyCxFlags.hasDebuggerStatement        = true; }
    void setHasDirectEval()               { anyCxFlags.hasDirectEval               = true; }

    inline bool allLocalsAliased();

    bool strict() const {
        return strictScript || localStrict;
    }
    bool setLocalStrictMode(bool strict) {
        bool retVal = localStrict;
        localStrict = strict;
        return retVal;
    }

    // JSOPTION_EXTRA_WARNINGS warnings or strict mode errors.
    bool needStrictChecks() const {
        return strict() || extraWarnings;
    }

    bool isDotVariable(JSAtom* atom) const {
        return atom == context->names().dotGenerator || atom == context->names().dotThis;
    }
};

class MOZ_STACK_CLASS GlobalSharedContext : public SharedContext
{
    Rooted<ScopeObject*> staticScope_;

  public:
    GlobalSharedContext(ExclusiveContext* cx, ScopeObject* staticScope, Directives directives,
                        bool extraWarnings, JSFunction* maybeEvalCaller = nullptr)
      : SharedContext(cx, directives, extraWarnings),
        staticScope_(cx, staticScope)
    {
        computeAllowSyntax(staticScope);
        computeInWith(staticScope);

        // If we're executing a Debugger eval-in-frame, staticScope is always a
        // non-function scope, so we have to compute our ThisBinding based on
        // the actual callee.
        if (maybeEvalCaller)
            computeThisBinding(maybeEvalCaller);
        else
            computeThisBinding(staticScope);
    }

    JSObject* staticScope() const override { return staticScope_; }
};

class FunctionBox : public ObjectBox, public SharedContext
{
  public:
    Bindings        bindings;               /* bindings for this function */
    JSObject*       enclosingStaticScope_;
    uint32_t        bufStart;
    uint32_t        bufEnd;
    uint32_t        startLine;
    uint32_t        startColumn;
    uint16_t        length;

    uint8_t         generatorKindBits_;     /* The GeneratorKind of this function. */
    bool            inGenexpLambda:1;       /* lambda from generator expression */
    bool            hasDestructuringArgs:1; /* arguments list contains destructuring expression */
    bool            useAsm:1;               /* see useAsmOrInsideUseAsm */
    bool            insideUseAsm:1;         /* see useAsmOrInsideUseAsm */
    bool            wasEmitted:1;           /* Bytecode has been emitted for this function. */

    // Fields for use in heuristics.
    bool            usesArguments:1;  /* contains a free use of 'arguments' */
    bool            usesApply:1;      /* contains an f.apply() call */
    bool            usesThis:1;       /* contains 'this' */
    bool            usesReturn:1;     /* contains a 'return' statement */

    FunctionContextFlags funCxFlags;

    template <typename ParseHandler>
    FunctionBox(ExclusiveContext* cx, ObjectBox* traceListHead, JSFunction* fun,
                JSObject* enclosingStaticScope, ParseContext<ParseHandler>* pc,
                Directives directives, bool extraWarnings, GeneratorKind generatorKind);

    ObjectBox* toObjectBox() override { return this; }
    JSFunction* function() const { return &object->as<JSFunction>(); }
    JSObject* staticScope() const override { return function(); }
    JSObject* enclosingStaticScope() const { return enclosingStaticScope_; }

    bool isLikelyConstructorWrapper() const {
        return usesArguments && usesApply && usesThis && !usesReturn;
    }

    GeneratorKind generatorKind() const { return GeneratorKindFromBits(generatorKindBits_); }
    bool isGenerator() const { return generatorKind() != NotGenerator; }
    bool isLegacyGenerator() const { return generatorKind() == LegacyGenerator; }
    bool isStarGenerator() const { return generatorKind() == StarGenerator; }
    bool isArrow() const { return function()->isArrow(); }

    void setGeneratorKind(GeneratorKind kind) {
        // A generator kind can be set at initialization, or when "yield" is
        // first seen.  In both cases the transition can only happen from
        // NotGenerator.
        MOZ_ASSERT(!isGenerator());
        generatorKindBits_ = GeneratorKindAsBits(kind);
    }

    bool mightAliasLocals()         const { return funCxFlags.mightAliasLocals; }
    bool hasExtensibleScope()       const { return funCxFlags.hasExtensibleScope; }
    bool needsDeclEnvObject()       const { return funCxFlags.needsDeclEnvObject; }
    bool hasThisBinding()           const { return funCxFlags.hasThisBinding; }
    bool argumentsHasLocalBinding() const { return funCxFlags.argumentsHasLocalBinding; }
    bool definitelyNeedsArgsObj()   const { return funCxFlags.definitelyNeedsArgsObj; }
    bool needsHomeObject()          const { return funCxFlags.needsHomeObject; }
    bool isDerivedClassConstructor() const { return funCxFlags.isDerivedClassConstructor; }

    void setMightAliasLocals()             { funCxFlags.mightAliasLocals         = true; }
    void setHasExtensibleScope()           { funCxFlags.hasExtensibleScope       = true; }
    void setNeedsDeclEnvObject()           { funCxFlags.needsDeclEnvObject       = true; }
    void setHasThisBinding()               { funCxFlags.hasThisBinding           = true; }
    void setArgumentsHasLocalBinding()     { funCxFlags.argumentsHasLocalBinding = true; }
    void setDefinitelyNeedsArgsObj()       { MOZ_ASSERT(funCxFlags.argumentsHasLocalBinding);
                                             funCxFlags.definitelyNeedsArgsObj   = true; }
    void setNeedsHomeObject()              { MOZ_ASSERT(function()->allowSuperProperty());
                                             funCxFlags.needsHomeObject          = true; }
    void setDerivedClassConstructor()      { MOZ_ASSERT(function()->isClassConstructor());
                                             funCxFlags.isDerivedClassConstructor = true; }

    FunctionContextFlags flagsForNestedGeneratorComprehensionLambda() const {
        return funCxFlags.flagsForNestedGeneratorComprehensionLambda();
    }

    bool hasDefaults() const {
        return length != function()->nargs() - function()->hasRest();
    }

    bool hasMappedArgsObj() const {
        return !strict() && !function()->hasRest() && !hasDefaults() && !hasDestructuringArgs;
    }

    // Return whether this or an enclosing function is being parsed and
    // validated as asm.js. Note: if asm.js validation fails, this will be false
    // while the function is being reparsed. This flag can be used to disable
    // certain parsing features that are necessary in general, but unnecessary
    // for validated asm.js.
    bool useAsmOrInsideUseAsm() const {
        return useAsm || insideUseAsm;
    }

    void setStart(const TokenStream& tokenStream) {
        bufStart = tokenStream.currentToken().pos.begin;
        startLine = tokenStream.getLineno();
        startColumn = tokenStream.getColumn();
    }

    bool needsCallObject()
    {
        // Note: this should be kept in sync with JSFunction::needsCallObject().
        return bindings.hasAnyAliasedBindings() ||
               hasExtensibleScope() ||
               needsDeclEnvObject() ||
               needsHomeObject()    ||
               isDerivedClassConstructor() ||
               isGenerator();
    }
};

class ModuleBox : public ObjectBox, public SharedContext
{
  public:
    Bindings bindings;
    TraceableVector<JSAtom*> exportNames;

    template <typename ParseHandler>
    ModuleBox(ExclusiveContext* cx, ObjectBox* traceListHead, ModuleObject* module,
              ParseContext<ParseHandler>* pc);

    ObjectBox* toObjectBox() override { return this; }
    ModuleObject* module() const { return &object->as<ModuleObject>(); }
    JSObject* staticScope() const override { return module(); }
};

inline FunctionBox*
SharedContext::asFunctionBox()
{
    MOZ_ASSERT(isFunctionBox());
    return static_cast<FunctionBox*>(this);
}

inline ModuleBox*
SharedContext::asModuleBox()
{
    MOZ_ASSERT(isModuleBox());
    return static_cast<ModuleBox*>(this);
}


// In generators, we treat all locals as aliased so that they get stored on the
// heap.  This way there is less information to copy off the stack when
// suspending, and back on when resuming.  It also avoids the need to create and
// invalidate DebugScope proxies for unaliased locals in a generator frame, as
// the generator frame will be copied out to the heap and released only by GC.
inline bool
SharedContext::allLocalsAliased()
{
    return bindingsAccessedDynamically() || (isFunctionBox() && asFunctionBox()->isGenerator());
}


/*
 * NB: If you add a new type of statement that is a scope, add it between
 * STMT_WITH and STMT_CATCH, or you will break StmtInfoBase::linksScope. If you
 * add a non-looping statement type, add it before STMT_DO_LOOP or you will
 * break StmtInfoBase::isLoop().
 *
 * Also remember to keep the statementName array in BytecodeEmitter.cpp in
 * sync.
 */
enum class StmtType : uint16_t {
    LABEL,                 /* labeled statement:  L: s */
    IF,                    /* if (then) statement */
    ELSE,                  /* else clause of if statement */
    SEQ,                   /* synthetic sequence of statements */
    BLOCK,                 /* compound statement: { s1[;... sN] } */
    SWITCH,                /* switch statement */
    WITH,                  /* with statement */
    CATCH,                 /* catch block */
    TRY,                   /* try block */
    FINALLY,               /* finally block */
    SUBROUTINE,            /* gosub-target subroutine body */
    DO_LOOP,               /* do/while loop statement */
    FOR_LOOP,              /* for loop statement */
    FOR_IN_LOOP,           /* for/in loop statement */
    FOR_OF_LOOP,           /* for/of loop statement */
    WHILE_LOOP,            /* while loop statement */
    SPREAD,                /* spread operator (pseudo for/of) */
    LIMIT
};

/*
 * A comment on the encoding of the js::StmtType enum and StmtInfoBase
 * type-testing methods:
 *
 * StmtInfoBase::maybeScope() tells whether a statement type is always, or may
 * become, a lexical scope. It therefore includes block and switch (the two
 * low-numbered "maybe" scope types) and excludes with (with has dynamic scope
 * pending the "reformed with" in ES4/JS2). It includes all try-catch-finally
 * types, which are high-numbered maybe-scope types.
 *
 * StmtInfoBase::linksScope() tells whether a js::StmtInfo{PC,BCE} of the given
 * type eagerly links to other scoping statement info records. It excludes the
 * two early "maybe" types, block and switch, as well as the try and both
 * finally types, since try and the other trailing maybe-scope types don't need
 * block scope unless they contain let declarations.
 *
 * We treat WITH as a static scope because it prevents lexical binding from
 * continuing further up the static scope chain. With the lost "reformed with"
 * proposal for ES4, we would be able to model it statically, too.
 */

// StmtInfoPC is used by the Parser.  StmtInfoBCE is used by the
// BytecodeEmitter.  The two types have some overlap, encapsulated by
// StmtInfoBase.

struct StmtInfoBase
{
    // Statement type (StmtType).
    StmtType type;

    // True if type is StmtType::BLOCK, StmtType::TRY, StmtType::SWITCH, or
    // StmtType::FINALLY and the block contains at least one let-declaration,
    // or if type is StmtType::CATCH.
    bool isBlockScope:1;

    // for (let ...) induced block scope
    bool isForLetBlock:1;

    // Block label.
    RootedAtom      label;

    // Compile-time scope chain node for this scope.
    Rooted<NestedScopeObject*> staticScope;

    explicit StmtInfoBase(ExclusiveContext* cx)
        : isBlockScope(false), isForLetBlock(false),
          label(cx), staticScope(cx)
    {}

    bool maybeScope() const {
        return StmtType::BLOCK <= type && type <= StmtType::SUBROUTINE &&
               type != StmtType::WITH;
    }

    bool linksScope() const {
        return !!staticScope;
    }

    bool canBeBlockScope() {
        return type == StmtType::BLOCK ||
               type == StmtType::SWITCH ||
               type == StmtType::TRY ||
               type == StmtType::FINALLY ||
               type == StmtType::CATCH;
    }

    StaticBlockObject& staticBlock() const {
        MOZ_ASSERT(staticScope);
        MOZ_ASSERT(isBlockScope);
        return staticScope->as<StaticBlockObject>();
    }

    bool isLoop() const {
        return type >= StmtType::DO_LOOP;
    }

    bool isTrying() const {
        return StmtType::TRY <= type && type <= StmtType::SUBROUTINE;
    }
};

template <class StmtInfo>
class MOZ_STACK_CLASS StmtInfoStack
{
    // Top of the stack.
    StmtInfo* innermostStmt_;

    // Top scope statement with a nested scope.
    StmtInfo* innermostScopeStmt_;

  public:
    explicit StmtInfoStack(ExclusiveContext* cx)
      : innermostStmt_(nullptr),
        innermostScopeStmt_(nullptr)
    { }

    StmtInfo* innermost() const { return innermostStmt_; }
    StmtInfo* innermostScopeStmt() const { return innermostScopeStmt_; }

    void push(StmtInfo* stmt, StmtType type) {
        stmt->type = type;
        stmt->isBlockScope = false;
        stmt->isForLetBlock = false;
        stmt->label = nullptr;
        stmt->staticScope = nullptr;
        stmt->enclosing = innermostStmt_;
        stmt->enclosingScope = nullptr;
        innermostStmt_ = stmt;
    }

    void pushNestedScope(StmtInfo* stmt, StmtType type, NestedScopeObject& staticScope) {
        push(stmt, type);
        linkAsInnermostScopeStmt(stmt, staticScope);
    }

    void pop() {
        StmtInfo* stmt = innermostStmt_;
        innermostStmt_ = stmt->enclosing;
        if (stmt->linksScope())
            innermostScopeStmt_ = stmt->enclosingScope;
    }

    void linkAsInnermostScopeStmt(StmtInfo* stmt, NestedScopeObject& staticScope) {
        MOZ_ASSERT(stmt != innermostScopeStmt_);
        MOZ_ASSERT(!stmt->enclosingScope);
        stmt->enclosingScope = innermostScopeStmt_;
        innermostScopeStmt_ = stmt;
        stmt->staticScope = &staticScope;
    }

    void makeInnermostLexicalScope(StaticBlockObject& blockObj) {
        MOZ_ASSERT(!innermostStmt_->isBlockScope);
        MOZ_ASSERT(innermostStmt_->canBeBlockScope());
        innermostStmt_->isBlockScope = true;
        linkAsInnermostScopeStmt(innermostStmt_, blockObj);
    }
};

} // namespace frontend

} // namespace js

#endif /* frontend_SharedContext_h */