DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (4a108e94d3e2)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
#include <xmmintrin.h>

#include "qcmsint.h"

/* pre-shuffled: just load these into XMM reg instead of load-scalar/shufps sequence */
#define FLOATSCALE  (float)(PRECACHE_OUTPUT_SIZE)
#define CLAMPMAXVAL ( ((float) (PRECACHE_OUTPUT_SIZE - 1)) / PRECACHE_OUTPUT_SIZE )
static const ALIGN float floatScaleX4[4] =
    { FLOATSCALE, FLOATSCALE, FLOATSCALE, FLOATSCALE};
static const ALIGN float clampMaxValueX4[4] =
    { CLAMPMAXVAL, CLAMPMAXVAL, CLAMPMAXVAL, CLAMPMAXVAL};

void qcms_transform_data_rgb_out_lut_sse1(qcms_transform *transform,
                                          unsigned char *src,
                                          unsigned char *dest,
                                          size_t length)
{
    unsigned int i;
    float (*mat)[4] = transform->matrix;
    char input_back[32];
    /* Ensure we have a buffer that's 16 byte aligned regardless of the original
     * stack alignment. We can't use __attribute__((aligned(16))) or __declspec(align(32))
     * because they don't work on stack variables. gcc 4.4 does do the right thing
     * on x86 but that's too new for us right now. For more info: gcc bug #16660 */
    float const * input = (float*)(((uintptr_t)&input_back[16]) & ~0xf);
    /* share input and output locations to save having to keep the
     * locations in separate registers */
    uint32_t const * output = (uint32_t*)input;

    /* deref *transform now to avoid it in loop */
    const float *igtbl_r = transform->input_gamma_table_r;
    const float *igtbl_g = transform->input_gamma_table_g;
    const float *igtbl_b = transform->input_gamma_table_b;

    /* deref *transform now to avoid it in loop */
    const uint8_t *otdata_r = &transform->output_table_r->data[0];
    const uint8_t *otdata_g = &transform->output_table_g->data[0];
    const uint8_t *otdata_b = &transform->output_table_b->data[0];

    /* input matrix values never change */
    const __m128 mat0  = _mm_load_ps(mat[0]);
    const __m128 mat1  = _mm_load_ps(mat[1]);
    const __m128 mat2  = _mm_load_ps(mat[2]);

    /* these values don't change, either */
    const __m128 max   = _mm_load_ps(clampMaxValueX4);
    const __m128 min   = _mm_setzero_ps();
    const __m128 scale = _mm_load_ps(floatScaleX4);

    /* working variables */
    __m128 vec_r, vec_g, vec_b, result;

    /* CYA */
    if (!length)
        return;

    /* one pixel is handled outside of the loop */
    length--;

    /* setup for transforming 1st pixel */
    vec_r = _mm_load_ss(&igtbl_r[src[0]]);
    vec_g = _mm_load_ss(&igtbl_g[src[1]]);
    vec_b = _mm_load_ss(&igtbl_b[src[2]]);
    src += 3;

    /* transform all but final pixel */

    for (i=0; i<length; i++)
    {
        /* position values from gamma tables */
        vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
        vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
        vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);

        /* gamma * matrix */
        vec_r = _mm_mul_ps(vec_r, mat0);
        vec_g = _mm_mul_ps(vec_g, mat1);
        vec_b = _mm_mul_ps(vec_b, mat2);

        /* crunch, crunch, crunch */
        vec_r  = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b));
        vec_r  = _mm_max_ps(min, vec_r);
        vec_r  = _mm_min_ps(max, vec_r);
        result = _mm_mul_ps(vec_r, scale);

        /* store calc'd output tables indices */
        *((__m64 *)&output[0]) = _mm_cvtps_pi32(result);
        result = _mm_movehl_ps(result, result);
        *((__m64 *)&output[2]) = _mm_cvtps_pi32(result) ;

        /* load for next loop while store completes */
        vec_r = _mm_load_ss(&igtbl_r[src[0]]);
        vec_g = _mm_load_ss(&igtbl_g[src[1]]);
        vec_b = _mm_load_ss(&igtbl_b[src[2]]);
        src += 3;

        /* use calc'd indices to output RGB values */
        dest[OUTPUT_R_INDEX] = otdata_r[output[0]];
        dest[OUTPUT_G_INDEX] = otdata_g[output[1]];
        dest[OUTPUT_B_INDEX] = otdata_b[output[2]];
        dest += RGB_OUTPUT_COMPONENTS;
    }

    /* handle final (maybe only) pixel */

    vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
    vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
    vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);

    vec_r = _mm_mul_ps(vec_r, mat0);
    vec_g = _mm_mul_ps(vec_g, mat1);
    vec_b = _mm_mul_ps(vec_b, mat2);

    vec_r  = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b));
    vec_r  = _mm_max_ps(min, vec_r);
    vec_r  = _mm_min_ps(max, vec_r);
    result = _mm_mul_ps(vec_r, scale);

    *((__m64 *)&output[0]) = _mm_cvtps_pi32(result);
    result = _mm_movehl_ps(result, result);
    *((__m64 *)&output[2]) = _mm_cvtps_pi32(result);

    dest[OUTPUT_R_INDEX] = otdata_r[output[0]];
    dest[OUTPUT_G_INDEX] = otdata_g[output[1]];
    dest[OUTPUT_B_INDEX] = otdata_b[output[2]];

    _mm_empty();
}

void qcms_transform_data_rgba_out_lut_sse1(qcms_transform *transform,
                                           unsigned char *src,
                                           unsigned char *dest,
                                           size_t length)
{
    unsigned int i;
    float (*mat)[4] = transform->matrix;
    char input_back[32];
    /* Ensure we have a buffer that's 16 byte aligned regardless of the original
     * stack alignment. We can't use __attribute__((aligned(16))) or __declspec(align(32))
     * because they don't work on stack variables. gcc 4.4 does do the right thing
     * on x86 but that's too new for us right now. For more info: gcc bug #16660 */
    float const * input = (float*)(((uintptr_t)&input_back[16]) & ~0xf);
    /* share input and output locations to save having to keep the
     * locations in separate registers */
    uint32_t const * output = (uint32_t*)input;

    /* deref *transform now to avoid it in loop */
    const float *igtbl_r = transform->input_gamma_table_r;
    const float *igtbl_g = transform->input_gamma_table_g;
    const float *igtbl_b = transform->input_gamma_table_b;

    /* deref *transform now to avoid it in loop */
    const uint8_t *otdata_r = &transform->output_table_r->data[0];
    const uint8_t *otdata_g = &transform->output_table_g->data[0];
    const uint8_t *otdata_b = &transform->output_table_b->data[0];

    /* input matrix values never change */
    const __m128 mat0  = _mm_load_ps(mat[0]);
    const __m128 mat1  = _mm_load_ps(mat[1]);
    const __m128 mat2  = _mm_load_ps(mat[2]);

    /* these values don't change, either */
    const __m128 max   = _mm_load_ps(clampMaxValueX4);
    const __m128 min   = _mm_setzero_ps();
    const __m128 scale = _mm_load_ps(floatScaleX4);

    /* working variables */
    __m128 vec_r, vec_g, vec_b, result;
    unsigned char alpha;

    /* CYA */
    if (!length)
        return;

    /* one pixel is handled outside of the loop */
    length--;

    /* setup for transforming 1st pixel */
    vec_r = _mm_load_ss(&igtbl_r[src[0]]);
    vec_g = _mm_load_ss(&igtbl_g[src[1]]);
    vec_b = _mm_load_ss(&igtbl_b[src[2]]);
    alpha = src[3];
    src += 4;

    /* transform all but final pixel */

    for (i=0; i<length; i++)
    {
        /* position values from gamma tables */
        vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
        vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
        vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);

        /* gamma * matrix */
        vec_r = _mm_mul_ps(vec_r, mat0);
        vec_g = _mm_mul_ps(vec_g, mat1);
        vec_b = _mm_mul_ps(vec_b, mat2);

        /* store alpha for this pixel; load alpha for next */
        dest[OUTPUT_A_INDEX] = alpha;
        alpha   = src[3];

        /* crunch, crunch, crunch */
        vec_r  = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b));
        vec_r  = _mm_max_ps(min, vec_r);
        vec_r  = _mm_min_ps(max, vec_r);
        result = _mm_mul_ps(vec_r, scale);

        /* store calc'd output tables indices */
        *((__m64 *)&output[0]) = _mm_cvtps_pi32(result);
        result = _mm_movehl_ps(result, result);
        *((__m64 *)&output[2]) = _mm_cvtps_pi32(result);

        /* load gamma values for next loop while store completes */
        vec_r = _mm_load_ss(&igtbl_r[src[0]]);
        vec_g = _mm_load_ss(&igtbl_g[src[1]]);
        vec_b = _mm_load_ss(&igtbl_b[src[2]]);
        src += 4;

        /* use calc'd indices to output RGB values */
        dest[OUTPUT_R_INDEX] = otdata_r[output[0]];
        dest[OUTPUT_G_INDEX] = otdata_g[output[1]];
        dest[OUTPUT_B_INDEX] = otdata_b[output[2]];
        dest += 4;
    }

    /* handle final (maybe only) pixel */

    vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
    vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
    vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);

    vec_r = _mm_mul_ps(vec_r, mat0);
    vec_g = _mm_mul_ps(vec_g, mat1);
    vec_b = _mm_mul_ps(vec_b, mat2);

    dest[OUTPUT_A_INDEX] = alpha;

    vec_r  = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b));
    vec_r  = _mm_max_ps(min, vec_r);
    vec_r  = _mm_min_ps(max, vec_r);
    result = _mm_mul_ps(vec_r, scale);

    *((__m64 *)&output[0]) = _mm_cvtps_pi32(result);
    result = _mm_movehl_ps(result, result);
    *((__m64 *)&output[2]) = _mm_cvtps_pi32(result);

    dest[OUTPUT_R_INDEX] = otdata_r[output[0]];
    dest[OUTPUT_G_INDEX] = otdata_g[output[1]];
    dest[OUTPUT_B_INDEX] = otdata_b[output[2]];

    _mm_empty();
}