DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (777e60ca8853)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

// Main header first:
#include "nsSVGMaskFrame.h"

// Keep others in (case-insensitive) order:
#include "gfxContext.h"
#include "gfxImageSurface.h"
#include "nsRenderingContext.h"
#include "nsSVGEffects.h"
#include "mozilla/dom/SVGMaskElement.h"

using namespace mozilla::dom;

/**
 * Byte offsets of channels in a native packed gfxColor or cairo image surface.
 */
#ifdef IS_BIG_ENDIAN
#define GFX_ARGB32_OFFSET_A 0
#define GFX_ARGB32_OFFSET_R 1
#define GFX_ARGB32_OFFSET_G 2
#define GFX_ARGB32_OFFSET_B 3
#else
#define GFX_ARGB32_OFFSET_A 3
#define GFX_ARGB32_OFFSET_R 2
#define GFX_ARGB32_OFFSET_G 1
#define GFX_ARGB32_OFFSET_B 0
#endif

// c = n / 255
// c <= 0.04045 ? c / 12.92 : pow((c + 0.055) / 1.055, 2.4)) * 255 + 0.5
static const uint8_t gsRGBToLinearRGBMap[256] = {
  0,   0,   0,   0,   0,   0,   0,   1,
  1,   1,   1,   1,   1,   1,   1,   1,
  1,   1,   2,   2,   2,   2,   2,   2,
  2,   2,   3,   3,   3,   3,   3,   3,
  4,   4,   4,   4,   4,   5,   5,   5,
  5,   6,   6,   6,   6,   7,   7,   7,
  8,   8,   8,   8,   9,   9,   9,  10,
 10,  10,  11,  11,  12,  12,  12,  13,
 13,  13,  14,  14,  15,  15,  16,  16,
 17,  17,  17,  18,  18,  19,  19,  20,
 20,  21,  22,  22,  23,  23,  24,  24,
 25,  25,  26,  27,  27,  28,  29,  29,
 30,  30,  31,  32,  32,  33,  34,  35,
 35,  36,  37,  37,  38,  39,  40,  41,
 41,  42,  43,  44,  45,  45,  46,  47,
 48,  49,  50,  51,  51,  52,  53,  54,
 55,  56,  57,  58,  59,  60,  61,  62,
 63,  64,  65,  66,  67,  68,  69,  70,
 71,  72,  73,  74,  76,  77,  78,  79,
 80,  81,  82,  84,  85,  86,  87,  88,
 90,  91,  92,  93,  95,  96,  97,  99,
100, 101, 103, 104, 105, 107, 108, 109,
111, 112, 114, 115, 116, 118, 119, 121,
122, 124, 125, 127, 128, 130, 131, 133,
134, 136, 138, 139, 141, 142, 144, 146,
147, 149, 151, 152, 154, 156, 157, 159,
161, 163, 164, 166, 168, 170, 171, 173,
175, 177, 179, 181, 183, 184, 186, 188,
190, 192, 194, 196, 198, 200, 202, 204,
206, 208, 210, 212, 214, 216, 218, 220,
222, 224, 226, 229, 231, 233, 235, 237,
239, 242, 244, 246, 248, 250, 253, 255
};

static void
ComputesRGBLuminanceMask(uint8_t *aData,
                         int32_t aStride,
                         const nsIntRect &aRect,
                         float aOpacity)
{
  for (int32_t y = aRect.y; y < aRect.YMost(); y++) {
    for (int32_t x = aRect.x; x < aRect.XMost(); x++) {
      uint8_t *pixel = aData + aStride * y + 4 * x;
      uint8_t a = pixel[GFX_ARGB32_OFFSET_A];

      uint8_t luminance;
      if (a) {
        /* sRGB -> intensity (unpremultiply cancels out the
         * (a/255.0) multiplication with aOpacity */
        luminance =
          static_cast<uint8_t>
                     ((pixel[GFX_ARGB32_OFFSET_R] * 0.2125 +
                       pixel[GFX_ARGB32_OFFSET_G] * 0.7154 +
                       pixel[GFX_ARGB32_OFFSET_B] * 0.0721) *
                      aOpacity);
      } else {
        luminance = 0;
      }
      memset(pixel, luminance, 4);
    }
  }
}

static void
ComputeLinearRGBLuminanceMask(uint8_t *aData,
                              int32_t aStride,
                              const nsIntRect &aRect,
                              float aOpacity)
{
  for (int32_t y = aRect.y; y < aRect.YMost(); y++) {
    for (int32_t x = aRect.x; x < aRect.XMost(); x++) {
      uint8_t *pixel = aData + aStride * y + 4 * x;
      uint8_t a = pixel[GFX_ARGB32_OFFSET_A];

      uint8_t luminance;
      // unpremultiply
      if (a) {
        if (a != 255) {
          pixel[GFX_ARGB32_OFFSET_B] =
            (255 * pixel[GFX_ARGB32_OFFSET_B]) / a;
          pixel[GFX_ARGB32_OFFSET_G] =
            (255 * pixel[GFX_ARGB32_OFFSET_G]) / a;
          pixel[GFX_ARGB32_OFFSET_R] =
            (255 * pixel[GFX_ARGB32_OFFSET_R]) / a;
        }

        /* sRGB -> linearRGB -> intensity */
        luminance =
          static_cast<uint8_t>
                     ((gsRGBToLinearRGBMap[pixel[GFX_ARGB32_OFFSET_R]] *
                       0.2125 +
                       gsRGBToLinearRGBMap[pixel[GFX_ARGB32_OFFSET_G]] *
                       0.7154 +
                       gsRGBToLinearRGBMap[pixel[GFX_ARGB32_OFFSET_B]] *
                       0.0721) * (a / 255.0) * aOpacity);
      } else {
        luminance = 0;
      }
      memset(pixel, luminance, 4);
    }
  }
}

static void
ComputeAlphaMask(uint8_t *aData,
                 int32_t aStride,
                 const nsIntRect &aRect,
                 float aOpacity)
{
  for (int32_t y = aRect.y; y < aRect.YMost(); y++) {
    for (int32_t x = aRect.x; x < aRect.XMost(); x++) {
      uint8_t *pixel = aData + aStride * y + 4 * x;
      uint8_t luminance = pixel[GFX_ARGB32_OFFSET_A] * aOpacity;
      memset(pixel, luminance, 4);
    }
  }
}

//----------------------------------------------------------------------
// Implementation

nsIFrame*
NS_NewSVGMaskFrame(nsIPresShell* aPresShell, nsStyleContext* aContext)
{
  return new (aPresShell) nsSVGMaskFrame(aContext);
}

NS_IMPL_FRAMEARENA_HELPERS(nsSVGMaskFrame)

already_AddRefed<gfxPattern>
nsSVGMaskFrame::ComputeMaskAlpha(nsRenderingContext *aContext,
                                 nsIFrame* aParent,
                                 const gfxMatrix &aMatrix,
                                 float aOpacity)
{
  // If the flag is set when we get here, it means this mask frame
  // has already been used painting the current mask, and the document
  // has a mask reference loop.
  if (mInUse) {
    NS_WARNING("Mask loop detected!");
    return nullptr;
  }
  AutoMaskReferencer maskRef(this);

  SVGMaskElement *mask = static_cast<SVGMaskElement*>(mContent);

  uint16_t units =
    mask->mEnumAttributes[SVGMaskElement::MASKUNITS].GetAnimValue();
  gfxRect bbox;
  if (units == SVG_UNIT_TYPE_OBJECTBOUNDINGBOX) {
    bbox = nsSVGUtils::GetBBox(aParent);
  }

  gfxRect maskArea = nsSVGUtils::GetRelativeRect(units,
    &mask->mLengthAttributes[SVGMaskElement::ATTR_X], bbox, aParent);

  gfxContext *gfx = aContext->ThebesContext();

  // Get the clip extents in device space:
  gfx->Save();
  nsSVGUtils::SetClipRect(gfx, aMatrix, maskArea);
  gfx->IdentityMatrix();
  gfxRect clipExtents = gfx->GetClipExtents();
  clipExtents.RoundOut();
  gfx->Restore();

  bool resultOverflows;
  gfxIntSize surfaceSize =
    nsSVGUtils::ConvertToSurfaceSize(gfxSize(clipExtents.Width(),
                                             clipExtents.Height()),
                                     &resultOverflows);

  // 0 disables mask, < 0 is an error
  if (surfaceSize.width <= 0 || surfaceSize.height <= 0)
    return nullptr;

  if (resultOverflows)
    return nullptr;

  nsRefPtr<gfxImageSurface> image =
    new gfxImageSurface(surfaceSize, gfxImageFormat::ARGB32);
  if (!image || image->CairoStatus())
    return nullptr;

  // We would like to use gfxImageSurface::SetDeviceOffset() to position
  // 'image'. However, we need to set the same matrix on the temporary context
  // and pattern that we create below as is currently set on 'gfx'.
  // Unfortunately, any device offset set by SetDeviceOffset() is affected by
  // the transform passed to the SetMatrix() calls, so to avoid that we account
  // for the device offset in the transform rather than use SetDeviceOffset().
  gfxMatrix matrix =
    gfx->CurrentMatrix() * gfxMatrix().Translate(-clipExtents.TopLeft());

  nsRefPtr<nsRenderingContext> tmpCtx(new nsRenderingContext);
  tmpCtx->Init(this->PresContext()->DeviceContext(), image);
  tmpCtx->ThebesContext()->SetMatrix(matrix);

  mMaskParent = aParent;
  if (mMaskParentMatrix) {
    *mMaskParentMatrix = aMatrix;
  } else {
    mMaskParentMatrix = new gfxMatrix(aMatrix);
  }

  for (nsIFrame* kid = mFrames.FirstChild(); kid;
       kid = kid->GetNextSibling()) {
    // The CTM of each frame referencing us can be different
    nsISVGChildFrame* SVGFrame = do_QueryFrame(kid);
    if (SVGFrame) {
      SVGFrame->NotifySVGChanged(nsISVGChildFrame::TRANSFORM_CHANGED);
    }
    nsSVGUtils::PaintFrameWithEffects(tmpCtx, nullptr, kid);
  }

  uint8_t *data   = image->Data();
  int32_t  stride = image->Stride();
  nsIntRect rect(0, 0, surfaceSize.width, surfaceSize.height);

  if (StyleSVGReset()->mMaskType == NS_STYLE_MASK_TYPE_LUMINANCE) {
    if (StyleSVG()->mColorInterpolation ==
        NS_STYLE_COLOR_INTERPOLATION_LINEARRGB) {
      ComputeLinearRGBLuminanceMask(data, stride, rect, aOpacity);
    } else {
      ComputesRGBLuminanceMask(data, stride, rect, aOpacity);
    }
  } else {
    ComputeAlphaMask(data, stride, rect, aOpacity);
  }

  nsRefPtr<gfxPattern> retval = new gfxPattern(image);
  retval->SetMatrix(matrix);
  return retval.forget();
}

nsresult
nsSVGMaskFrame::AttributeChanged(int32_t  aNameSpaceID,
                                 nsIAtom* aAttribute,
                                 int32_t  aModType)
{
  if (aNameSpaceID == kNameSpaceID_None &&
      (aAttribute == nsGkAtoms::x ||
       aAttribute == nsGkAtoms::y ||
       aAttribute == nsGkAtoms::width ||
       aAttribute == nsGkAtoms::height||
       aAttribute == nsGkAtoms::maskUnits ||
       aAttribute == nsGkAtoms::maskContentUnits)) {
    nsSVGEffects::InvalidateDirectRenderingObservers(this);
  }

  return nsSVGMaskFrameBase::AttributeChanged(aNameSpaceID,
                                              aAttribute, aModType);
}

#ifdef DEBUG
void
nsSVGMaskFrame::Init(nsIContent* aContent,
                     nsIFrame* aParent,
                     nsIFrame* aPrevInFlow)
{
  NS_ASSERTION(aContent->IsSVG(nsGkAtoms::mask),
               "Content is not an SVG mask");

  nsSVGMaskFrameBase::Init(aContent, aParent, aPrevInFlow);
}
#endif /* DEBUG */

nsIAtom *
nsSVGMaskFrame::GetType() const
{
  return nsGkAtoms::svgMaskFrame;
}

gfxMatrix
nsSVGMaskFrame::GetCanvasTM(uint32_t aFor, nsIFrame* aTransformRoot)
{
  NS_ASSERTION(mMaskParentMatrix, "null parent matrix");

  SVGMaskElement *mask = static_cast<SVGMaskElement*>(mContent);

  return nsSVGUtils::AdjustMatrixForUnits(
    mMaskParentMatrix ? *mMaskParentMatrix : gfxMatrix(),
    &mask->mEnumAttributes[SVGMaskElement::MASKCONTENTUNITS],
    mMaskParent);
}