DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (4a108e94d3e2)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
/* vim:set tw=80 expandtab softtabstop=4 ts=4 sw=4: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

// I got the format description from http://www.daubnet.com/formats/BMP.html

// This is a Cross-Platform BMP Decoder, which should work everywhere, including
// Big-Endian machines like the PowerPC.

#include <stdlib.h>

#include "ImageLogging.h"
#include "mozilla/Endian.h"
#include "mozilla/Likely.h"
#include "nsBMPDecoder.h"

#include "nsIInputStream.h"
#include "RasterImage.h"
#include <algorithm>

namespace mozilla {
namespace image {

#ifdef PR_LOGGING
static PRLogModuleInfo*
GetBMPLog()
{
  static PRLogModuleInfo* sBMPLog;
  if (!sBMPLog) {
    sBMPLog = PR_NewLogModule("BMPDecoder");
  }
  return sBMPLog;
}
#endif

// Convert from row (1..height) to absolute line (0..height-1)
#define LINE(row) ((mBIH.height < 0) ? (-mBIH.height - (row)) : ((row) - 1))
#define PIXEL_OFFSET(row, col) (LINE(row) * mBIH.width + col)

nsBMPDecoder::nsBMPDecoder(RasterImage* aImage)
  : Decoder(aImage)
  , mPos(0)
  , mLOH(WIN_V3_HEADER_LENGTH)
  , mNumColors(0)
  , mColors(nullptr)
  , mRow(nullptr)
  , mRowBytes(0)
  , mCurLine(1)  // Otherwise decoder will never start.
  , mOldLine(1)
  , mCurPos(0)
  , mState(eRLEStateInitial)
  , mStateData(0)
  , mProcessedHeader(false)
  , mUseAlphaData(false)
  , mHaveAlphaData(false)
{ }

nsBMPDecoder::~nsBMPDecoder()
{
  delete[] mColors;
  if (mRow) {
      moz_free(mRow);
  }
}

// Sets whether or not the BMP will use alpha data
void
nsBMPDecoder::SetUseAlphaData(bool useAlphaData)
{
  mUseAlphaData = useAlphaData;
}

// Obtains the bits per pixel from the internal BIH header
int32_t
nsBMPDecoder::GetBitsPerPixel() const
{
  return mBIH.bpp;
}

// Obtains the width from the internal BIH header
int32_t
nsBMPDecoder::GetWidth() const
{
  return mBIH.width;
}

// Obtains the abs-value of the height from the internal BIH header
int32_t
nsBMPDecoder::GetHeight() const
{
  return abs(mBIH.height);
}

// Obtains the internal output image buffer
uint32_t*
nsBMPDecoder::GetImageData()
{
  return reinterpret_cast<uint32_t*>(mImageData);
}

// Obtains the size of the compressed image resource
int32_t
nsBMPDecoder::GetCompressedImageSize() const
{
  // For everything except BI_RGB the header field must be defined
  if (mBIH.compression != BI_RGB) {
    return mBIH.image_size;
  }

  // mBIH.image_size isn't always filled for BI_RGB so calculate it manually
  // The pixel array size is calculated based on extra 4 byte boundary padding
  uint32_t rowSize = (mBIH.bpp * mBIH.width + 7) / 8; // + 7 to round up

  // Pad to DWORD Boundary
  if (rowSize % 4) {
    rowSize += (4 - (rowSize % 4));
  }

  // The height should be the absolute value of what the height is in the BIH.
  // If positive the bitmap is stored bottom to top, otherwise top to bottom
  int32_t pixelArraySize = rowSize * GetHeight();
  return pixelArraySize;
}

// Obtains whether or not a BMP file had alpha data in its 4th byte
// for 32BPP bitmaps.  Only use after the bitmap has been processed.
bool
nsBMPDecoder::HasAlphaData() const
{
  return mHaveAlphaData;
}


void
nsBMPDecoder::FinishInternal()
{
    // We shouldn't be called in error cases
    MOZ_ASSERT(!HasError(), "Can't call FinishInternal on error!");

    // We should never make multiple frames
    MOZ_ASSERT(GetFrameCount() <= 1, "Multiple BMP frames?");

    // Send notifications if appropriate
    if (!IsSizeDecode() && HasSize()) {

        // Invalidate
        nsIntRect r(0, 0, mBIH.width, GetHeight());
        PostInvalidation(r);

        if (mUseAlphaData) {
          PostFrameStop(Opacity::SOME_TRANSPARENCY);
        } else {
          PostFrameStop(Opacity::OPAQUE);
        }
        PostDecodeDone();
    }
}

// ----------------------------------------
// Actual Data Processing
// ----------------------------------------

static void
calcBitmask(uint32_t aMask, uint8_t& aBegin, uint8_t& aLength)
{
    // find the rightmost 1
    uint8_t pos;
    bool started = false;
    aBegin = aLength = 0;
    for (pos = 0; pos <= 31; pos++) {
        if (!started && (aMask & (1 << pos))) {
            aBegin = pos;
            started = true;
        } else if (started && !(aMask & (1 << pos))) {
            aLength = pos - aBegin;
            break;
        }
    }
}

NS_METHOD
nsBMPDecoder::CalcBitShift()
{
    uint8_t begin, length;
    // red
    calcBitmask(mBitFields.red, begin, length);
    mBitFields.redRightShift = begin;
    mBitFields.redLeftShift = 8 - length;
    // green
    calcBitmask(mBitFields.green, begin, length);
    mBitFields.greenRightShift = begin;
    mBitFields.greenLeftShift = 8 - length;
    // blue
    calcBitmask(mBitFields.blue, begin, length);
    mBitFields.blueRightShift = begin;
    mBitFields.blueLeftShift = 8 - length;
    return NS_OK;
}

void
nsBMPDecoder::WriteInternal(const char* aBuffer, uint32_t aCount)
{
  MOZ_ASSERT(!HasError(), "Shouldn't call WriteInternal after error!");

  // aCount=0 means EOF, mCurLine=0 means we're past end of image
  if (!aCount || !mCurLine) {
      return;
  }

  // This code assumes that mRawBuf == WIN_V3_INTERNAL_BIH_LENGTH
  // and that sizeof(mRawBuf) >= BFH_INTERNAL_LENGTH
  MOZ_ASSERT(sizeof(mRawBuf) == WIN_V3_INTERNAL_BIH_LENGTH);
  MOZ_ASSERT(sizeof(mRawBuf) >= BFH_INTERNAL_LENGTH);
  MOZ_ASSERT(OS2_INTERNAL_BIH_LENGTH < WIN_V3_INTERNAL_BIH_LENGTH);

  // This code also assumes it's working with a byte array
  MOZ_ASSERT(sizeof(mRawBuf[0]) == 1);

  if (mPos < BFH_INTERNAL_LENGTH) { /* In BITMAPFILEHEADER */
      // BFH_INTERNAL_LENGTH < sizeof(mRawBuf)
      // mPos < BFH_INTERNAL_LENGTH
      // BFH_INTERNAL_LENGTH - mPos < sizeof(mRawBuf)
      // so toCopy <= BFH_INTERNAL_LENGTH
      // so toCopy < sizeof(mRawBuf)
      // so toCopy > 0 && toCopy <= BFH_INTERNAL_LENGTH
      uint32_t toCopy = BFH_INTERNAL_LENGTH - mPos;
      if (toCopy > aCount) {
          toCopy = aCount;
      }

      // mRawBuf is a byte array of size WIN_V3_INTERNAL_BIH_LENGTH
      // (verified above)
      // mPos is < BFH_INTERNAL_LENGTH
      // BFH_INTERNAL_LENGTH < WIN_V3_INTERNAL_BIH_LENGTH
      // so mPos < sizeof(mRawBuf)
      //
      // Therefore this assert should hold
      MOZ_ASSERT(mPos < sizeof(mRawBuf));

      // toCopy <= BFH_INTERNAL_LENGTH
      // mPos >= 0 && mPos < BFH_INTERNAL_LENGTH
      // sizeof(mRawBuf) >= BFH_INTERNAL_LENGTH (verified above)
      //
      // Therefore this assert should hold
      MOZ_ASSERT(mPos + toCopy <= sizeof(mRawBuf));

      memcpy(mRawBuf + mPos, aBuffer, toCopy);
      mPos += toCopy;
      aCount -= toCopy;
      aBuffer += toCopy;
  }
  if (mPos == BFH_INTERNAL_LENGTH) {
      ProcessFileHeader();
      if (mBFH.signature[0] != 'B' || mBFH.signature[1] != 'M') {
          PostDataError();
          return;
      }
      if (mBFH.bihsize == OS2_BIH_LENGTH) {
          mLOH = OS2_HEADER_LENGTH;
      }
  }
  if (mPos >= BFH_INTERNAL_LENGTH && mPos < mLOH) { /* In BITMAPINFOHEADER */
      // mLOH == WIN_V3_HEADER_LENGTH || mLOH == OS2_HEADER_LENGTH
      // OS2_HEADER_LENGTH < WIN_V3_HEADER_LENGTH
      // BFH_INTERNAL_LENGTH < OS2_HEADER_LENGTH
      // BFH_INTERNAL_LENGTH < WIN_V3_HEADER_LENGTH
      //
      // So toCopy is in the range
      //      1 to (WIN_V3_HEADER_LENGTH - BFH_INTERNAL_LENGTH)
      // or   1 to (OS2_HEADER_LENGTH - BFH_INTERNAL_LENGTH)
      //
      // But WIN_V3_HEADER_LENGTH =
      //     BFH_INTERNAL_LENGTH + WIN_V3_INTERNAL_BIH_LENGTH
      // and OS2_HEADER_LENGTH = BFH_INTERNAL_LENGTH + OS2_INTERNAL_BIH_LENGTH
      //
      // So toCopy is in the range
      //
      //      1 to WIN_V3_INTERNAL_BIH_LENGTH
      // or   1 to OS2_INTERNAL_BIH_LENGTH
      // and  OS2_INTERNAL_BIH_LENGTH < WIN_V3_INTERNAL_BIH_LENGTH
      //
      // sizeof(mRawBuf) = WIN_V3_INTERNAL_BIH_LENGTH
      // so toCopy <= sizeof(mRawBuf)
      uint32_t toCopy = mLOH - mPos;
      if (toCopy > aCount) {
          toCopy = aCount;
      }

      // mPos is in the range
      //      BFH_INTERNAL_LENGTH to (WIN_V3_HEADER_LENGTH - 1)
      //
      // offset is then in the range (see toCopy comments for more details)
      //      0 to (WIN_V3_INTERNAL_BIH_LENGTH - 1)
      //
      // sizeof(mRawBuf) is WIN_V3_INTERNAL_BIH_LENGTH so this
      // offset stays within bounds and this assert should hold
      const uint32_t offset = mPos - BFH_INTERNAL_LENGTH;
      MOZ_ASSERT(offset < sizeof(mRawBuf));

      // Two cases:
      //      mPos = BFH_INTERNAL_LENGTH
      //      mLOH = WIN_V3_HEADER_LENGTH
      //
      // offset = 0
      // toCopy = WIN_V3_INTERNAL_BIH_LENGTH
      //
      //      This will be in the bounds of sizeof(mRawBuf)
      //
      // Second Case:
      //      mPos = WIN_V3_HEADER_LENGTH - 1
      //      mLOH = WIN_V3_HEADER_LENGTH
      //
      // offset = WIN_V3_INTERNAL_BIH_LENGTH - 1
      // toCopy = 1
      //
      //      This will be in the bounds of sizeof(mRawBuf)
      //
      // As sizeof(mRawBuf) == WIN_V3_INTERNAL_BIH_LENGTH (verified above)
      // and WIN_V3_HEADER_LENGTH is the largest range of values. If mLOH
      // was equal to OS2_HEADER_LENGTH then the ranges are smaller.
      MOZ_ASSERT(offset + toCopy <= sizeof(mRawBuf));

      memcpy(mRawBuf + offset, aBuffer, toCopy);
      mPos += toCopy;
      aCount -= toCopy;
      aBuffer += toCopy;
  }

  // At this point mPos should be >= mLOH unless aBuffer did not have enough
  // data. In the latter case aCount should be 0.
  MOZ_ASSERT(mPos >= mLOH || aCount == 0);

  // mProcessedHeader is checked to ensure that if at this point mPos == mLOH
  // but we have no data left to process, the next time WriteInternal is called
  // we won't enter this condition again.
  if (mPos == mLOH && !mProcessedHeader) {
      mProcessedHeader = true;

      ProcessInfoHeader();
      PR_LOG(GetBMPLog(), PR_LOG_DEBUG,
             ("BMP is %lix%lix%lu. compression=%lu\n",
             mBIH.width, mBIH.height, mBIH.bpp, mBIH.compression));
      // Verify we support this bit depth
      if (mBIH.bpp != 1 && mBIH.bpp != 4 && mBIH.bpp != 8 &&
          mBIH.bpp != 16 && mBIH.bpp != 24 && mBIH.bpp != 32) {
        PostDataError();
        return;
      }

      // BMPs with negative width are invalid
      // Reject extremely wide images to keep the math sane
      const int32_t k64KWidth = 0x0000FFFF;
      if (mBIH.width < 0 || mBIH.width > k64KWidth) {
        PostDataError();
        return;
      }

      if (mBIH.height == INT_MIN) {
        PostDataError();
        return;
      }

      uint32_t real_height = GetHeight();

      // Post our size to the superclass
      PostSize(mBIH.width, real_height);
      if (HasError()) {
        // Setting the size led to an error.
        return;
      }

      // We have the size. If we're doing a size decode, we got what
      // we came for.
      if (IsSizeDecode()) {
        return;
      }

      // We're doing a real decode.
      mOldLine = mCurLine = real_height;

      if (mBIH.bpp <= 8) {
        mNumColors = 1 << mBIH.bpp;
        if (mBIH.colors && mBIH.colors < mNumColors) {
            mNumColors = mBIH.colors;
        }

        // Always allocate 256 even though mNumColors might be smaller
        mColors = new colorTable[256];
        memset(mColors, 0, 256 * sizeof(colorTable));
      } else if (mBIH.compression != BI_BITFIELDS && mBIH.bpp == 16) {
        // Use default 5-5-5 format
        mBitFields.red   = 0x7C00;
        mBitFields.green = 0x03E0;
        mBitFields.blue  = 0x001F;
        CalcBitShift();
      }

      // Make sure we have a valid value for our supported compression modes
      // before adding the frame
      if (mBIH.compression != BI_RGB && mBIH.compression != BI_RLE8 &&
          mBIH.compression != BI_RLE4 && mBIH.compression != BI_BITFIELDS) {
        PostDataError();
        return;
      }

      // If we have RLE4 or RLE8 or BI_ALPHABITFIELDS, then ensure we
      // have valid BPP values before adding the frame
      if (mBIH.compression == BI_RLE8 && mBIH.bpp != 8) {
        PR_LOG(GetBMPLog(), PR_LOG_DEBUG,
               ("BMP RLE8 compression only supports 8 bits per pixel\n"));
        PostDataError();
        return;
      }
      if (mBIH.compression == BI_RLE4 && mBIH.bpp != 4 && mBIH.bpp != 1) {
        PR_LOG(GetBMPLog(), PR_LOG_DEBUG,
               ("BMP RLE4 compression only supports 4 bits per pixel\n"));
        PostDataError();
        return;
      }
      if (mBIH.compression == BI_ALPHABITFIELDS &&
          mBIH.bpp != 16 && mBIH.bpp != 32) {
        PR_LOG(GetBMPLog(), PR_LOG_DEBUG,
               ("BMP ALPHABITFIELDS only supports 16 or 32 bits per pixel\n"
                ));
        PostDataError();
        return;
      }

      if (mBIH.compression != BI_RLE8 && mBIH.compression != BI_RLE4 &&
          mBIH.compression != BI_ALPHABITFIELDS) {
        // mRow is not used for RLE encoded images
        mRow = (uint8_t*)moz_malloc((mBIH.width * mBIH.bpp) / 8 + 4);
        // + 4 because the line is padded to a 4 bit boundary, but
        // I don't want to make exact calculations here, that's unnecessary.
        // Also, it compensates rounding error.
        if (!mRow) {
          PostDataError();
          return;
        }
      }
      if (!mImageData) {
        PostDecoderError(NS_ERROR_FAILURE);
        return;
      }

      // Prepare for transparency
      if ((mBIH.compression == BI_RLE8) || (mBIH.compression == BI_RLE4)) {
        // Clear the image, as the RLE may jump over areas
        memset(mImageData, 0, mImageDataLength);
      }
  }

  if (mColors && mPos >= mLOH) {
    // OS/2 Bitmaps have no padding byte
    uint8_t bytesPerColor = (mBFH.bihsize == OS2_BIH_LENGTH) ? 3 : 4;
    if (mPos < (mLOH + mNumColors * bytesPerColor)) {
      // Number of bytes already received
      uint32_t colorBytes = mPos - mLOH;
      // Color which is currently received
      uint8_t colorNum = colorBytes / bytesPerColor;
      uint8_t at = colorBytes % bytesPerColor;
      while (aCount && (mPos < (mLOH + mNumColors * bytesPerColor))) {
        switch (at) {
          case 0:
            mColors[colorNum].blue = *aBuffer;
            break;
          case 1:
            mColors[colorNum].green = *aBuffer;
            break;
          case 2:
            mColors[colorNum].red = *aBuffer;
            // If there is no padding byte, increment the color index
            // since we're done with the current color.
            if (bytesPerColor == 3) {
              colorNum++;
            }
            break;
          case 3:
            // This is a padding byte only in Windows BMPs. Increment
            // the color index since we're done with the current color.
            colorNum++;
            break;
        }
        mPos++; aBuffer++; aCount--;
        at = (at + 1) % bytesPerColor;
      }
    }
  } else if (aCount && mBIH.compression == BI_BITFIELDS && mPos <
         (WIN_V3_HEADER_LENGTH + BITFIELD_LENGTH)) {
    // If compression is used, this is a windows bitmap (compression
    // can't be used with OS/2 bitmaps),
    // hence we can use WIN_V3_HEADER_LENGTH instead of mLOH.
    // (verified below)

    // If aCount != 0 then mPos should be >= mLOH due to the if statements
    // at the beginning of the function
    MOZ_ASSERT(mPos >= mLOH);
    MOZ_ASSERT(mLOH == WIN_V3_HEADER_LENGTH);

    // mLOH == WIN_V3_HEADER_LENGTH (verified above)
    // mPos >= mLOH (verified above)
    // mPos < WIN_V3_HEADER_LENGTH + BITFIELD_LENGTH
    //
    // So toCopy is in the range
    //      0 to (BITFIELD_LENGTH - 1)
    uint32_t toCopy = (WIN_V3_HEADER_LENGTH + BITFIELD_LENGTH) - mPos;
    if (toCopy > aCount) {
      toCopy = aCount;
    }

    // mPos >= WIN_V3_HEADER_LENGTH
    // mPos < WIN_V3_HEADER_LENGTH + BITFIELD_LENGTH
    //
    // offset is in the range
    //      0 to (BITFIELD_LENGTH - 1)
    //
    // BITFIELD_LENGTH < WIN_V3_INTERNAL_BIH_LENGTH
    // and sizeof(mRawBuf) == WIN_V3_INTERNAL_BIH_LENGTH (verified at
    // top of function)
    //
    // Therefore this assert should hold
    const uint32_t offset = mPos - WIN_V3_HEADER_LENGTH;
    MOZ_ASSERT(offset < sizeof(mRawBuf));

    // Two cases:
    //      mPos = WIN_V3_HEADER_LENGTH
    //
    // offset = 0
    // toCopy = BITFIELD_LENGTH
    //
    //      This will be in the bounds of sizeof(mRawBuf)
    //
    // Second case:
    //
    //      mPos = WIN_V3_HEADER_LENGTH + BITFIELD_LENGTH - 1
    //
    // offset = BITFIELD_LENGTH - 1
    // toCopy = 1
    //
    //      This will be in the bounds of sizeof(mRawBuf)
    //
    // As BITFIELD_LENGTH < WIN_V3_INTERNAL_BIH_LENGTH and
    // sizeof(mRawBuf) == WIN_V3_INTERNAL_BIH_LENGTH
    //
    // Therefore this assert should hold
    MOZ_ASSERT(offset + toCopy <= sizeof(mRawBuf));

    memcpy(mRawBuf + offset, aBuffer, toCopy);
    mPos += toCopy;
    aBuffer += toCopy;
    aCount -= toCopy;
  }
  if (mPos == WIN_V3_HEADER_LENGTH + BITFIELD_LENGTH &&
    mBIH.compression == BI_BITFIELDS) {
    mBitFields.red = LittleEndian::readUint32(reinterpret_cast<uint32_t*>
                                              (mRawBuf));
    mBitFields.green = LittleEndian::readUint32(reinterpret_cast<uint32_t*>
                                                (mRawBuf + 4));
    mBitFields.blue = LittleEndian::readUint32(reinterpret_cast<uint32_t*>
                                               (mRawBuf + 8));
    CalcBitShift();
  }
  while (aCount && (mPos < mBFH.dataoffset)) { // Skip whatever is between
                                               // header and data
    mPos++; aBuffer++; aCount--;
  }
  if (aCount && ++mPos >= mBFH.dataoffset) {
    // Need to increment mPos, else we might get to mPos==mLOH again
    // From now on, mPos is irrelevant
    if (!mBIH.compression || mBIH.compression == BI_BITFIELDS) {
        uint32_t rowSize = (mBIH.bpp * mBIH.width + 7) / 8; // + 7 to
                                                            // round up
        if (rowSize % 4) {
          rowSize += (4 - (rowSize % 4)); // Pad to DWORD Boundary
        }
        uint32_t toCopy;
        do {
          toCopy = rowSize - mRowBytes;
          if (toCopy) {
            if (toCopy > aCount) {
              toCopy = aCount;
            }
            memcpy(mRow + mRowBytes, aBuffer, toCopy);
            aCount -= toCopy;
            aBuffer += toCopy;
            mRowBytes += toCopy;
        }
        if (rowSize == mRowBytes) {
          // Collected a whole row into mRow, process it
          uint8_t* p = mRow;
          uint32_t* d = reinterpret_cast<uint32_t*>(mImageData) +
                        PIXEL_OFFSET(mCurLine, 0);
          uint32_t lpos = mBIH.width;
          switch (mBIH.bpp) {
            case 1:
              while (lpos > 0) {
                int8_t bit;
                uint8_t idx;
                for (bit = 7; bit >= 0 && lpos > 0; bit--) {
                  idx = (*p >> bit) & 1;
                  SetPixel(d, idx, mColors);
                  --lpos;
                }
                ++p;
              }
              break;
            case 4:
              while (lpos > 0) {
                Set4BitPixel(d, *p, lpos, mColors);
                ++p;
              }
              break;
            case 8:
              while (lpos > 0) {
                SetPixel(d, *p, mColors);
                --lpos;
                ++p;
              }
              break;
            case 16:
              while (lpos > 0) {
                uint16_t val = LittleEndian::
                               readUint16(reinterpret_cast<uint16_t*>(p));
                SetPixel(d,
                         (val & mBitFields.red) >>
                         mBitFields.redRightShift <<
                         mBitFields.redLeftShift,
                         (val & mBitFields.green) >>
                         mBitFields.greenRightShift <<
                         mBitFields.greenLeftShift,
                         (val & mBitFields.blue) >>
                         mBitFields.blueRightShift <<
                         mBitFields.blueLeftShift);
                --lpos;
                p+=2;
              }
              break;
            case 24:
              while (lpos > 0) {
                SetPixel(d, p[2], p[1], p[0]);
                p += 2;
                --lpos;
                ++p;
              }
              break;
            case 32:
              while (lpos > 0) {
                if (mUseAlphaData) {
                  if (!mHaveAlphaData && p[3]) {
                    // Non-zero alpha byte detected! Clear previous
                    // pixels that we have already processed.
                    // This works because we know that if we
                    // are reaching here then the alpha data in byte
                    // 4 has been right all along.  And we know it
                    // has been set to 0 the whole time, so that
                    // means that everything is transparent so far.
                    uint32_t* start = reinterpret_cast<uint32_t*>
                                      (mImageData) + GetWidth() *
                                      (mCurLine - 1);
                    uint32_t heightDifference = GetHeight() -
                                                mCurLine + 1;
                    uint32_t pixelCount = GetWidth() *
                                          heightDifference;

                    memset(start, 0, pixelCount * sizeof(uint32_t));

                    PostHasTransparency();
                    mHaveAlphaData = true;
                  }
                  SetPixel(d, p[2], p[1], p[0], mHaveAlphaData ?  p[3] : 0xFF);
                } else {
                  SetPixel(d, p[2], p[1], p[0]);
                }
                p += 4;
                --lpos;
              }
              break;
            default:
              NS_NOTREACHED("Unsupported color depth,"
                            " but earlier check didn't catch it");
          }
          mCurLine --;
          if (mCurLine == 0) { // Finished last line
            break;
          }
          mRowBytes = 0;
        }
      } while (aCount > 0);
    } else if ((mBIH.compression == BI_RLE8) ||
             (mBIH.compression == BI_RLE4)) {
      if (((mBIH.compression == BI_RLE8) && (mBIH.bpp != 8)) ||
          ((mBIH.compression == BI_RLE4) && (mBIH.bpp != 4) &&
           (mBIH.bpp != 1))) {
        PR_LOG(GetBMPLog(), PR_LOG_DEBUG,
               ("BMP RLE8/RLE4 compression only supports 8/4 bits per"
               " pixel\n"));
        PostDataError();
        return;
      }

      while (aCount > 0) {
        uint8_t byte;

        switch(mState) {
          case eRLEStateInitial:
            mStateData = (uint8_t)*aBuffer++;
            aCount--;

            mState = eRLEStateNeedSecondEscapeByte;
            continue;

          case eRLEStateNeedSecondEscapeByte:
            byte = *aBuffer++;
            aCount--;
            if (mStateData != RLE_ESCAPE) { // encoded mode
              // Encoded mode consists of two bytes:
              // the first byte (mStateData) specifies the
              // number of consecutive pixels to be drawn
              // using the color index contained in
              // the second byte
              // Work around bitmaps that specify too many pixels
              mState = eRLEStateInitial;
              uint32_t pixelsNeeded = std::min<uint32_t>(mBIH.width - mCurPos,
                                    mStateData);
              if (pixelsNeeded) {
                uint32_t* d = reinterpret_cast<uint32_t*>
                              (mImageData) + PIXEL_OFFSET(mCurLine, mCurPos);
                mCurPos += pixelsNeeded;
                if (mBIH.compression == BI_RLE8) {
                  do {
                    SetPixel(d, byte, mColors);
                    pixelsNeeded --;
                  } while (pixelsNeeded);
                } else {
                    do {
                      Set4BitPixel(d, byte, pixelsNeeded, mColors);
                  } while (pixelsNeeded);
                }
              }
              continue;
            }

            switch(byte) {
              case RLE_ESCAPE_EOL:
                // End of Line: Go to next row
                mCurLine --;
                mCurPos = 0;
                mState = eRLEStateInitial;
                break;

              case RLE_ESCAPE_EOF: // EndOfFile
                mCurPos = mCurLine = 0;
                break;

              case RLE_ESCAPE_DELTA:
                mState = eRLEStateNeedXDelta;
                continue;

              default : // absolute mode
                // Save the number of pixels to read
                mStateData = byte;
                if (mCurPos + mStateData > (uint32_t)mBIH.width) {
                  // We can work around bitmaps that specify
                  // one pixel too many, but only if their
                  // width is odd.
                  mStateData -= mBIH.width & 1;
                  if (mCurPos + mStateData > (uint32_t)mBIH.width) {
                      PostDataError();
                      return;
                  }
                }

              // See if we will need to skip a byte
              // to word align the pixel data
              // mStateData is a number of pixels
              // so allow for the RLE compression type
              // Pixels RLE8=1 RLE4=2
              //    1    Pad    Pad
              //    2    No     Pad
              //    3    Pad    No
              //    4    No     No
              if (((mStateData - 1) & mBIH.compression) != 0) {
                  mState = eRLEStateAbsoluteMode;
              } else {
                  mState = eRLEStateAbsoluteModePadded;
              }
              continue;
            }
            break;

          case eRLEStateNeedXDelta:
            // Handle the XDelta and proceed to get Y Delta
            byte = *aBuffer++;
            aCount--;
            mCurPos += byte;
            // Delta encoding makes it possible to skip pixels
            // making the image transparent.
            if (MOZ_UNLIKELY(!mHaveAlphaData)) {
                PostHasTransparency();
            }
            mUseAlphaData = mHaveAlphaData = true;
            if (mCurPos > mBIH.width) {
                mCurPos = mBIH.width;
            }

            mState = eRLEStateNeedYDelta;
            continue;

          case eRLEStateNeedYDelta:
            // Get the Y Delta and then "handle" the move
            byte = *aBuffer++;
            aCount--;
            mState = eRLEStateInitial;
            // Delta encoding makes it possible to skip pixels
            // making the image transparent.
            if (MOZ_UNLIKELY(!mHaveAlphaData)) {
                PostHasTransparency();
            }
            mUseAlphaData = mHaveAlphaData = true;
            mCurLine -= std::min<int32_t>(byte, mCurLine);
            break;

          case eRLEStateAbsoluteMode: // Absolute Mode
          case eRLEStateAbsoluteModePadded:
            if (mStateData) {
              // In absolute mode, the second byte (mStateData)
              // represents the number of pixels
              // that follow, each of which contains
              // the color index of a single pixel.
              uint32_t* d = reinterpret_cast<uint32_t*>
                            (mImageData) +
                            PIXEL_OFFSET(mCurLine, mCurPos);
              uint32_t* oldPos = d;
              if (mBIH.compression == BI_RLE8) {
                  while (aCount > 0 && mStateData > 0) {
                    byte = *aBuffer++;
                    aCount--;
                    SetPixel(d, byte, mColors);
                    mStateData--;
                  }
              } else {
                  while (aCount > 0 && mStateData > 0) {
                    byte = *aBuffer++;
                    aCount--;
                    Set4BitPixel(d, byte, mStateData, mColors);
                  }
              }
              mCurPos += d - oldPos;
            }

            if (mStateData == 0) {
              // In absolute mode, each run must
              // be aligned on a word boundary

              if (mState == eRLEStateAbsoluteMode) {
                // word aligned
                mState = eRLEStateInitial;
              } else if (aCount > 0) {
                // not word aligned
                // "next" byte is just a padding byte
                // so "move" past it and we can continue
                aBuffer++;
                aCount--;
                mState = eRLEStateInitial;
              }
            }
            // else state is still eRLEStateAbsoluteMode
            continue;

          default :
            MOZ_ASSERT(0, "BMP RLE decompression: unknown state!");
            PostDecoderError(NS_ERROR_UNEXPECTED);
            return;
        }
        // Because of the use of the continue statement
        // we only get here for eol, eof or y delta
        if (mCurLine == 0) {
          // Finished last line
          break;
        }
      }
    }
  }

  const uint32_t rows = mOldLine - mCurLine;
  if (rows) {
    // Invalidate
    nsIntRect r(0, mBIH.height < 0 ? -mBIH.height - mOldLine : mCurLine,
                mBIH.width, rows);
    PostInvalidation(r);

    mOldLine = mCurLine;
  }

  return;
}

void
nsBMPDecoder::ProcessFileHeader()
{
  memset(&mBFH, 0, sizeof(mBFH));
  memcpy(&mBFH.signature, mRawBuf, sizeof(mBFH.signature));
  memcpy(&mBFH.filesize, mRawBuf + 2, sizeof(mBFH.filesize));
  memcpy(&mBFH.reserved, mRawBuf + 6, sizeof(mBFH.reserved));
  memcpy(&mBFH.dataoffset, mRawBuf + 10, sizeof(mBFH.dataoffset));
  memcpy(&mBFH.bihsize, mRawBuf + 14, sizeof(mBFH.bihsize));

  // Now correct the endianness of the header
  mBFH.filesize = LittleEndian::readUint32(&mBFH.filesize);
  mBFH.dataoffset = LittleEndian::readUint32(&mBFH.dataoffset);
  mBFH.bihsize = LittleEndian::readUint32(&mBFH.bihsize);
}

void
nsBMPDecoder::ProcessInfoHeader()
{
  memset(&mBIH, 0, sizeof(mBIH));
  if (mBFH.bihsize == 12) { // OS/2 Bitmap
    memcpy(&mBIH.width, mRawBuf, 2);
    memcpy(&mBIH.height, mRawBuf + 2, 2);
    memcpy(&mBIH.planes, mRawBuf + 4, sizeof(mBIH.planes));
    memcpy(&mBIH.bpp, mRawBuf + 6, sizeof(mBIH.bpp));
  } else {
    memcpy(&mBIH.width, mRawBuf, sizeof(mBIH.width));
    memcpy(&mBIH.height, mRawBuf + 4, sizeof(mBIH.height));
    memcpy(&mBIH.planes, mRawBuf + 8, sizeof(mBIH.planes));
    memcpy(&mBIH.bpp, mRawBuf + 10, sizeof(mBIH.bpp));
    memcpy(&mBIH.compression, mRawBuf + 12, sizeof(mBIH.compression));
    memcpy(&mBIH.image_size, mRawBuf + 16, sizeof(mBIH.image_size));
    memcpy(&mBIH.xppm, mRawBuf + 20, sizeof(mBIH.xppm));
    memcpy(&mBIH.yppm, mRawBuf + 24, sizeof(mBIH.yppm));
    memcpy(&mBIH.colors, mRawBuf + 28, sizeof(mBIH.colors));
    memcpy(&mBIH.important_colors, mRawBuf + 32,
           sizeof(mBIH.important_colors));
  }

  // Convert endianness
  mBIH.width = LittleEndian::readUint32(&mBIH.width);
  mBIH.height = LittleEndian::readUint32(&mBIH.height);
  mBIH.planes = LittleEndian::readUint16(&mBIH.planes);
  mBIH.bpp = LittleEndian::readUint16(&mBIH.bpp);

  mBIH.compression = LittleEndian::readUint32(&mBIH.compression);
  mBIH.image_size = LittleEndian::readUint32(&mBIH.image_size);
  mBIH.xppm = LittleEndian::readUint32(&mBIH.xppm);
  mBIH.yppm = LittleEndian::readUint32(&mBIH.yppm);
  mBIH.colors = LittleEndian::readUint32(&mBIH.colors);
  mBIH.important_colors = LittleEndian::readUint32(&mBIH.important_colors);
}

} // namespace image
} // namespace mozilla