DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (dcc6d7a0dc00)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "imgFrame.h"
#include "ImageRegion.h"
#include "ShutdownTracker.h"

#include "prenv.h"

#include "gfx2DGlue.h"
#include "gfxPlatform.h"
#include "gfxUtils.h"
#include "gfxAlphaRecovery.h"

static bool gDisableOptimize = false;

#include "GeckoProfiler.h"
#include "mozilla/Likely.h"
#include "MainThreadUtils.h"
#include "mozilla/MemoryReporting.h"
#include "nsMargin.h"
#include "nsThreadUtils.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/gfx/Tools.h"


namespace mozilla {

using namespace gfx;

namespace image {

static UserDataKey kVolatileBuffer;

static void
VolatileBufferRelease(void* vbuf)
{
  delete static_cast<VolatileBufferPtr<unsigned char>*>(vbuf);
}

static int32_t
VolatileSurfaceStride(const IntSize& size, SurfaceFormat format)
{
  // Stride must be a multiple of four or cairo will complain.
  return (size.width * BytesPerPixel(format) + 0x3) & ~0x3;
}

static already_AddRefed<DataSourceSurface>
CreateLockedSurface(VolatileBuffer* vbuf,
                    const IntSize& size,
                    SurfaceFormat format)
{
  VolatileBufferPtr<unsigned char>* vbufptr =
    new VolatileBufferPtr<unsigned char>(vbuf);
  MOZ_ASSERT(!vbufptr->WasBufferPurged(), "Expected image data!");

  int32_t stride = VolatileSurfaceStride(size, format);
  RefPtr<DataSourceSurface> surf =
    Factory::CreateWrappingDataSourceSurface(*vbufptr, stride, size, format);
  if (!surf) {
    delete vbufptr;
    return nullptr;
  }

  surf->AddUserData(&kVolatileBuffer, vbufptr, VolatileBufferRelease);
  return surf.forget();
}

static already_AddRefed<VolatileBuffer>
AllocateBufferForImage(const IntSize& size, SurfaceFormat format)
{
  int32_t stride = VolatileSurfaceStride(size, format);
  RefPtr<VolatileBuffer> buf = new VolatileBuffer();
  if (buf->Init(stride * size.height,
                1 << gfxAlphaRecovery::GoodAlignmentLog2())) {
    return buf.forget();
  }

  return nullptr;
}

// Returns true if an image of aWidth x aHeight is allowed and legal.
static bool
AllowedImageSize(int32_t aWidth, int32_t aHeight)
{
  // reject over-wide or over-tall images
  const int32_t k64KLimit = 0x0000FFFF;
  if (MOZ_UNLIKELY(aWidth > k64KLimit || aHeight > k64KLimit )) {
    NS_WARNING("image too big");
    return false;
  }

  // protect against invalid sizes
  if (MOZ_UNLIKELY(aHeight <= 0 || aWidth <= 0)) {
    return false;
  }

  // check to make sure we don't overflow a 32-bit
  CheckedInt32 requiredBytes = CheckedInt32(aWidth) * CheckedInt32(aHeight) * 4;
  if (MOZ_UNLIKELY(!requiredBytes.isValid())) {
    NS_WARNING("width or height too large");
    return false;
  }
#if defined(XP_MACOSX)
  // CoreGraphics is limited to images < 32K in *height*, so clamp all surfaces
  // on the Mac to that height
  if (MOZ_UNLIKELY(aHeight > SHRT_MAX)) {
    NS_WARNING("image too big");
    return false;
  }
#endif
  return true;
}

static bool AllowedImageAndFrameDimensions(const nsIntSize& aImageSize,
                                           const nsIntRect& aFrameRect)
{
  if (!AllowedImageSize(aImageSize.width, aImageSize.height)) {
    return false;
  }
  if (!AllowedImageSize(aFrameRect.width, aFrameRect.height)) {
    return false;
  }
  nsIntRect imageRect(0, 0, aImageSize.width, aImageSize.height);
  if (!imageRect.Contains(aFrameRect)) {
    NS_WARNING("Animated image frame does not fit inside bounds of image");
  }
  return true;
}

imgFrame::imgFrame()
  : mMonitor("imgFrame")
  , mDecoded(0, 0, 0, 0)
  , mLockCount(0)
  , mTimeout(100)
  , mDisposalMethod(DisposalMethod::NOT_SPECIFIED)
  , mBlendMethod(BlendMethod::OVER)
  , mHasNoAlpha(false)
  , mAborted(false)
  , mOptimizable(false)
  , mPalettedImageData(nullptr)
  , mPaletteDepth(0)
  , mNonPremult(false)
  , mSinglePixel(false)
  , mCompositingFailed(false)
{
  static bool hasCheckedOptimize = false;
  if (!hasCheckedOptimize) {
    if (PR_GetEnv("MOZ_DISABLE_IMAGE_OPTIMIZE")) {
      gDisableOptimize = true;
    }
    hasCheckedOptimize = true;
  }
}

imgFrame::~imgFrame()
{
#ifdef DEBUG
  MonitorAutoLock lock(mMonitor);
  MOZ_ASSERT(mAborted || IsImageCompleteInternal());
#endif

  free(mPalettedImageData);
  mPalettedImageData = nullptr;
}

nsresult
imgFrame::InitForDecoder(const nsIntSize& aImageSize,
                         const nsIntRect& aRect,
                         SurfaceFormat aFormat,
                         uint8_t aPaletteDepth /* = 0 */,
                         bool aNonPremult /* = false */)
{
  // Assert for properties that should be verified by decoders,
  // warn for properties related to bad content.
  if (!AllowedImageAndFrameDimensions(aImageSize, aRect)) {
    NS_WARNING("Should have legal image size");
    mAborted = true;
    return NS_ERROR_FAILURE;
  }

  mImageSize = aImageSize;
  mOffset.MoveTo(aRect.x, aRect.y);
  mSize.SizeTo(aRect.width, aRect.height);

  mFormat = aFormat;
  mPaletteDepth = aPaletteDepth;
  mNonPremult = aNonPremult;

  if (aPaletteDepth != 0) {
    // We're creating for a paletted image.
    if (aPaletteDepth > 8) {
      NS_WARNING("Should have legal palette depth");
      NS_ERROR("This Depth is not supported");
      mAborted = true;
      return NS_ERROR_FAILURE;
    }

    // Use the fallible allocator here. Paletted images always use 1 byte per
    // pixel, so calculating the amount of memory we need is straightforward.
    mPalettedImageData =
      static_cast<uint8_t*>(malloc(PaletteDataLength() +
                                   (mSize.width * mSize.height)));
    if (!mPalettedImageData) {
      NS_WARNING("malloc for paletted image data should succeed");
    }
    NS_ENSURE_TRUE(mPalettedImageData, NS_ERROR_OUT_OF_MEMORY);
  } else {
    MOZ_ASSERT(!mImageSurface, "Called imgFrame::InitForDecoder() twice?");

    mVBuf = AllocateBufferForImage(mSize, mFormat);
    if (!mVBuf) {
      mAborted = true;
      return NS_ERROR_OUT_OF_MEMORY;
    }
    if (mVBuf->OnHeap()) {
      int32_t stride = VolatileSurfaceStride(mSize, mFormat);
      VolatileBufferPtr<uint8_t> ptr(mVBuf);
      memset(ptr, 0, stride * mSize.height);
    }
    mImageSurface = CreateLockedSurface(mVBuf, mSize, mFormat);

    if (!mImageSurface) {
      NS_WARNING("Failed to create VolatileDataSourceSurface");
      mAborted = true;
      return NS_ERROR_OUT_OF_MEMORY;
    }
  }

  return NS_OK;
}

nsresult
imgFrame::InitWithDrawable(gfxDrawable* aDrawable,
                           const nsIntSize& aSize,
                           const SurfaceFormat aFormat,
                           Filter aFilter,
                           uint32_t aImageFlags)
{
  // Assert for properties that should be verified by decoders,
  // warn for properties related to bad content.
  if (!AllowedImageSize(aSize.width, aSize.height)) {
    NS_WARNING("Should have legal image size");
    mAborted = true;
    return NS_ERROR_FAILURE;
  }

  mImageSize = aSize;
  mOffset.MoveTo(0, 0);
  mSize.SizeTo(aSize.width, aSize.height);

  mFormat = aFormat;
  mPaletteDepth = 0;

  RefPtr<DrawTarget> target;

  bool canUseDataSurface =
    gfxPlatform::GetPlatform()->CanRenderContentToDataSurface();

  if (canUseDataSurface) {
    // It's safe to use data surfaces for content on this platform, so we can
    // get away with using volatile buffers.
    MOZ_ASSERT(!mImageSurface, "Called imgFrame::InitWithDrawable() twice?");

    mVBuf = AllocateBufferForImage(mSize, mFormat);
    if (!mVBuf) {
      mAborted = true;
      return NS_ERROR_OUT_OF_MEMORY;
    }

    int32_t stride = VolatileSurfaceStride(mSize, mFormat);
    VolatileBufferPtr<uint8_t> ptr(mVBuf);
    if (!ptr) {
      mAborted = true;
      return NS_ERROR_OUT_OF_MEMORY;
    }
    if (mVBuf->OnHeap()) {
      memset(ptr, 0, stride * mSize.height);
    }
    mImageSurface = CreateLockedSurface(mVBuf, mSize, mFormat);

    target = gfxPlatform::GetPlatform()->
      CreateDrawTargetForData(ptr, mSize, stride, mFormat);
  } else {
    // We can't use data surfaces for content, so we'll create an offscreen
    // surface instead.  This means if someone later calls RawAccessRef(), we
    // may have to do an expensive readback, but we warned callers about that in
    // the documentation for this method.
    MOZ_ASSERT(!mOptSurface, "Called imgFrame::InitWithDrawable() twice?");

    target = gfxPlatform::GetPlatform()->
      CreateOffscreenContentDrawTarget(mSize, mFormat);
  }

  if (!target) {
    mAborted = true;
    return NS_ERROR_OUT_OF_MEMORY;
  }

  // Draw using the drawable the caller provided.
  nsIntRect imageRect(0, 0, mSize.width, mSize.height);
  RefPtr<gfxContext> ctx = new gfxContext(target);
  gfxUtils::DrawPixelSnapped(ctx, aDrawable, mSize,
                             ImageRegion::Create(ThebesRect(imageRect)),
                             mFormat, aFilter, aImageFlags);

  if (canUseDataSurface && !mImageSurface) {
    NS_WARNING("Failed to create VolatileDataSourceSurface");
    mAborted = true;
    return NS_ERROR_OUT_OF_MEMORY;
  }

  if (!canUseDataSurface) {
    // We used an offscreen surface, which is an "optimized" surface from
    // imgFrame's perspective.
    mOptSurface = target->Snapshot();
  }

  // If we reach this point, we should regard ourselves as complete.
  mDecoded = GetRect();
  MOZ_ASSERT(IsImageComplete());

  return NS_OK;
}

nsresult
imgFrame::Optimize()
{
  MOZ_ASSERT(NS_IsMainThread());
  mMonitor.AssertCurrentThreadOwns();
  MOZ_ASSERT(mLockCount == 1,
             "Should only optimize when holding the lock exclusively");

  // Don't optimize during shutdown because gfxPlatform may not be available.
  if (ShutdownTracker::ShutdownHasStarted()) {
    return NS_OK;
  }

  if (!mOptimizable || gDisableOptimize) {
    return NS_OK;
  }

  if (mPalettedImageData || mOptSurface || mSinglePixel) {
    return NS_OK;
  }

  // Don't do single-color opts on non-premult data.
  // Cairo doesn't support non-premult single-colors.
  if (mNonPremult) {
    return NS_OK;
  }

  /* Figure out if the entire image is a constant color */

  if (gfxPrefs::ImageSingleColorOptimizationEnabled() &&
      mImageSurface->Stride() == mSize.width * 4) {
    uint32_t* imgData = (uint32_t*) ((uint8_t*) mVBufPtr);
    uint32_t firstPixel = * (uint32_t*) imgData;
    uint32_t pixelCount = mSize.width * mSize.height + 1;

    while (--pixelCount && *imgData++ == firstPixel)
      ;

    if (pixelCount == 0) {
      // all pixels were the same
      if (mFormat == SurfaceFormat::B8G8R8A8 ||
          mFormat == SurfaceFormat::B8G8R8X8) {
        mSinglePixel = true;
        mSinglePixelColor.a = ((firstPixel >> 24) & 0xFF) * (1.0f / 255.0f);
        mSinglePixelColor.r = ((firstPixel >> 16) & 0xFF) * (1.0f / 255.0f);
        mSinglePixelColor.g = ((firstPixel >>  8) & 0xFF) * (1.0f / 255.0f);
        mSinglePixelColor.b = ((firstPixel >>  0) & 0xFF) * (1.0f / 255.0f);
        mSinglePixelColor.r /= mSinglePixelColor.a;
        mSinglePixelColor.g /= mSinglePixelColor.a;
        mSinglePixelColor.b /= mSinglePixelColor.a;

        // blow away the older surfaces (if they exist), to release their memory
        mVBuf = nullptr;
        mVBufPtr = nullptr;
        mImageSurface = nullptr;
        mOptSurface = nullptr;

        return NS_OK;
      }
    }

    // if it's not RGB24/ARGB32, don't optimize, but we never hit this at the
    // moment
  }

#ifdef ANDROID
  SurfaceFormat optFormat = gfxPlatform::GetPlatform()
    ->Optimal2DFormatForContent(gfxContentType::COLOR);

  if (mFormat != SurfaceFormat::B8G8R8A8 &&
      optFormat == SurfaceFormat::R5G6B5_UINT16) {
    RefPtr<VolatileBuffer> buf =
      AllocateBufferForImage(mSize, optFormat);
    if (!buf) {
      return NS_OK;
    }

    RefPtr<DataSourceSurface> surf =
      CreateLockedSurface(buf, mSize, optFormat);
    if (!surf) {
      return NS_ERROR_OUT_OF_MEMORY;
    }

    DataSourceSurface::MappedSurface mapping;
    if (!surf->Map(DataSourceSurface::MapType::WRITE, &mapping)) {
      gfxCriticalError() << "imgFrame::Optimize failed to map surface";
      return NS_ERROR_FAILURE;
    }

    RefPtr<DrawTarget> target =
      Factory::CreateDrawTargetForData(BackendType::CAIRO,
                                       mapping.mData,
                                       mSize,
                                       mapping.mStride,
                                       optFormat);

    if (!target) {
      gfxWarning() << "imgFrame::Optimize failed in CreateDrawTargetForData";
      return NS_ERROR_OUT_OF_MEMORY;
    }
    Rect rect(0, 0, mSize.width, mSize.height);
    target->DrawSurface(mImageSurface, rect, rect);
    target->Flush();
    surf->Unmap();

    mImageSurface = surf;
    mVBuf = buf;
    mFormat = optFormat;
  }
#else
  mOptSurface = gfxPlatform::GetPlatform()
    ->ScreenReferenceDrawTarget()->OptimizeSourceSurface(mImageSurface);
  if (mOptSurface == mImageSurface) {
    mOptSurface = nullptr;
  }
#endif

  if (mOptSurface) {
    mVBuf = nullptr;
    mVBufPtr = nullptr;
    mImageSurface = nullptr;
  }

#ifdef MOZ_WIDGET_ANDROID
  // On Android, free mImageSurface unconditionally if we're discardable. This
  // allows the operating system to free our volatile buffer.
  // XXX(seth): We'd eventually like to do this on all platforms, but right now
  // converting raw memory to a SourceSurface is expensive on some backends.
  mImageSurface = nullptr;
#endif

  return NS_OK;
}

DrawableFrameRef
imgFrame::DrawableRef()
{
  return DrawableFrameRef(this);
}

RawAccessFrameRef
imgFrame::RawAccessRef()
{
  return RawAccessFrameRef(this);
}

void
imgFrame::SetRawAccessOnly()
{
  AssertImageDataLocked();

  // Lock our data and throw away the key.
  LockImageData();
}


imgFrame::SurfaceWithFormat
imgFrame::SurfaceForDrawing(bool               aDoPadding,
                            bool               aDoPartialDecode,
                            bool               aDoTile,
                            gfxContext*        aContext,
                            const nsIntMargin& aPadding,
                            gfxRect&           aImageRect,
                            ImageRegion&       aRegion,
                            SourceSurface*     aSurface)
{
  MOZ_ASSERT(NS_IsMainThread());
  mMonitor.AssertCurrentThreadOwns();

  IntSize size(int32_t(aImageRect.Width()), int32_t(aImageRect.Height()));
  if (!aDoPadding && !aDoPartialDecode) {
    NS_ASSERTION(!mSinglePixel, "This should already have been handled");
    return SurfaceWithFormat(new gfxSurfaceDrawable(aSurface, size), mFormat);
  }

  gfxRect available = gfxRect(mDecoded.x, mDecoded.y, mDecoded.width,
                              mDecoded.height);

  if (aDoTile || mSinglePixel) {
    // Create a temporary surface.
    // Give this surface an alpha channel because there are
    // transparent pixels in the padding or undecoded area
    RefPtr<DrawTarget> target =
      gfxPlatform::GetPlatform()->
        CreateOffscreenContentDrawTarget(size, SurfaceFormat::B8G8R8A8);
    if (!target) {
      return SurfaceWithFormat();
    }

    // Fill 'available' with whatever we've got
    if (mSinglePixel) {
      target->FillRect(ToRect(aRegion.Intersect(available).Rect()),
                       ColorPattern(mSinglePixelColor),
                       DrawOptions(1.0f, CompositionOp::OP_SOURCE));
    } else {
      SurfacePattern pattern(aSurface,
                             aRegion.GetExtendMode(),
                             Matrix::Translation(mDecoded.x, mDecoded.y));
      target->FillRect(ToRect(aRegion.Intersect(available).Rect()), pattern);
    }

    RefPtr<SourceSurface> newsurf = target->Snapshot();
    return SurfaceWithFormat(new gfxSurfaceDrawable(newsurf, size),
                             target->GetFormat());
  }

  // Not tiling, and we have a surface, so we can account for
  // padding and/or a partial decode just by twiddling parameters.
  gfxPoint paddingTopLeft(aPadding.left, aPadding.top);
  aRegion = aRegion.Intersect(available) - paddingTopLeft;
  aContext->Multiply(gfxMatrix::Translation(paddingTopLeft));
  aImageRect = gfxRect(0, 0, mSize.width, mSize.height);

  IntSize availableSize(mDecoded.width, mDecoded.height);
  return SurfaceWithFormat(new gfxSurfaceDrawable(aSurface, availableSize),
                           mFormat);
}

bool imgFrame::Draw(gfxContext* aContext, const ImageRegion& aRegion,
                    Filter aFilter, uint32_t aImageFlags)
{
  PROFILER_LABEL("imgFrame", "Draw",
    js::ProfileEntry::Category::GRAPHICS);

  MOZ_ASSERT(NS_IsMainThread());
  NS_ASSERTION(!aRegion.Rect().IsEmpty(), "Drawing empty region!");
  NS_ASSERTION(!aRegion.IsRestricted() ||
               !aRegion.Rect().Intersect(aRegion.Restriction()).IsEmpty(),
               "We must be allowed to sample *some* source pixels!");
  NS_ASSERTION(!mPalettedImageData, "Directly drawing a paletted image!");

  MonitorAutoLock lock(mMonitor);

  nsIntMargin padding(mOffset.y,
                      mImageSize.width - (mOffset.x + mSize.width),
                      mImageSize.height - (mOffset.y + mSize.height),
                      mOffset.x);

  bool doPadding = padding != nsIntMargin(0,0,0,0);
  bool doPartialDecode = !IsImageCompleteInternal();

  if (mSinglePixel && !doPadding && !doPartialDecode) {
    if (mSinglePixelColor.a == 0.0) {
      return true;
    }
    RefPtr<DrawTarget> dt = aContext->GetDrawTarget();
    dt->FillRect(ToRect(aRegion.Rect()),
                 ColorPattern(mSinglePixelColor),
                 DrawOptions(1.0f, aContext->CurrentOp()));
    return true;
  }

  RefPtr<SourceSurface> surf = GetSurfaceInternal();
  if (!surf && !mSinglePixel) {
    return false;
  }

  gfxRect imageRect(0, 0, mImageSize.width, mImageSize.height);
  bool doTile = !imageRect.Contains(aRegion.Rect()) &&
                !(aImageFlags & imgIContainer::FLAG_CLAMP);

  ImageRegion region(aRegion);
  // SurfaceForDrawing changes the current transform, and we need it to still
  // be changed when we call gfxUtils::DrawPixelSnapped. We still need to
  // restore it before returning though.
  // XXXjwatt In general having functions require someone further up the stack
  // to undo transform changes that they make is bad practice. We should
  // change how this code works.
  gfxContextMatrixAutoSaveRestore autoSR(aContext);
  SurfaceWithFormat surfaceResult =
    SurfaceForDrawing(doPadding, doPartialDecode, doTile, aContext,
                      padding, imageRect, region, surf);

  if (surfaceResult.IsValid()) {
    gfxUtils::DrawPixelSnapped(aContext, surfaceResult.mDrawable,
                               imageRect.Size(), region, surfaceResult.mFormat,
                               aFilter, aImageFlags);
  }
  return true;
}

nsresult
imgFrame::ImageUpdated(const nsIntRect& aUpdateRect)
{
  MonitorAutoLock lock(mMonitor);
  return ImageUpdatedInternal(aUpdateRect);
}

nsresult
imgFrame::ImageUpdatedInternal(const nsIntRect& aUpdateRect)
{
  mMonitor.AssertCurrentThreadOwns();

  mDecoded.UnionRect(mDecoded, aUpdateRect);

  // clamp to bounds, in case someone sends a bogus updateRect (I'm looking at
  // you, gif decoder)
  nsIntRect boundsRect(mOffset, mSize);
  mDecoded.IntersectRect(mDecoded, boundsRect);

  // If the image is now complete, wake up anyone who's waiting.
  if (IsImageCompleteInternal()) {
    mMonitor.NotifyAll();
  }

  return NS_OK;
}

void
imgFrame::Finish(Opacity aFrameOpacity /* = Opacity::SOME_TRANSPARENCY */,
                 DisposalMethod aDisposalMethod /* = DisposalMethod::KEEP */,
                 int32_t aRawTimeout /* = 0 */,
                 BlendMethod aBlendMethod /* = BlendMethod::OVER */)
{
  MonitorAutoLock lock(mMonitor);
  MOZ_ASSERT(mLockCount > 0, "Image data should be locked");

  if (aFrameOpacity == Opacity::OPAQUE) {
    mHasNoAlpha = true;
  }

  mDisposalMethod = aDisposalMethod;
  mTimeout = aRawTimeout;
  mBlendMethod = aBlendMethod;
  ImageUpdatedInternal(GetRect());
}

nsIntRect
imgFrame::GetRect() const
{
  return gfx::IntRect(mOffset, mSize);
}

int32_t
imgFrame::GetStride() const
{
  mMonitor.AssertCurrentThreadOwns();

  if (mImageSurface) {
    return mImageSurface->Stride();
  }

  return VolatileSurfaceStride(mSize, mFormat);
}

SurfaceFormat
imgFrame::GetFormat() const
{
  MonitorAutoLock lock(mMonitor);
  return mFormat;
}

uint32_t
imgFrame::GetImageBytesPerRow() const
{
  mMonitor.AssertCurrentThreadOwns();

  if (mVBuf) {
    return mSize.width * BytesPerPixel(mFormat);
  }

  if (mPaletteDepth) {
    return mSize.width;
  }

  return 0;
}

uint32_t
imgFrame::GetImageDataLength() const
{
  return GetImageBytesPerRow() * mSize.height;
}

void
imgFrame::GetImageData(uint8_t** aData, uint32_t* aLength) const
{
  MonitorAutoLock lock(mMonitor);
  GetImageDataInternal(aData, aLength);
}

void
imgFrame::GetImageDataInternal(uint8_t** aData, uint32_t* aLength) const
{
  mMonitor.AssertCurrentThreadOwns();
  MOZ_ASSERT(mLockCount > 0, "Image data should be locked");

  if (mImageSurface) {
    *aData = mVBufPtr;
    MOZ_ASSERT(*aData,
      "mImageSurface is non-null, but mVBufPtr is null in GetImageData");
  } else if (mPalettedImageData) {
    *aData = mPalettedImageData + PaletteDataLength();
    MOZ_ASSERT(*aData,
      "mPalettedImageData is non-null, but result is null in GetImageData");
  } else {
    MOZ_ASSERT(false,
      "Have neither mImageSurface nor mPalettedImageData in GetImageData");
    *aData = nullptr;
  }

  *aLength = GetImageDataLength();
}

uint8_t*
imgFrame::GetImageData() const
{
  uint8_t* data;
  uint32_t length;
  GetImageData(&data, &length);
  return data;
}

bool
imgFrame::GetIsPaletted() const
{
  return mPalettedImageData != nullptr;
}

void
imgFrame::GetPaletteData(uint32_t** aPalette, uint32_t* length) const
{
  AssertImageDataLocked();

  if (!mPalettedImageData) {
    *aPalette = nullptr;
    *length = 0;
  } else {
    *aPalette = (uint32_t*) mPalettedImageData;
    *length = PaletteDataLength();
  }
}

uint32_t*
imgFrame::GetPaletteData() const
{
  uint32_t* data;
  uint32_t length;
  GetPaletteData(&data, &length);
  return data;
}

nsresult
imgFrame::LockImageData()
{
  MonitorAutoLock lock(mMonitor);

  MOZ_ASSERT(mLockCount >= 0, "Unbalanced locks and unlocks");
  if (mLockCount < 0) {
    return NS_ERROR_FAILURE;
  }

  mLockCount++;

  // If we are not the first lock, there's nothing to do.
  if (mLockCount != 1) {
    return NS_OK;
  }

  // If we're the first lock, but have an image surface, we're OK.
  if (mImageSurface) {
    mVBufPtr = mVBuf;
    return NS_OK;
  }

  // Paletted images don't have surfaces, so there's nothing to do.
  if (mPalettedImageData) {
    return NS_OK;
  }

  MOZ_ASSERT_UNREACHABLE("It's illegal to re-lock an optimized imgFrame");
  return NS_ERROR_FAILURE;
}

void
imgFrame::AssertImageDataLocked() const
{
#ifdef DEBUG
  MonitorAutoLock lock(mMonitor);
  MOZ_ASSERT(mLockCount > 0, "Image data should be locked");
#endif
}

class UnlockImageDataRunnable : public nsRunnable
{
public:
  explicit UnlockImageDataRunnable(imgFrame* aTarget)
    : mTarget(aTarget)
  {
    MOZ_ASSERT(mTarget);
  }

  NS_IMETHOD Run() { return mTarget->UnlockImageData(); }

private:
  RefPtr<imgFrame> mTarget;
};

nsresult
imgFrame::UnlockImageData()
{
  MonitorAutoLock lock(mMonitor);

  MOZ_ASSERT(mLockCount > 0, "Unlocking an unlocked image!");
  if (mLockCount <= 0) {
    return NS_ERROR_FAILURE;
  }

  MOZ_ASSERT(mLockCount > 1 || IsImageCompleteInternal() || mAborted,
             "Should have marked complete or aborted before unlocking");

  // If we're about to become unlocked, we don't need to hold on to our data
  // surface anymore. (But we don't need to do anything for paletted images,
  // which don't have surfaces.)
  if (mLockCount == 1 && !mPalettedImageData) {
    // We can't safely optimize off-main-thread, so create a runnable to do it.
    if (!NS_IsMainThread()) {
      nsCOMPtr<nsIRunnable> runnable = new UnlockImageDataRunnable(this);
      NS_DispatchToMainThread(runnable);
      return NS_OK;
    }

    // If we're using a surface format with alpha but the image has no alpha,
    // change the format. This doesn't change the underlying data at all, but
    // allows DrawTargets to avoid blending when drawing known opaque images.
    if (mHasNoAlpha && mFormat == SurfaceFormat::B8G8R8A8 && mImageSurface) {
      mFormat = SurfaceFormat::B8G8R8X8;
      mImageSurface = CreateLockedSurface(mVBuf, mSize, mFormat);
    }

    // Convert the data surface to a GPU surface or a single color if possible.
    // This will also release mImageSurface if possible.
    Optimize();

    // Allow the OS to release our data surface.
    mVBufPtr = nullptr;
  }

  mLockCount--;

  return NS_OK;
}

void
imgFrame::SetOptimizable()
{
  AssertImageDataLocked();
  MonitorAutoLock lock(mMonitor);
  mOptimizable = true;
}

Color
imgFrame::SinglePixelColor() const
{
  MOZ_ASSERT(NS_IsMainThread());
  return mSinglePixelColor;
}

bool
imgFrame::IsSinglePixel() const
{
  MOZ_ASSERT(NS_IsMainThread());
  return mSinglePixel;
}

already_AddRefed<SourceSurface>
imgFrame::GetSurface()
{
  MonitorAutoLock lock(mMonitor);
  return GetSurfaceInternal();
}

already_AddRefed<SourceSurface>
imgFrame::GetSurfaceInternal()
{
  mMonitor.AssertCurrentThreadOwns();

  if (mOptSurface) {
    if (mOptSurface->IsValid()) {
      RefPtr<SourceSurface> surf(mOptSurface);
      return surf.forget();
    } else {
      mOptSurface = nullptr;
    }
  }

  if (mImageSurface) {
    RefPtr<SourceSurface> surf(mImageSurface);
    return surf.forget();
  }

  if (!mVBuf) {
    return nullptr;
  }

  VolatileBufferPtr<char> buf(mVBuf);
  if (buf.WasBufferPurged()) {
    return nullptr;
  }

  return CreateLockedSurface(mVBuf, mSize, mFormat);
}

already_AddRefed<DrawTarget>
imgFrame::GetDrawTarget()
{
  MonitorAutoLock lock(mMonitor);

  uint8_t* data;
  uint32_t length;
  GetImageDataInternal(&data, &length);
  if (!data) {
    return nullptr;
  }

  int32_t stride = GetStride();
  return gfxPlatform::GetPlatform()->
    CreateDrawTargetForData(data, mSize, stride, mFormat);
}

AnimationData
imgFrame::GetAnimationData() const
{
  MonitorAutoLock lock(mMonitor);
  MOZ_ASSERT(mLockCount > 0, "Image data should be locked");

  uint8_t* data;
  if (mPalettedImageData) {
    data = mPalettedImageData;
  } else {
    uint32_t length;
    GetImageDataInternal(&data, &length);
  }

  bool hasAlpha = mFormat == SurfaceFormat::B8G8R8A8;

  return AnimationData(data, PaletteDataLength(), mTimeout, GetRect(),
                       mBlendMethod, mDisposalMethod, hasAlpha);
}

ScalingData
imgFrame::GetScalingData() const
{
  MonitorAutoLock lock(mMonitor);
  MOZ_ASSERT(mLockCount > 0, "Image data should be locked");
  MOZ_ASSERT(!GetIsPaletted(), "GetScalingData can't handle paletted images");

  uint8_t* data;
  uint32_t length;
  GetImageDataInternal(&data, &length);

  return ScalingData(data, mSize, GetImageBytesPerRow(), mFormat);
}

void
imgFrame::Abort()
{
  MonitorAutoLock lock(mMonitor);

  mAborted = true;

  // Wake up anyone who's waiting.
  mMonitor.NotifyAll();
}

bool
imgFrame::IsImageComplete() const
{
  MonitorAutoLock lock(mMonitor);
  return IsImageCompleteInternal();
}

void
imgFrame::WaitUntilComplete() const
{
  MonitorAutoLock lock(mMonitor);

  while (true) {
    // Return if we're aborted or complete.
    if (mAborted || IsImageCompleteInternal()) {
      return;
    }

    // Not complete yet, so we'll have to wait.
    mMonitor.Wait();
  }
}

bool
imgFrame::IsImageCompleteInternal() const
{
  mMonitor.AssertCurrentThreadOwns();
  return mDecoded.IsEqualInterior(nsIntRect(mOffset.x, mOffset.y,
                                            mSize.width, mSize.height));
}

bool imgFrame::GetCompositingFailed() const
{
  MOZ_ASSERT(NS_IsMainThread());
  return mCompositingFailed;
}

void
imgFrame::SetCompositingFailed(bool val)
{
  MOZ_ASSERT(NS_IsMainThread());
  mCompositingFailed = val;
}

void
imgFrame::AddSizeOfExcludingThis(MallocSizeOf aMallocSizeOf,
                                 size_t& aHeapSizeOut,
                                 size_t& aNonHeapSizeOut) const
{
  MonitorAutoLock lock(mMonitor);

  if (mPalettedImageData) {
    aHeapSizeOut += aMallocSizeOf(mPalettedImageData);
  }
  if (mImageSurface) {
    aHeapSizeOut += aMallocSizeOf(mImageSurface);
  }
  if (mOptSurface) {
    aHeapSizeOut += aMallocSizeOf(mOptSurface);
  }

  if (mVBuf) {
    aHeapSizeOut += aMallocSizeOf(mVBuf);
    aHeapSizeOut += mVBuf->HeapSizeOfExcludingThis(aMallocSizeOf);
    aNonHeapSizeOut += mVBuf->NonHeapSizeOfExcludingThis();
  }
}

} // namespace image
} // namespace mozilla