DXR will be turned off on Tuesday, December 29th. It will redirect to Searchfox.
See the announcement on Discourse.

DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (4a108e94d3e2)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/pickle.h"

#include "mozilla/Alignment.h"
#include "mozilla/Endian.h"
#include "mozilla/TypeTraits.h"

#include <stdlib.h>

#include <limits>
#include <string>
#include <algorithm>

#include "nsDebug.h"

//------------------------------------------------------------------------------

static_assert(MOZ_ALIGNOF(Pickle::memberAlignmentType) >= MOZ_ALIGNOF(uint32_t),
              "Insufficient alignment");

// static
const int Pickle::kPayloadUnit = 64;

// We mark a read only pickle with a special capacity_.
static const uint32_t kCapacityReadOnly = (uint32_t) -1;

static const char kBytePaddingMarker = char(0xbf);

namespace {

// We want to copy data to our payload as efficiently as possible.
// memcpy fits the bill for copying, but not all compilers or
// architectures support inlining memcpy from void*, which has unknown
// static alignment.  However, we know that all the members of our
// payload will be aligned on memberAlignmentType boundaries.  We
// therefore use that knowledge to construct a copier that will copy
// efficiently (via standard C++ assignment mechanisms) if the datatype
// needs that alignment or less, and memcpy otherwise.  (The compiler
// may still inline memcpy, of course.)

template<typename T, size_t size, bool hasSufficientAlignment>
struct Copier
{
  static void Copy(T* dest, void** iter) {
    memcpy(dest, *iter, sizeof(T));
  }
};

// Copying 64-bit quantities happens often enough and can easily be made
// worthwhile on 32-bit platforms, so handle it specially.  Only do it
// if 64-bit types aren't sufficiently aligned; the alignment
// requirements for them vary between 32-bit platforms.
#ifndef HAVE_64BIT_BUILD
template<typename T>
struct Copier<T, sizeof(uint64_t), false>
{
  static void Copy(T* dest, void** iter) {
#if MOZ_LITTLE_ENDIAN
    static const int loIndex = 0, hiIndex = 1;
#else
    static const int loIndex = 1, hiIndex = 0;
#endif
    static_assert(MOZ_ALIGNOF(uint32_t*) == MOZ_ALIGNOF(void*),
                  "Pointers have different alignments");
    uint32_t* src = *reinterpret_cast<uint32_t**>(iter);
    uint32_t* uint32dest = reinterpret_cast<uint32_t*>(dest);
    uint32dest[loIndex] = src[loIndex];
    uint32dest[hiIndex] = src[hiIndex];
  }
};
#endif

template<typename T, size_t size>
struct Copier<T, size, true>
{
  static void Copy(T* dest, void** iter) {
    // The reinterpret_cast is only safe if two conditions hold:
    // (1) If the alignment of T* is the same as void*;
    // (2) The alignment of the data in *iter is at least as
    //     big as MOZ_ALIGNOF(T).
    // Check the first condition, as the second condition is already
    // known to be true, or we wouldn't be here.
    static_assert(MOZ_ALIGNOF(T*) == MOZ_ALIGNOF(void*),
                  "Pointers have different alignments");
    *dest = *(*reinterpret_cast<T**>(iter));
  }
};

template<typename T>
void CopyFromIter(T* dest, void** iter) {
  static_assert(mozilla::IsPod<T>::value, "Copied type must be a POD type");
  Copier<T, sizeof(T), (MOZ_ALIGNOF(T) <= sizeof(Pickle::memberAlignmentType))>::Copy(dest, iter);
}

} // anonymous namespace

// Payload is sizeof(Pickle::memberAlignmentType) aligned.

Pickle::Pickle()
    : header_(NULL),
      header_size_(sizeof(Header)),
      capacity_(0),
      variable_buffer_offset_(0) {
  Resize(kPayloadUnit);
  header_->payload_size = 0;
}

Pickle::Pickle(int header_size)
    : header_(NULL),
      header_size_(AlignInt(header_size)),
      capacity_(0),
      variable_buffer_offset_(0) {
  DCHECK(static_cast<memberAlignmentType>(header_size) >= sizeof(Header));
  DCHECK(header_size <= kPayloadUnit);
  Resize(kPayloadUnit);
  if (!header_) {
    NS_ABORT_OOM(kPayloadUnit);
  }
  header_->payload_size = 0;
}

Pickle::Pickle(const char* data, int data_len)
    : header_(reinterpret_cast<Header*>(const_cast<char*>(data))),
      header_size_(0),
      capacity_(kCapacityReadOnly),
      variable_buffer_offset_(0) {
  if (data_len >= static_cast<int>(sizeof(Header)))
    header_size_ = data_len - header_->payload_size;

  if (header_size_ > static_cast<unsigned int>(data_len))
    header_size_ = 0;

  if (header_size_ != AlignInt(header_size_))
    header_size_ = 0;

  // If there is anything wrong with the data, we're not going to use it.
  if (!header_size_)
    header_ = nullptr;
}

Pickle::Pickle(const Pickle& other)
    : header_(NULL),
      header_size_(other.header_size_),
      capacity_(0),
      variable_buffer_offset_(other.variable_buffer_offset_) {
  uint32_t payload_size = header_size_ + other.header_->payload_size;
  bool resized = Resize(payload_size);
  if (!resized) {
    NS_ABORT_OOM(payload_size);
  }
  memcpy(header_, other.header_, payload_size);
}

Pickle::Pickle(Pickle&& other)
  : header_(other.header_),
    header_size_(other.header_size_),
    capacity_(other.capacity_),
    variable_buffer_offset_(other.variable_buffer_offset_) {
  other.header_ = NULL;
  other.capacity_ = 0;
  other.variable_buffer_offset_ = 0;
}

Pickle::~Pickle() {
  if (capacity_ != kCapacityReadOnly)
    free(header_);
}

Pickle& Pickle::operator=(const Pickle& other) {
  if (header_size_ != other.header_size_ && capacity_ != kCapacityReadOnly) {
    free(header_);
    header_ = NULL;
    header_size_ = other.header_size_;
  }
  bool resized = Resize(other.header_size_ + other.header_->payload_size);
  if (!resized) {
    NS_ABORT_OOM(other.header_size_ + other.header_->payload_size);
  }
  memcpy(header_, other.header_, header_size_ + other.header_->payload_size);
  variable_buffer_offset_ = other.variable_buffer_offset_;
  return *this;
}

Pickle& Pickle::operator=(Pickle&& other) {
  std::swap(header_, other.header_);
  std::swap(header_size_, other.header_size_);
  std::swap(capacity_, other.capacity_);
  std::swap(variable_buffer_offset_, other.variable_buffer_offset_);
  return *this;
}

bool Pickle::ReadBool(void** iter, bool* result) const {
  DCHECK(iter);

  int tmp;
  if (!ReadInt(iter, &tmp))
    return false;
  DCHECK(0 == tmp || 1 == tmp);
  *result = tmp ? true : false;
  return true;
}

bool Pickle::ReadInt16(void** iter, int16_t* result) const {
  DCHECK(iter);
  if (!*iter)
    *iter = const_cast<char*>(payload());

  if (!IteratorHasRoomFor(*iter, sizeof(*result)))
    return false;

  CopyFromIter(result, iter);

  UpdateIter(iter, sizeof(*result));
  return true;
}

bool Pickle::ReadUInt16(void** iter, uint16_t* result) const {
  DCHECK(iter);
  if (!*iter)
    *iter = const_cast<char*>(payload());

  if (!IteratorHasRoomFor(*iter, sizeof(*result)))
    return false;

  CopyFromIter(result, iter);

  UpdateIter(iter, sizeof(*result));
  return true;
}

bool Pickle::ReadInt(void** iter, int* result) const {
  DCHECK(iter);
  if (!*iter)
    *iter = const_cast<char*>(payload());

  if (!IteratorHasRoomFor(*iter, sizeof(*result)))
    return false;

  CopyFromIter(result, iter);

  UpdateIter(iter, sizeof(*result));
  return true;
}

// Always written as a 64-bit value since the size for this type can
// differ between architectures.
bool Pickle::ReadLong(void** iter, long* result) const {
  DCHECK(iter);
  if (!*iter)
    *iter = const_cast<char*>(payload());

  int64_t bigResult = 0;
  if (!IteratorHasRoomFor(*iter, sizeof(bigResult)))
    return false;

  CopyFromIter(&bigResult, iter);
  DCHECK(bigResult <= LONG_MAX && bigResult >= LONG_MIN);
  *result = static_cast<long>(bigResult);

  UpdateIter(iter, sizeof(bigResult));
  return true;
}

// Always written as a 64-bit value since the size for this type can
// differ between architectures.
bool Pickle::ReadULong(void** iter, unsigned long* result) const {
  DCHECK(iter);
  if (!*iter)
    *iter = const_cast<char*>(payload());

  uint64_t bigResult = 0;
  if (!IteratorHasRoomFor(*iter, sizeof(bigResult)))
    return false;

  CopyFromIter(&bigResult, iter);
  DCHECK(bigResult <= ULONG_MAX);
  *result = static_cast<unsigned long>(bigResult);

  UpdateIter(iter, sizeof(bigResult));
  return true;
}

bool Pickle::ReadLength(void** iter, int* result) const {
  if (!ReadInt(iter, result))
    return false;
  return ((*result) >= 0);
}

// Always written as a 64-bit value since the size for this type can
// differ between architectures.
bool Pickle::ReadSize(void** iter, size_t* result) const {
  DCHECK(iter);
  if (!*iter)
    *iter = const_cast<char*>(payload());

  uint64_t bigResult = 0;
  if (!IteratorHasRoomFor(*iter, sizeof(bigResult)))
    return false;

  CopyFromIter(&bigResult, iter);
  DCHECK(bigResult <= std::numeric_limits<size_t>::max());
  *result = static_cast<size_t>(bigResult);

  UpdateIter(iter, sizeof(bigResult));
  return true;
}

bool Pickle::ReadInt32(void** iter, int32_t* result) const {
  DCHECK(iter);
  if (!*iter)
    *iter = const_cast<char*>(payload());

  if (!IteratorHasRoomFor(*iter, sizeof(*result)))
    return false;

  CopyFromIter(result, iter);

  UpdateIter(iter, sizeof(*result));
  return true;
}

bool Pickle::ReadUInt32(void** iter, uint32_t* result) const {
  DCHECK(iter);
  if (!*iter)
    *iter = const_cast<char*>(payload());

  if (!IteratorHasRoomFor(*iter, sizeof(*result)))
    return false;

  CopyFromIter(result, iter);

  UpdateIter(iter, sizeof(*result));
  return true;
}

bool Pickle::ReadInt64(void** iter, int64_t* result) const {
  DCHECK(iter);
  if (!*iter)
    *iter = const_cast<char*>(payload());

  if (!IteratorHasRoomFor(*iter, sizeof(*result)))
    return false;

  CopyFromIter(result, iter);

  UpdateIter(iter, sizeof(*result));
  return true;
}

bool Pickle::ReadUInt64(void** iter, uint64_t* result) const {
  DCHECK(iter);
  if (!*iter)
    *iter = const_cast<char*>(payload());

  if (!IteratorHasRoomFor(*iter, sizeof(*result)))
    return false;

  CopyFromIter(result, iter);

  UpdateIter(iter, sizeof(*result));
  return true;
}

bool Pickle::ReadDouble(void** iter, double* result) const {
  DCHECK(iter);
  if (!*iter)
    *iter = const_cast<char*>(payload());

  if (!IteratorHasRoomFor(*iter, sizeof(*result)))
    return false;

  CopyFromIter(result, iter);

  UpdateIter(iter, sizeof(*result));
  return true;
}

// Always written as a 64-bit value since the size for this type can
// differ between architectures.
bool Pickle::ReadIntPtr(void** iter, intptr_t* result) const {
  DCHECK(iter);
  if (!*iter)
    *iter = const_cast<char*>(payload());

  int64_t bigResult = 0;
  if (!IteratorHasRoomFor(*iter, sizeof(bigResult)))
    return false;

  CopyFromIter(&bigResult, iter);
  DCHECK(bigResult <= std::numeric_limits<intptr_t>::max() && bigResult >= std::numeric_limits<intptr_t>::min());
  *result = static_cast<intptr_t>(bigResult);

  UpdateIter(iter, sizeof(bigResult));
  return true;
}

bool Pickle::ReadUnsignedChar(void** iter, unsigned char* result) const {
  DCHECK(iter);
  if (!*iter)
    *iter = const_cast<char*>(payload());

  if (!IteratorHasRoomFor(*iter, sizeof(*result)))
    return false;

  CopyFromIter(result, iter);

  UpdateIter(iter, sizeof(*result));
  return true;
}

bool Pickle::ReadString(void** iter, std::string* result) const {
  DCHECK(iter);
  if (!*iter)
    *iter = const_cast<char*>(payload());

  int len;
  if (!ReadLength(iter, &len))
    return false;
  if (!IteratorHasRoomFor(*iter, len))
    return false;

  char* chars = reinterpret_cast<char*>(*iter);
  result->assign(chars, len);

  UpdateIter(iter, len);
  return true;
}

bool Pickle::ReadWString(void** iter, std::wstring* result) const {
  DCHECK(iter);
  if (!*iter)
    *iter = const_cast<char*>(payload());

  int len;
  if (!ReadLength(iter, &len))
    return false;
  if (!IteratorHasRoomFor(*iter, len * sizeof(wchar_t)))
    return false;

  wchar_t* chars = reinterpret_cast<wchar_t*>(*iter);
  result->assign(chars, len);

  UpdateIter(iter, len * sizeof(wchar_t));
  return true;
}

bool Pickle::ReadString16(void** iter, string16* result) const {
  DCHECK(iter);
  if (!*iter)
    *iter = const_cast<char*>(payload());

  int len;
  if (!ReadLength(iter, &len))
    return false;
  if (!IteratorHasRoomFor(*iter, len))
    return false;

  char16* chars = reinterpret_cast<char16*>(*iter);
  result->assign(chars, len);

  UpdateIter(iter, len * sizeof(char16));
  return true;
}

bool Pickle::ReadBytes(void** iter, const char** data, int length,
                       uint32_t alignment) const {
  DCHECK(iter);
  DCHECK(data);
  DCHECK(alignment == 4 || alignment == 8);
  DCHECK(intptr_t(header_) % alignment == 0);

  if (!*iter)
    *iter = const_cast<char*>(payload());

  uint32_t paddingLen = intptr_t(*iter) % alignment;
  if (paddingLen) {
#ifdef DEBUG
    {
      const char* padding = static_cast<const char*>(*iter);
      for (uint32_t i = 0; i < paddingLen; i++) {
        DCHECK(*(padding + i) == kBytePaddingMarker);
      }
    }
#endif
    length += paddingLen;
  }

  if (!IteratorHasRoomFor(*iter, length))
    return false;

  *data = static_cast<const char*>(*iter) + paddingLen;
  DCHECK(intptr_t(*data) % alignment == 0);

  UpdateIter(iter, length);
  return true;
}

bool Pickle::ReadData(void** iter, const char** data, int* length) const {
  DCHECK(iter);
  DCHECK(data);
  DCHECK(length);
  if (!*iter)
    *iter = const_cast<char*>(payload());

  if (!ReadLength(iter, length))
    return false;

  return ReadBytes(iter, data, *length);
}

char* Pickle::BeginWrite(uint32_t length, uint32_t alignment) {
  DCHECK(alignment % 4 == 0) << "Must be at least 32-bit aligned!";

  // write at an alignment-aligned offset from the beginning of the header
  uint32_t offset = AlignInt(header_->payload_size);
  uint32_t padding = (header_size_ + offset) %  alignment;
  uint32_t new_size = offset + padding + AlignInt(length);
  uint32_t needed_size = header_size_ + new_size;

  if (needed_size > capacity_ && !Resize(std::max(capacity_ * 2, needed_size)))
    return NULL;

  DCHECK(intptr_t(header_) % alignment == 0);

#ifdef ARCH_CPU_64_BITS
  DCHECK_LE(length, std::numeric_limits<uint32_t>::max());
#endif

  char* buffer = payload() + offset;

  if (padding) {
    memset(buffer, kBytePaddingMarker, padding);
    buffer += padding;
  }

  DCHECK(intptr_t(buffer) % alignment == 0);

  header_->payload_size = new_size;

#ifdef MOZ_VALGRIND
  // pad the trailing end as well, so that valgrind
  // doesn't complain when we write the buffer
  padding = AlignInt(length) - length;
  if (padding) {
    memset(buffer + length, kBytePaddingMarker, padding);
  }
#endif

  return buffer;
}

void Pickle::EndWrite(char* dest, int length) {
  // Zero-pad to keep tools like purify from complaining about uninitialized
  // memory.
  if (length % sizeof(memberAlignmentType))
    memset(dest + length, 0,
	   sizeof(memberAlignmentType) - (length % sizeof(memberAlignmentType)));
}

bool Pickle::WriteBytes(const void* data, int data_len, uint32_t alignment) {
  DCHECK(capacity_ != kCapacityReadOnly) << "oops: pickle is readonly";
  DCHECK(alignment == 4 || alignment == 8);
  DCHECK(intptr_t(header_) % alignment == 0);

  char* dest = BeginWrite(data_len, alignment);
  if (!dest)
    return false;

  memcpy(dest, data, data_len);

  EndWrite(dest, data_len);
  return true;
}

bool Pickle::WriteString(const std::string& value) {
  if (!WriteInt(static_cast<int>(value.size())))
    return false;

  return WriteBytes(value.data(), static_cast<int>(value.size()));
}

bool Pickle::WriteWString(const std::wstring& value) {
  if (!WriteInt(static_cast<int>(value.size())))
    return false;

  return WriteBytes(value.data(),
                    static_cast<int>(value.size() * sizeof(wchar_t)));
}

bool Pickle::WriteString16(const string16& value) {
  if (!WriteInt(static_cast<int>(value.size())))
    return false;

  return WriteBytes(value.data(),
                    static_cast<int>(value.size()) * sizeof(char16));
}

bool Pickle::WriteData(const char* data, int length) {
  return WriteInt(length) && WriteBytes(data, length);
}

char* Pickle::BeginWriteData(int length) {
  DCHECK_EQ(variable_buffer_offset_, 0U) <<
    "There can only be one variable buffer in a Pickle";

  if (!WriteInt(length))
    return NULL;

  char *data_ptr = BeginWrite(length, sizeof(memberAlignmentType));
  if (!data_ptr)
    return NULL;

  variable_buffer_offset_ =
      data_ptr - reinterpret_cast<char*>(header_) - sizeof(int);

  // EndWrite doesn't necessarily have to be called after the write operation,
  // so we call it here to pad out what the caller will eventually write.
  EndWrite(data_ptr, length);
  return data_ptr;
}

void Pickle::TrimWriteData(int new_length) {
  DCHECK(variable_buffer_offset_ != 0);

  // Fetch the the variable buffer size
  int* cur_length = reinterpret_cast<int*>(
      reinterpret_cast<char*>(header_) + variable_buffer_offset_);

  if (new_length < 0 || new_length > *cur_length) {
    NOTREACHED() << "Invalid length in TrimWriteData.";
    return;
  }

  // Update the payload size and variable buffer size
  header_->payload_size -= (*cur_length - new_length);
  *cur_length = new_length;
}

bool Pickle::Resize(uint32_t new_capacity) {
  new_capacity = ConstantAligner<kPayloadUnit>::align(new_capacity);

  void* p = realloc(header_, new_capacity);
  if (!p)
    return false;

  header_ = reinterpret_cast<Header*>(p);
  capacity_ = new_capacity;
  return true;
}

// static
const char* Pickle::FindNext(uint32_t header_size,
                             const char* start,
                             const char* end) {
  DCHECK(header_size == AlignInt(header_size));
  DCHECK(header_size <= static_cast<memberAlignmentType>(kPayloadUnit));

  if (end < start)
    return nullptr;
  size_t length = static_cast<size_t>(end - start);
  if (length < sizeof(Header))
    return nullptr;

  const Header* hdr = reinterpret_cast<const Header*>(start);
  if (length < header_size || length - header_size < hdr->payload_size)
    return nullptr;

  return start + header_size + hdr->payload_size;
}