DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (777e60ca8853)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
/* -*- Mode: C++; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/*
 * This program tracks a process's working memory usage using the
 * ``performance'' entries in the Win32 registry. It borrows from
 * the ``pviewer'' source code in the MS SDK.
 */

#include <assert.h>
#include <windows.h>
#include <winperf.h>
#include <stdio.h>
#include <stdlib.h>

#define PN_PROCESS                          1
#define PN_PROCESS_CPU                      2
#define PN_PROCESS_PRIV                     3
#define PN_PROCESS_USER                     4
#define PN_PROCESS_WORKING_SET              5
#define PN_PROCESS_PEAK_WS                  6
#define PN_PROCESS_PRIO                     7
#define PN_PROCESS_ELAPSE                   8
#define PN_PROCESS_ID                       9
#define PN_PROCESS_PRIVATE_PAGE            10
#define PN_PROCESS_VIRTUAL_SIZE            11
#define PN_PROCESS_PEAK_VS                 12
#define PN_PROCESS_FAULT_COUNT             13
#define PN_THREAD                          14
#define PN_THREAD_CPU                      15
#define PN_THREAD_PRIV                     16
#define PN_THREAD_USER                     17
#define PN_THREAD_START                    18
#define PN_THREAD_SWITCHES                 19
#define PN_THREAD_PRIO                     20
#define PN_THREAD_BASE_PRIO                21
#define PN_THREAD_ELAPSE                   22
#define PN_THREAD_DETAILS                  23
#define PN_THREAD_PC                       24
#define PN_IMAGE                           25
#define PN_IMAGE_NOACCESS                  26
#define PN_IMAGE_READONLY                  27
#define PN_IMAGE_READWRITE                 28
#define PN_IMAGE_WRITECOPY                 29
#define PN_IMAGE_EXECUTABLE                30
#define PN_IMAGE_EXE_READONLY              31
#define PN_IMAGE_EXE_READWRITE             32
#define PN_IMAGE_EXE_WRITECOPY             33
#define PN_PROCESS_ADDRESS_SPACE           34
#define PN_PROCESS_PRIVATE_NOACCESS        35
#define PN_PROCESS_PRIVATE_READONLY        36
#define PN_PROCESS_PRIVATE_READWRITE       37
#define PN_PROCESS_PRIVATE_WRITECOPY       38
#define PN_PROCESS_PRIVATE_EXECUTABLE      39
#define PN_PROCESS_PRIVATE_EXE_READONLY    40
#define PN_PROCESS_PRIVATE_EXE_READWRITE   41
#define PN_PROCESS_PRIVATE_EXE_WRITECOPY   42
#define PN_PROCESS_MAPPED_NOACCESS         43
#define PN_PROCESS_MAPPED_READONLY         44
#define PN_PROCESS_MAPPED_READWRITE        45
#define PN_PROCESS_MAPPED_WRITECOPY        46
#define PN_PROCESS_MAPPED_EXECUTABLE       47
#define PN_PROCESS_MAPPED_EXE_READONLY     48
#define PN_PROCESS_MAPPED_EXE_READWRITE    49
#define PN_PROCESS_MAPPED_EXE_WRITECOPY    50
#define PN_PROCESS_IMAGE_NOACCESS          51
#define PN_PROCESS_IMAGE_READONLY          52
#define PN_PROCESS_IMAGE_READWRITE         53
#define PN_PROCESS_IMAGE_WRITECOPY         54
#define PN_PROCESS_IMAGE_EXECUTABLE        55
#define PN_PROCESS_IMAGE_EXE_READONLY      56
#define PN_PROCESS_IMAGE_EXE_READWRITE     57
#define PN_PROCESS_IMAGE_EXE_WRITECOPY     58

struct entry_t {
    int   e_key;
    int   e_index;
    char* e_title;
};

entry_t entries[] = {
{ PN_PROCESS,                          0, TEXT("Process") },
{ PN_PROCESS_CPU,                      0, TEXT("% Processor Time") },
{ PN_PROCESS_PRIV,                     0, TEXT("% Privileged Time") },
{ PN_PROCESS_USER,                     0, TEXT("% User Time") },
{ PN_PROCESS_WORKING_SET,              0, TEXT("Working Set") },
{ PN_PROCESS_PEAK_WS,                  0, TEXT("Working Set Peak") },
{ PN_PROCESS_PRIO,                     0, TEXT("Priority Base") },
{ PN_PROCESS_ELAPSE,                   0, TEXT("Elapsed Time") },
{ PN_PROCESS_ID,                       0, TEXT("ID Process") },
{ PN_PROCESS_PRIVATE_PAGE,             0, TEXT("Private Bytes") },
{ PN_PROCESS_VIRTUAL_SIZE,             0, TEXT("Virtual Bytes") },
{ PN_PROCESS_PEAK_VS,                  0, TEXT("Virtual Bytes Peak") },
{ PN_PROCESS_FAULT_COUNT,              0, TEXT("Page Faults/sec") },
{ PN_THREAD,                           0, TEXT("Thread") },
{ PN_THREAD_CPU,                       0, TEXT("% Processor Time") },
{ PN_THREAD_PRIV,                      0, TEXT("% Privileged Time") },
{ PN_THREAD_USER,                      0, TEXT("% User Time") },
{ PN_THREAD_START,                     0, TEXT("Start Address") },
{ PN_THREAD_SWITCHES,                  0, TEXT("Con0, TEXT Switches/sec") },
{ PN_THREAD_PRIO,                      0, TEXT("Priority Current") },
{ PN_THREAD_BASE_PRIO,                 0, TEXT("Priority Base") },
{ PN_THREAD_ELAPSE,                    0, TEXT("Elapsed Time") },
{ PN_THREAD_DETAILS,                   0, TEXT("Thread Details") },
{ PN_THREAD_PC,                        0, TEXT("User PC") },
{ PN_IMAGE,                            0, TEXT("Image") },
{ PN_IMAGE_NOACCESS,                   0, TEXT("No Access") },
{ PN_IMAGE_READONLY,                   0, TEXT("Read Only") },
{ PN_IMAGE_READWRITE,                  0, TEXT("Read/Write") },
{ PN_IMAGE_WRITECOPY,                  0, TEXT("Write Copy") },
{ PN_IMAGE_EXECUTABLE,                 0, TEXT("Executable") },
{ PN_IMAGE_EXE_READONLY,               0, TEXT("Exec Read Only") },
{ PN_IMAGE_EXE_READWRITE,              0, TEXT("Exec Read/Write") },
{ PN_IMAGE_EXE_WRITECOPY,              0, TEXT("Exec Write Copy") },
{ PN_PROCESS_ADDRESS_SPACE,            0, TEXT("Process Address Space") },
{ PN_PROCESS_PRIVATE_NOACCESS,         0, TEXT("Reserved Space No Access") },
{ PN_PROCESS_PRIVATE_READONLY,         0, TEXT("Reserved Space Read Only") },
{ PN_PROCESS_PRIVATE_READWRITE,        0, TEXT("Reserved Space Read/Write") },
{ PN_PROCESS_PRIVATE_WRITECOPY,        0, TEXT("Reserved Space Write Copy") },
{ PN_PROCESS_PRIVATE_EXECUTABLE,       0, TEXT("Reserved Space Executable") },
{ PN_PROCESS_PRIVATE_EXE_READONLY,     0, TEXT("Reserved Space Exec Read Only") },
{ PN_PROCESS_PRIVATE_EXE_READWRITE,    0, TEXT("Reserved Space Exec Read/Write") },
{ PN_PROCESS_PRIVATE_EXE_WRITECOPY,    0, TEXT("Reserved Space Exec Write Copy") },
{ PN_PROCESS_MAPPED_NOACCESS,          0, TEXT("Mapped Space No Access") },
{ PN_PROCESS_MAPPED_READONLY,          0, TEXT("Mapped Space Read Only") },
{ PN_PROCESS_MAPPED_READWRITE,         0, TEXT("Mapped Space Read/Write") },
{ PN_PROCESS_MAPPED_WRITECOPY,         0, TEXT("Mapped Space Write Copy") },
{ PN_PROCESS_MAPPED_EXECUTABLE,        0, TEXT("Mapped Space Executable") },
{ PN_PROCESS_MAPPED_EXE_READONLY,      0, TEXT("Mapped Space Exec Read Only") },
{ PN_PROCESS_MAPPED_EXE_READWRITE,     0, TEXT("Mapped Space Exec Read/Write") },
{ PN_PROCESS_MAPPED_EXE_WRITECOPY,     0, TEXT("Mapped Space Exec Write Copy") },
{ PN_PROCESS_IMAGE_NOACCESS,           0, TEXT("Image Space No Access") },
{ PN_PROCESS_IMAGE_READONLY,           0, TEXT("Image Space Read Only") },
{ PN_PROCESS_IMAGE_READWRITE,          0, TEXT("Image Space Read/Write") },
{ PN_PROCESS_IMAGE_WRITECOPY,          0, TEXT("Image Space Write Copy") },
{ PN_PROCESS_IMAGE_EXECUTABLE,         0, TEXT("Image Space Executable") },
{ PN_PROCESS_IMAGE_EXE_READONLY,       0, TEXT("Image Space Exec Read Only") },
{ PN_PROCESS_IMAGE_EXE_READWRITE,      0, TEXT("Image Space Exec Read/Write") },
{ PN_PROCESS_IMAGE_EXE_WRITECOPY,      0, TEXT("Image Space Exec Write Copy") },
{ 0,                                   0, 0 },
};

#define NENTRIES ((sizeof(entries) / sizeof(entry_t)) - 1)

static int
key_for_index(int key)
{
    entry_t* entry = entries + NENTRIES / 2;
    unsigned int step = 64 / 4; // XXX

    while (step) {
        if (key < entry->e_key)
            entry -= step;
        else if (key > entry->e_key)
            entry += step;

        if (key == entry->e_key)
            return entry->e_index;

        step >>= 1;
    }

    assert(false);
    return 0;
}


class auto_hkey {
protected:
    HKEY hkey;

    HKEY* begin_assignment() {
        if (hkey) {
            ::RegCloseKey(hkey);
            hkey = 0;
        }
        return &hkey;
    }

public:
    auto_hkey() : hkey(0) {}
    ~auto_hkey() { ::RegCloseKey(hkey); }
    
    HKEY get() const { return hkey; }
    operator HKEY() const { return get(); }

    friend HKEY*
    getter_Acquires(auto_hkey& hkey);
};

static HKEY*
getter_Acquires(auto_hkey& hkey)
{
    return hkey.begin_assignment();
}


static int
get_perf_titles(char*& buffer, char**& titles, int& last_title_index)
{
    DWORD result;

    // Open the perflib key to find out the last counter's index and
    // system version.
    auto_hkey perflib_hkey;
    result = ::RegOpenKeyEx(HKEY_LOCAL_MACHINE,
                            TEXT("software\\microsoft\\windows nt\\currentversion\\perflib"),
                            0,
                            KEY_READ,
                            getter_Acquires(perflib_hkey));

    if (result != ERROR_SUCCESS)
        return result;

    // Get the last counter's index so we know how much memory to
    // allocate for titles
    DWORD data_size = sizeof(DWORD);
    DWORD type;
    result = ::RegQueryValueEx(perflib_hkey,
                               TEXT("Last Counter"),
                               0,
                               &type,
                               reinterpret_cast<BYTE*>(&last_title_index),
                               &data_size);

    if (result != ERROR_SUCCESS)
        return result;

    // Find system version, for system earlier than 1.0a, there's no
    // version value.
    int version;
    result = ::RegQueryValueEx(perflib_hkey,
                               TEXT("Version"),
                               0,
                               &type,
                               reinterpret_cast<BYTE*>(&version),
                               &data_size);

    bool is_nt_10 = (result == ERROR_SUCCESS);

    // Now, get ready for the counter names and indexes.
    char* counter_value_name;
    auto_hkey counter_autohkey;
    HKEY counter_hkey;
    if (is_nt_10) {
        // NT 1.0, so make hKey2 point to ...\perflib\009 and get
        //  the counters from value "Counters"
        counter_value_name = TEXT("Counters");
        result = ::RegOpenKeyEx(HKEY_LOCAL_MACHINE,
                                TEXT("software\\microsoft\\windows nt\\currentversion\\perflib\\009"),
                                0,
                                KEY_READ,
                                getter_Acquires(counter_autohkey));

        if (result != ERROR_SUCCESS)
            return result;

        counter_hkey = counter_autohkey;
    }
    else {
        // NT 1.0a or later.  Get the counters in key HKEY_PERFORMANCE_KEY
        //  and from value "Counter 009"
        counter_value_name = TEXT("Counter 009");
        counter_hkey = HKEY_PERFORMANCE_DATA;
    }

    // Find out the size of the data.
    result = ::RegQueryValueEx(counter_hkey,
                               counter_value_name,
                               0,
                               &type,
                               0,
                               &data_size);

    if (result != ERROR_SUCCESS)
        return result;

    // Allocate memory
    buffer = new char[data_size];
    titles = new char*[last_title_index + 1];
    for (int i = 0; i <= last_title_index; ++i)
        titles[i] = 0;

    // Query the data
    result = ::RegQueryValueEx(counter_hkey,
                               counter_value_name,
                               0,
                               &type,
                               reinterpret_cast<BYTE*>(buffer),
                               &data_size);
    if (result != ERROR_SUCCESS)
        return result;

    // Setup the titles array of pointers to point to beginning of
    // each title string.
    char* title = buffer;
    int len;

    while (len = lstrlen(title)) {
        int index = atoi(title);
        title += len + 1;

        if (index <= last_title_index)
            titles[index] = title;

#ifdef DEBUG
        printf("%d=%s\n", index, title);
#endif

        title += lstrlen(title) + 1;
    }

    return ERROR_SUCCESS;
}

static void
init_entries()
{
    char* buffer;
    char** titles;
    int last = 0;

    DWORD result = get_perf_titles(buffer, titles, last);

    assert(result == ERROR_SUCCESS);

    for (entry_t* entry = entries; entry->e_key != 0; ++entry) {
        for (int index = 0; index <= last; ++index) {
            if (titles[index] && 0 == lstrcmpi(titles[index], entry->e_title)) {
                entry->e_index = index;
                break;
            }
        }

        if (entry->e_index == 0) {
            fprintf(stderr, "warning: unable to find index for ``%s''\n", entry->e_title);
        }
    }

    delete[] buffer;
    delete[] titles;
}



static DWORD
get_perf_data(HKEY perf_hkey, char* object_index, PERF_DATA_BLOCK** data, DWORD* size)
{
    if (! *data)
        *data = reinterpret_cast<PERF_DATA_BLOCK*>(new char[*size]);

    DWORD result;

    while (1) {
        DWORD type;
        DWORD real_size = *size;

        result = ::RegQueryValueEx(perf_hkey,
                                   object_index,
                                   0,
                                   &type,
                                   reinterpret_cast<BYTE*>(*data),
                                   &real_size);

        if (result != ERROR_MORE_DATA)
            break;

        delete[] *data;
        *size += 1024;
        *data = reinterpret_cast<PERF_DATA_BLOCK*>(new char[*size]);

        if (! *data)
            return ERROR_NOT_ENOUGH_MEMORY;
    }

    return result;
}


static const PERF_OBJECT_TYPE*
first_object(const PERF_DATA_BLOCK* data)
{
    return data
        ? reinterpret_cast<const PERF_OBJECT_TYPE*>(reinterpret_cast<const char*>(data) + data->HeaderLength)
        : 0;
}

static const PERF_OBJECT_TYPE*
next_object(const PERF_OBJECT_TYPE* object)
{
    return object
        ? reinterpret_cast<const PERF_OBJECT_TYPE*>(reinterpret_cast<const char*>(object) + object->TotalByteLength)
        : 0;
}

const PERF_OBJECT_TYPE*
find_object(const PERF_DATA_BLOCK* data, DWORD index)
{
    const PERF_OBJECT_TYPE* object = first_object(data);
    if (! object)
        return 0;

    for (int i = 0; i < data->NumObjectTypes; ++i) {
        if (object->ObjectNameTitleIndex == index)
            return object;

        object = next_object(object);
    }

    return 0;
}


static const PERF_COUNTER_DEFINITION*
first_counter(const PERF_OBJECT_TYPE* object)
{
    return object
        ? reinterpret_cast<const PERF_COUNTER_DEFINITION*>(reinterpret_cast<const char*>(object) + object->HeaderLength)
        : 0;
}

static const PERF_COUNTER_DEFINITION*
next_counter(const PERF_COUNTER_DEFINITION* counter)
{
    return counter ?
        reinterpret_cast<const PERF_COUNTER_DEFINITION*>(reinterpret_cast<const char*>(counter) + counter->ByteLength)
        : 0;
}


static const PERF_COUNTER_DEFINITION*
find_counter(const PERF_OBJECT_TYPE* object, int index)
{
    const PERF_COUNTER_DEFINITION* counter =
        first_counter(object);

    if (! counter)
        return 0;

    for (int i; i < object->NumCounters; ++i) {
        if (counter->CounterNameTitleIndex == index)
            return counter;

        counter = next_counter(counter);
    }

    return 0;
}


static const PERF_INSTANCE_DEFINITION*
first_instance(const PERF_OBJECT_TYPE* object)
{
    return object
        ? reinterpret_cast<const PERF_INSTANCE_DEFINITION*>(reinterpret_cast<const char*>(object) + object->DefinitionLength)
        : 0;
}


static const PERF_INSTANCE_DEFINITION*
next_instance(const PERF_INSTANCE_DEFINITION* instance)
{
    if (instance) {
        const PERF_COUNTER_BLOCK* counter_block =
            reinterpret_cast<const PERF_COUNTER_BLOCK*>(reinterpret_cast<const char*>(instance) + instance->ByteLength);

        return reinterpret_cast<const PERF_INSTANCE_DEFINITION*>(reinterpret_cast<const char*>(counter_block) + counter_block->ByteLength);
    }
    else {
        return 0;
    }
}


static const wchar_t*
instance_name(const PERF_INSTANCE_DEFINITION* instance)
{
    return instance
        ? reinterpret_cast<const wchar_t*>(reinterpret_cast<const char*>(instance) + instance->NameOffset)
        : 0;
}


static const void*
counter_data(const PERF_INSTANCE_DEFINITION* instance,
             const PERF_COUNTER_DEFINITION* counter)
{
    if (counter && instance) {
        const PERF_COUNTER_BLOCK* counter_block; 
        counter_block = reinterpret_cast<const PERF_COUNTER_BLOCK*>(reinterpret_cast<const char*>(instance) + instance->ByteLength);
        return reinterpret_cast<const char*>(counter_block) + counter->CounterOffset;
    }
    else {
        return 0;
    }
}


static bool
list_process(PERF_DATA_BLOCK* perf_data, wchar_t* process_name)
{
    const PERF_OBJECT_TYPE* process = find_object(perf_data, key_for_index(PN_PROCESS));
    const PERF_COUNTER_DEFINITION* working_set      = find_counter(process, key_for_index(PN_PROCESS_WORKING_SET));
    const PERF_COUNTER_DEFINITION* peak_working_set = find_counter(process, key_for_index(PN_PROCESS_PEAK_WS));
    const PERF_COUNTER_DEFINITION* private_page     = find_counter(process, key_for_index(PN_PROCESS_PRIVATE_PAGE));
    const PERF_COUNTER_DEFINITION* virtual_size     = find_counter(process, key_for_index(PN_PROCESS_VIRTUAL_SIZE));

    const PERF_INSTANCE_DEFINITION* instance = first_instance(process);
    int index = 0;

    bool found = false;

    while (instance && index < process->NumInstances) {
        const wchar_t* name = instance_name(instance);
        if (lstrcmpW(process_name, name) == 0) {
            printf("%d %d %d %d\n",
                   *(static_cast<const int*>(counter_data(instance, working_set))),
                   *(static_cast<const int*>(counter_data(instance, peak_working_set))),
                   *(static_cast<const int*>(counter_data(instance, private_page))),
                   *(static_cast<const int*>(counter_data(instance, virtual_size))));

            found = true;
        }

        instance = next_instance(instance);
        ++index;
    }

    if (found) {
#if 0
        // Dig up address space data.
        PERF_OBJECT_TYPE* address_space = FindObject(costly_data, PX_PROCESS_ADDRESS_SPACE);
        PERF_COUNTER_DEFINITION* image_executable = FindCounter(process, PX_PROCESS_IMAGE_EXECUTABLE);
        PERF_COUNTER_DEFINITION* image_exe_readonly = FindCounter(process, PX_PROCESS_IMAGE_EXE_READONLY);
        PERF_COUNTER_DEFINITION* image_exe_readwrite = FindCounter(process, PX_PROCESS_IMAGE_EXE_READWRITE);
        PERF_COUNTER_DEFINITION* image_exe_writecopy = FindCounter(process, PX_PROCESS_IMAGE_EXE_WRITECOPY);
#endif
    }

    return found;
}


int
main(int argc, char* argv[])
{
    wchar_t process_name[32];

    int interval = 10000; // msec

    int i = 0;
    while (++i < argc) {
        if (argv[i][0] != '-')
            break;

        switch (argv[i][1]) {
        case 'i':
            interval = atoi(argv[++i]) * 1000;
            break;
            
        default:
            fprintf(stderr, "unknown option `%c'\n", argv[i][1]);
            exit(1);
        }
    }

    if (argv[i]) {
        char* p = argv[i];
        wchar_t* q = process_name;
        while (*q++ = wchar_t(*p++))
            continue;
    }
    else {
        fprintf(stderr, "no image name specified\n");
        exit(1);
    }

    init_entries();

    PERF_DATA_BLOCK* perf_data = 0;
    PERF_DATA_BLOCK* costly_data = 0;
    DWORD perf_data_size = 50 * 1024;
    DWORD costly_data_size = 100 * 1024;

    do {
        char buf[64];
        sprintf(buf, "%ld %ld",
                key_for_index(PN_PROCESS),
                key_for_index(PN_THREAD));

        get_perf_data(HKEY_PERFORMANCE_DATA, buf, &perf_data, &perf_data_size);

#if 0
        sprintf(buf, "%ld %ld %ld",
                key_for_index(PN_PROCESS_ADDRESS_SPACE),
                key_for_index(PN_IMAGE),
                key_for_index(PN_THREAD_DETAILS));

        get_perf_data(HKEY_PERFORMANCE_DATA, buf, &costly_data, &costly_data_size);
#endif

        if (! list_process(perf_data, process_name))
            break;

        _sleep(interval);
    } while (1);

    return 0;
}