DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (4a108e94d3e2)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */

// Copyright (c) 2006, 2010, 2012, 2013 Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Original author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>

// module.h: Define google_breakpad::Module. A Module holds debugging
// information, and can write that information out as a Breakpad
// symbol file.


//  (C) Copyright Greg Colvin and Beman Dawes 1998, 1999.
//  Copyright (c) 2001, 2002 Peter Dimov
//
//  Permission to copy, use, modify, sell and distribute this software
//  is granted provided this copyright notice appears in all copies.
//  This software is provided "as is" without express or implied
//  warranty, and with no claim as to its suitability for any purpose.
//
//  See http://www.boost.org/libs/smart_ptr/scoped_ptr.htm for documentation.
//


// This file is derived from the following files in
// toolkit/crashreporter/google-breakpad:
//   src/common/unique_string.h
//   src/common/scoped_ptr.h
//   src/common/module.h

// External interface for the "Common" component of LUL.

#ifndef LulCommonExt_h
#define LulCommonExt_h

#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>

#include <string>
#include <map>
#include <vector>
#include <cstddef>            // for std::ptrdiff_t

#include "mozilla/Assertions.h"

namespace lul {

////////////////////////////////////////////////////////////////
// UniqueString
//

// Abstract type
class UniqueString;

// Unique-ify a string.  |ToUniqueString| can never return nullptr.
const UniqueString* ToUniqueString(std::string);

// Get the contained C string (debugging only)
const char* const FromUniqueString(const UniqueString*);

// Some handy pre-uniqified strings.  Z is an escape character:
//   ZS        '$'
//   ZD        '.'
//   Zeq       '='
//   Zplus     '+'
//   Zstar     '*'
//   Zslash    '/'
//   Zpercent  '%'
//   Zat       '@'
//   Zcaret    '^'

// Note that ustr__empty and (UniqueString*)nullptr are considered
// to be different.
//
// Unfortunately these have to be written as functions so as to
// make them safe to use in static initialisers.

// ""
inline static const UniqueString* ustr__empty() {
  static const UniqueString* us = nullptr;
  if (!us) us = ToUniqueString("");
  return us;
}

// ".cfa"
inline static const UniqueString* ustr__ZDcfa() {
  static const UniqueString* us = nullptr;
  if (!us) us = ToUniqueString(".cfa");
  return us;
}

// ".ra"
inline static const UniqueString* ustr__ZDra() {
  static const UniqueString* us = nullptr;
  if (!us) us = ToUniqueString(".ra");
  return us;
}


////////////////////////////////////////////////////////////////
// GUID
//

typedef struct {
  uint32_t data1;
  uint16_t data2;
  uint16_t data3;
  uint8_t  data4[8];
} MDGUID;  // GUID

typedef MDGUID GUID;


////////////////////////////////////////////////////////////////
// scoped_ptr
//

//  scoped_ptr mimics a built-in pointer except that it guarantees deletion
//  of the object pointed to, either on destruction of the scoped_ptr or via
//  an explicit reset(). scoped_ptr is a simple solution for simple needs;
//  use shared_ptr or std::auto_ptr if your needs are more complex.

//  *** NOTE ***
//  If your scoped_ptr is a class member of class FOO pointing to a
//  forward declared type BAR (as shown below), then you MUST use a non-inlined
//  version of the destructor.  The destructor of a scoped_ptr (called from
//  FOO's destructor) must have a complete definition of BAR in order to
//  destroy it.  Example:
//
//  -- foo.h --
//  class BAR;
//
//  class FOO {
//   public:
//    FOO();
//    ~FOO();  // Required for sources that instantiate class FOO to compile!
//
//   private:
//    scoped_ptr<BAR> bar_;
//  };
//
//  -- foo.cc --
//  #include "foo.h"
//  FOO::~FOO() {} // Empty, but must be non-inlined to FOO's class definition.

//  scoped_ptr_malloc added by Google
//  When one of these goes out of scope, instead of doing a delete or
//  delete[], it calls free().  scoped_ptr_malloc<char> is likely to see
//  much more use than any other specializations.

//  release() added by Google
//  Use this to conditionally transfer ownership of a heap-allocated object
//  to the caller, usually on method success.

template <typename T>
class scoped_ptr {
 private:

  T* ptr;

  scoped_ptr(scoped_ptr const &);
  scoped_ptr & operator=(scoped_ptr const &);

 public:

  typedef T element_type;

  explicit scoped_ptr(T* p = 0): ptr(p) {}

  ~scoped_ptr() {
    delete ptr;
  }

  void reset(T* p = 0) {
    if (ptr != p) {
      delete ptr;
      ptr = p;
    }
  }

  T& operator*() const {
    MOZ_ASSERT(ptr != 0);
    return *ptr;
  }

  T* operator->() const  {
    MOZ_ASSERT(ptr != 0);
    return ptr;
  }

  bool operator==(T* p) const {
    return ptr == p;
  }

  bool operator!=(T* p) const {
    return ptr != p;
  }

  T* get() const  {
    return ptr;
  }

  void swap(scoped_ptr & b) {
    T* tmp = b.ptr;
    b.ptr = ptr;
    ptr = tmp;
  }

  T* release() {
    T* tmp = ptr;
    ptr = 0;
    return tmp;
  }

 private:

  // no reason to use these: each scoped_ptr should have its own object
  template <typename U> bool operator==(scoped_ptr<U> const& p) const;
  template <typename U> bool operator!=(scoped_ptr<U> const& p) const;
};

template<typename T> inline
void swap(scoped_ptr<T>& a, scoped_ptr<T>& b) {
  a.swap(b);
}

template<typename T> inline
bool operator==(T* p, const scoped_ptr<T>& b) {
  return p == b.get();
}

template<typename T> inline
bool operator!=(T* p, const scoped_ptr<T>& b) {
  return p != b.get();
}

//  scoped_array extends scoped_ptr to arrays. Deletion of the array pointed to
//  is guaranteed, either on destruction of the scoped_array or via an explicit
//  reset(). Use shared_array or std::vector if your needs are more complex.

template<typename T>
class scoped_array {
 private:

  T* ptr;

  scoped_array(scoped_array const &);
  scoped_array & operator=(scoped_array const &);

 public:

  typedef T element_type;

  explicit scoped_array(T* p = 0) : ptr(p) {}

  ~scoped_array() {
    delete[] ptr;
  }

  void reset(T* p = 0) {
    if (ptr != p) {
      delete [] ptr;
      ptr = p;
    }
  }

  T& operator[](std::ptrdiff_t i) const {
    MOZ_ASSERT(ptr != 0);
    MOZ_ASSERT(i >= 0);
    return ptr[i];
  }

  bool operator==(T* p) const {
    return ptr == p;
  }

  bool operator!=(T* p) const {
    return ptr != p;
  }

  T* get() const {
    return ptr;
  }

  void swap(scoped_array & b) {
    T* tmp = b.ptr;
    b.ptr = ptr;
    ptr = tmp;
  }

  T* release() {
    T* tmp = ptr;
    ptr = 0;
    return tmp;
  }

 private:

  // no reason to use these: each scoped_array should have its own object
  template <typename U> bool operator==(scoped_array<U> const& p) const;
  template <typename U> bool operator!=(scoped_array<U> const& p) const;
};

template<class T> inline
void swap(scoped_array<T>& a, scoped_array<T>& b) {
  a.swap(b);
}

template<typename T> inline
bool operator==(T* p, const scoped_array<T>& b) {
  return p == b.get();
}

template<typename T> inline
bool operator!=(T* p, const scoped_array<T>& b) {
  return p != b.get();
}


// This class wraps the c library function free() in a class that can be
// passed as a template argument to scoped_ptr_malloc below.
class ScopedPtrMallocFree {
 public:
  inline void operator()(void* x) const {
    free(x);
  }
};

// scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a
// second template argument, the functor used to free the object.

template<typename T, typename FreeProc = ScopedPtrMallocFree>
class scoped_ptr_malloc {
 private:

  T* ptr;

  scoped_ptr_malloc(scoped_ptr_malloc const &);
  scoped_ptr_malloc & operator=(scoped_ptr_malloc const &);

 public:

  typedef T element_type;

  explicit scoped_ptr_malloc(T* p = 0): ptr(p) {}

  ~scoped_ptr_malloc() {
    free_((void*) ptr);
  }

  void reset(T* p = 0) {
    if (ptr != p) {
      free_((void*) ptr);
      ptr = p;
    }
  }

  T& operator*() const {
    MOZ_ASSERT(ptr != 0);
    return *ptr;
  }

  T* operator->() const {
    MOZ_ASSERT(ptr != 0);
    return ptr;
  }

  bool operator==(T* p) const {
    return ptr == p;
  }

  bool operator!=(T* p) const {
    return ptr != p;
  }

  T* get() const {
    return ptr;
  }

  void swap(scoped_ptr_malloc & b) {
    T* tmp = b.ptr;
    b.ptr = ptr;
    ptr = tmp;
  }

  T* release() {
    T* tmp = ptr;
    ptr = 0;
    return tmp;
  }

 private:

  // no reason to use these: each scoped_ptr_malloc should have its own object
  template <typename U, typename GP>
  bool operator==(scoped_ptr_malloc<U, GP> const& p) const;
  template <typename U, typename GP>
  bool operator!=(scoped_ptr_malloc<U, GP> const& p) const;

  static FreeProc const free_;
};

template<typename T, typename FP>
FP const scoped_ptr_malloc<T,FP>::free_ = FP();

template<typename T, typename FP> inline
void swap(scoped_ptr_malloc<T,FP>& a, scoped_ptr_malloc<T,FP>& b) {
  a.swap(b);
}

template<typename T, typename FP> inline
bool operator==(T* p, const scoped_ptr_malloc<T,FP>& b) {
  return p == b.get();
}

template<typename T, typename FP> inline
bool operator!=(T* p, const scoped_ptr_malloc<T,FP>& b) {
  return p != b.get();
}


////////////////////////////////////////////////////////////////
// Module
//

// A Module represents the contents of a module, and supports methods
// for adding information produced by parsing STABS or DWARF data
// --- possibly both from the same file --- and then writing out the
// unified contents as a Breakpad-format symbol file.
class Module {
public:
  // The type of addresses and sizes in a symbol table.
  typedef uint64_t Address;

  // Representation of an expression.  This can either be a postfix
  // expression, in which case it is stored as a string, or a simple
  // expression of the form (identifier + imm) or *(identifier + imm).
  // It can also be invalid (denoting "no value").
  enum ExprHow {
    kExprInvalid = 1,
    kExprPostfix,
    kExprSimple,
    kExprSimpleMem
  };

  struct Expr {
    // Construct a simple-form expression
    Expr(const UniqueString* ident, long offset, bool deref) {
      if (ident == ustr__empty()) {
        Expr();
      } else {
        postfix_ = "";
        ident_ = ident;
        offset_ = offset;
        how_ = deref ? kExprSimpleMem : kExprSimple;
      }
    }

    // Construct an invalid expression
    Expr() {
      postfix_ = "";
      ident_ = nullptr;
      offset_ = 0;
      how_ = kExprInvalid;
    }

    // Return the postfix expression string, either directly,
    // if this is a postfix expression, or by synthesising it
    // for a simple expression.
    std::string getExprPostfix() const {
      switch (how_) {
        case kExprPostfix:
          return postfix_;
        case kExprSimple:
        case kExprSimpleMem: {
          char buf[40];
          sprintf(buf, " %ld %c%s", labs(offset_), offset_ < 0 ? '-' : '+',
                                    how_ == kExprSimple ? "" : " ^");
          return std::string(FromUniqueString(ident_)) + std::string(buf);
        }
        case kExprInvalid:
        default:
          MOZ_ASSERT(0 && "getExprPostfix: invalid Module::Expr type");
          return "Expr::genExprPostfix: kExprInvalid";
      }
    }

    // The identifier that gives the starting value for simple expressions.
    const UniqueString* ident_;
    // The offset to add for simple expressions.
    long        offset_;
    // The Postfix expression string to evaluate for non-simple expressions.
    std::string postfix_;
    // The operation expressed by this expression.
    ExprHow     how_;
  };

  // A map from register names to expressions that recover
  // their values. This can represent a complete set of rules to
  // follow at some address, or a set of changes to be applied to an
  // extant set of rules.
  // NOTE! there are two completely different types called RuleMap.  This
  // is one of them.
  typedef std::map<const UniqueString*, Expr> RuleMap;

  // A map from addresses to RuleMaps, representing changes that take
  // effect at given addresses.
  typedef std::map<Address, RuleMap> RuleChangeMap;

  // A range of 'STACK CFI' stack walking information. An instance of
  // this structure corresponds to a 'STACK CFI INIT' record and the
  // subsequent 'STACK CFI' records that fall within its range.
  struct StackFrameEntry {
    // The starting address and number of bytes of machine code this
    // entry covers.
    Address address, size;

    // The initial register recovery rules, in force at the starting
    // address.
    RuleMap initial_rules;

    // A map from addresses to rule changes. To find the rules in
    // force at a given address, start with initial_rules, and then
    // apply the changes given in this map for all addresses up to and
    // including the address you're interested in.
    RuleChangeMap rule_changes;
  };

  // Create a new module with the given name, operating system,
  // architecture, and ID string.
  Module(const std::string &name, const std::string &os,
         const std::string &architecture, const std::string &id);
  ~Module();

private:

  // Module header entries.
  std::string name_, os_, architecture_, id_;
};


}  // namespace lul

#endif // LulCommonExt_h