DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (777e60ca8853)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef jit_MoveResolver_h
#define jit_MoveResolver_h

#include "jit/InlineList.h"
#include "jit/IonAllocPolicy.h"
#include "jit/Registers.h"

namespace js {
namespace jit {

// This is similar to Operand, but carries more information. We're also not
// guaranteed that Operand looks like this on all ISAs.
class MoveOperand
{
  public:
    enum Kind {
        // A register in the "integer", aka "general purpose", class.
        REG,
        // A register in the "float" register class.
        FLOAT_REG,
        // A memory region.
        MEMORY,
        // The address of a memory region.
        EFFECTIVE_ADDRESS
    };

  private:
    Kind kind_;
    uint32_t code_;
    int32_t disp_;

  public:
    MoveOperand()
    { }
    explicit MoveOperand(const Register& reg) : kind_(REG), code_(reg.code())
    { }
    explicit MoveOperand(const FloatRegister& reg) : kind_(FLOAT_REG), code_(reg.code())
    { }
    MoveOperand(const Register& reg, int32_t disp, Kind kind = MEMORY)
        : kind_(kind),
        code_(reg.code()),
        disp_(disp)
    {
        JS_ASSERT(isMemoryOrEffectiveAddress());

        // With a zero offset, this is a plain reg-to-reg move.
        if (disp == 0 && kind_ == EFFECTIVE_ADDRESS)
            kind_ = REG;
    }
    MoveOperand(const MoveOperand& other)
      : kind_(other.kind_),
        code_(other.code_),
        disp_(other.disp_)
    { }
    bool isFloatReg() const {
        return kind_ == FLOAT_REG;
    }
    bool isGeneralReg() const {
        return kind_ == REG;
    }
    bool isMemory() const {
        return kind_ == MEMORY;
    }
    bool isEffectiveAddress() const {
        return kind_ == EFFECTIVE_ADDRESS;
    }
    bool isMemoryOrEffectiveAddress() const {
        return isMemory() || isEffectiveAddress();
    }
    Register reg() const {
        JS_ASSERT(isGeneralReg());
        return Register::FromCode(code_);
    }
    FloatRegister floatReg() const {
        JS_ASSERT(isFloatReg());
        return FloatRegister::FromCode(code_);
    }
    Register base() const {
        JS_ASSERT(isMemoryOrEffectiveAddress());
        return Register::FromCode(code_);
    }
    int32_t disp() const {
        JS_ASSERT(isMemoryOrEffectiveAddress());
        return disp_;
    }

    bool operator ==(const MoveOperand& other) const {
        if (kind_ != other.kind_)
            return false;
        if (code_ != other.code_)
            return false;
        if (isMemoryOrEffectiveAddress())
            return disp_ == other.disp_;
        return true;
    }
    bool operator !=(const MoveOperand& other) const {
        return !operator==(other);
    }
};

// This represents a move operation.
class MoveOp
{
  protected:
    MoveOperand from_;
    MoveOperand to_;
    bool cycleBegin_;
    bool cycleEnd_;

  public:
    enum Type {
        GENERAL,
        INT32,
        FLOAT32,
        DOUBLE
    };

  protected:
    Type type_;

    // If cycleBegin_ is true, endCycleType_ is the type of the move at the end
    // of the cycle. For example, given these moves:
    //       INT32 move a -> b
    //     GENERAL move b -> a
    // the move resolver starts by copying b into a temporary location, so that
    // the last move can read it. This copy needs to use use type GENERAL.
    Type endCycleType_;

  public:
    MoveOp()
    { }
    MoveOp(const MoveOperand& from, const MoveOperand& to, Type type)
      : from_(from),
        to_(to),
        cycleBegin_(false),
        cycleEnd_(false),
        type_(type)
    { }

    bool isCycleBegin() const {
        return cycleBegin_;
    }
    bool isCycleEnd() const {
        return cycleEnd_;
    }
    const MoveOperand& from() const {
        return from_;
    }
    const MoveOperand& to() const {
        return to_;
    }
    Type type() const {
        return type_;
    }
    Type endCycleType() const {
        JS_ASSERT(isCycleBegin());
        return endCycleType_;
    }
};

class MoveResolver
{
  private:
    struct PendingMove
      : public MoveOp,
        public TempObject,
        public InlineListNode<PendingMove>
    {
        PendingMove()
        { }
        PendingMove(const MoveOperand& from, const MoveOperand& to, Type type)
          : MoveOp(from, to, type)
        { }

        void setCycleBegin(Type endCycleType) {
            JS_ASSERT(!isCycleBegin() && !isCycleEnd());
            cycleBegin_ = true;
            endCycleType_ = endCycleType;
        }
        void setCycleEnd() {
            JS_ASSERT(!isCycleBegin() && !isCycleEnd());
            cycleEnd_ = true;
        }
    };

    typedef InlineList<MoveResolver::PendingMove>::iterator PendingMoveIterator;

  private:
    // Moves that are definitely unblocked (constants to registers). These are
    // emitted last.
    js::Vector<MoveOp, 16, SystemAllocPolicy> orderedMoves_;
    bool hasCycles_;

    TempObjectPool<PendingMove> movePool_;

    InlineList<PendingMove> pending_;

    PendingMove* findBlockingMove(const PendingMove* last);

    // Internal reset function. Does not clear lists.
    void resetState();

  public:
    MoveResolver();

    // Resolves a move group into two lists of ordered moves. These moves must
    // be executed in the order provided. Some moves may indicate that they
    // participate in a cycle. For every cycle there are two such moves, and it
    // is guaranteed that cycles do not nest inside each other in the list.
    //
    // After calling addMove() for each parallel move, resolve() performs the
    // cycle resolution algorithm. Calling addMove() again resets the resolver.
    bool addMove(const MoveOperand& from, const MoveOperand& to, MoveOp::Type type);
    bool resolve();

    size_t numMoves() const {
        return orderedMoves_.length();
    }
    const MoveOp& getMove(size_t i) const {
        return orderedMoves_[i];
    }
    bool hasCycles() const {
        return hasCycles_;
    }
    void clearTempObjectPool() {
        movePool_.clear();
    }
    void setAllocator(TempAllocator& alloc) {
        movePool_.setAllocator(alloc);
    }
};

} // namespace jit
} // namespace js

#endif /* jit_MoveResolver_h */