DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (777e60ca8853)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef jit_LIR_h
#define jit_LIR_h

// This file declares the core data structures for LIR: storage allocations for
// inputs and outputs, as well as the interface instructions must conform to.

#include "mozilla/Array.h"

#include "jit/Bailouts.h"
#include "jit/InlineList.h"
#include "jit/IonAllocPolicy.h"
#include "jit/LOpcodes.h"
#include "jit/MIR.h"
#include "jit/MIRGraph.h"
#include "jit/Registers.h"
#include "jit/Safepoints.h"

namespace js {
namespace jit {

class LUse;
class LGeneralReg;
class LFloatReg;
class LStackSlot;
class LArgument;
class LConstantIndex;
class MBasicBlock;
class MTableSwitch;
class MIRGenerator;
class MSnapshot;

static const uint32_t VREG_INCREMENT = 1;

static const uint32_t THIS_FRAME_ARGSLOT = 0;

#if defined(JS_NUNBOX32)
# define BOX_PIECES         2
static const uint32_t VREG_TYPE_OFFSET = 0;
static const uint32_t VREG_DATA_OFFSET = 1;
static const uint32_t TYPE_INDEX = 0;
static const uint32_t PAYLOAD_INDEX = 1;
#elif defined(JS_PUNBOX64)
# define BOX_PIECES         1
#else
# error "Unknown!"
#endif

// Represents storage for an operand. For constants, the pointer is tagged
// with a single bit, and the untagged pointer is a pointer to a Value.
class LAllocation : public TempObject
{
    uintptr_t bits_;

    static const uintptr_t TAG_BIT = 1;
    static const uintptr_t TAG_SHIFT = 0;
    static const uintptr_t TAG_MASK = 1 << TAG_SHIFT;
    static const uintptr_t KIND_BITS = 3;
    static const uintptr_t KIND_SHIFT = TAG_SHIFT + TAG_BIT;
    static const uintptr_t KIND_MASK = (1 << KIND_BITS) - 1;

  protected:
    static const uintptr_t DATA_BITS = (sizeof(uint32_t) * 8) - KIND_BITS - TAG_BIT;
    static const uintptr_t DATA_SHIFT = KIND_SHIFT + KIND_BITS;
    static const uintptr_t DATA_MASK = (1 << DATA_BITS) - 1;

  public:
    enum Kind {
        USE,            // Use of a virtual register, with physical allocation policy.
        CONSTANT_VALUE, // Constant js::Value.
        CONSTANT_INDEX, // Constant arbitrary index.
        GPR,            // General purpose register.
        FPU,            // Floating-point register.
        STACK_SLOT,     // Stack slot.
        ARGUMENT_SLOT   // Argument slot.
    };

  protected:
    bool isTagged() const {
        return !!(bits_ & TAG_MASK);
    }

    int32_t data() const {
        return int32_t(bits_) >> DATA_SHIFT;
    }
    void setData(int32_t data) {
        JS_ASSERT(int32_t(data) <= int32_t(DATA_MASK));
        bits_ &= ~(DATA_MASK << DATA_SHIFT);
        bits_ |= (data << DATA_SHIFT);
    }
    void setKindAndData(Kind kind, uint32_t data) {
        JS_ASSERT(int32_t(data) <= int32_t(DATA_MASK));
        bits_ = (uint32_t(kind) << KIND_SHIFT) | data << DATA_SHIFT;
    }

    LAllocation(Kind kind, uint32_t data) {
        setKindAndData(kind, data);
    }
    explicit LAllocation(Kind kind) {
        setKindAndData(kind, 0);
    }

  public:
    LAllocation() : bits_(0)
    { }

    static LAllocation* New(TempAllocator& alloc) {
        return new(alloc) LAllocation();
    }
    template <typename T>
    static LAllocation* New(TempAllocator& alloc, const T& other) {
        return new(alloc) LAllocation(other);
    }

    // The value pointer must be rooted in MIR and have its low bit cleared.
    explicit LAllocation(const Value* vp) {
        bits_ = uintptr_t(vp);
        JS_ASSERT(!isTagged());
        bits_ |= TAG_MASK;
    }
    inline explicit LAllocation(const AnyRegister& reg);

    Kind kind() const {
        if (isTagged())
            return CONSTANT_VALUE;
        return (Kind)((bits_ >> KIND_SHIFT) & KIND_MASK);
    }

    bool isUse() const {
        return kind() == USE;
    }
    bool isConstant() const {
        return isConstantValue() || isConstantIndex();
    }
    bool isConstantValue() const {
        return kind() == CONSTANT_VALUE;
    }
    bool isConstantIndex() const {
        return kind() == CONSTANT_INDEX;
    }
    bool isValue() const {
        return kind() == CONSTANT_VALUE;
    }
    bool isGeneralReg() const {
        return kind() == GPR;
    }
    bool isFloatReg() const {
        return kind() == FPU;
    }
    bool isStackSlot() const {
        return kind() == STACK_SLOT;
    }
    bool isArgument() const {
        return kind() == ARGUMENT_SLOT;
    }
    bool isRegister() const {
        return isGeneralReg() || isFloatReg();
    }
    bool isRegister(bool needFloat) const {
        return needFloat ? isFloatReg() : isGeneralReg();
    }
    bool isMemory() const {
        return isStackSlot() || isArgument();
    }
    inline LUse* toUse();
    inline const LUse* toUse() const;
    inline const LGeneralReg* toGeneralReg() const;
    inline const LFloatReg* toFloatReg() const;
    inline const LStackSlot* toStackSlot() const;
    inline const LArgument* toArgument() const;
    inline const LConstantIndex* toConstantIndex() const;
    inline AnyRegister toRegister() const;

    const Value* toConstant() const {
        JS_ASSERT(isConstantValue());
        return reinterpret_cast<const Value*>(bits_ & ~TAG_MASK);
    }

    bool operator ==(const LAllocation& other) const {
        return bits_ == other.bits_;
    }

    bool operator !=(const LAllocation& other) const {
        return bits_ != other.bits_;
    }

    HashNumber hash() const {
        return bits_;
    }

#ifdef DEBUG
    const char* toString() const;
#else
    const char* toString() const { return "???"; }
#endif

    void dump() const;
};

class LUse : public LAllocation
{
    static const uint32_t POLICY_BITS = 3;
    static const uint32_t POLICY_SHIFT = 0;
    static const uint32_t POLICY_MASK = (1 << POLICY_BITS) - 1;
    static const uint32_t REG_BITS = 5;
    static const uint32_t REG_SHIFT = POLICY_SHIFT + POLICY_BITS;
    static const uint32_t REG_MASK = (1 << REG_BITS) - 1;

    // Whether the physical register for this operand may be reused for a def.
    static const uint32_t USED_AT_START_BITS = 1;
    static const uint32_t USED_AT_START_SHIFT = REG_SHIFT + REG_BITS;
    static const uint32_t USED_AT_START_MASK = (1 << USED_AT_START_BITS) - 1;

  public:
    // Virtual registers get the remaining 20 bits.
    static const uint32_t VREG_BITS = DATA_BITS - (USED_AT_START_SHIFT + USED_AT_START_BITS);
    static const uint32_t VREG_SHIFT = USED_AT_START_SHIFT + USED_AT_START_BITS;
    static const uint32_t VREG_MASK = (1 << VREG_BITS) - 1;

    enum Policy {
        // Input should be in a read-only register or stack slot.
        ANY,

        // Input must be in a read-only register.
        REGISTER,

        // Input must be in a specific, read-only register.
        FIXED,

        // Keep the used virtual register alive, and use whatever allocation is
        // available. This is similar to ANY but hints to the register allocator
        // that it is never useful to optimize this site.
        KEEPALIVE,

        // For snapshot inputs, indicates that the associated instruction will
        // write this input to its output register before bailing out.
        // The register allocator may thus allocate that output register, and
        // does not need to keep the virtual register alive (alternatively,
        // this may be treated as KEEPALIVE).
        RECOVERED_INPUT
    };

    void set(Policy policy, uint32_t reg, bool usedAtStart) {
        setKindAndData(USE, (policy << POLICY_SHIFT) |
                            (reg << REG_SHIFT) |
                            ((usedAtStart ? 1 : 0) << USED_AT_START_SHIFT));
    }

  public:
    LUse(uint32_t vreg, Policy policy, bool usedAtStart = false) {
        set(policy, 0, usedAtStart);
        setVirtualRegister(vreg);
    }
    LUse(Policy policy, bool usedAtStart = false) {
        set(policy, 0, usedAtStart);
    }
    LUse(Register reg, bool usedAtStart = false) {
        set(FIXED, reg.code(), usedAtStart);
    }
    LUse(FloatRegister reg, bool usedAtStart = false) {
        set(FIXED, reg.code(), usedAtStart);
    }
    LUse(Register reg, uint32_t virtualRegister) {
        set(FIXED, reg.code(), false);
        setVirtualRegister(virtualRegister);
    }
    LUse(FloatRegister reg, uint32_t virtualRegister) {
        set(FIXED, reg.code(), false);
        setVirtualRegister(virtualRegister);
    }

    void setVirtualRegister(uint32_t index) {
        JS_ASSERT(index < VREG_MASK);

        uint32_t old = data() & ~(VREG_MASK << VREG_SHIFT);
        setData(old | (index << VREG_SHIFT));
    }

    Policy policy() const {
        Policy policy = (Policy)((data() >> POLICY_SHIFT) & POLICY_MASK);
        return policy;
    }
    uint32_t virtualRegister() const {
        uint32_t index = (data() >> VREG_SHIFT) & VREG_MASK;
        return index;
    }
    uint32_t registerCode() const {
        JS_ASSERT(policy() == FIXED);
        return (data() >> REG_SHIFT) & REG_MASK;
    }
    bool isFixedRegister() const {
        return policy() == FIXED;
    }
    bool usedAtStart() const {
        return !!((data() >> USED_AT_START_SHIFT) & USED_AT_START_MASK);
    }
};

static const uint32_t MAX_VIRTUAL_REGISTERS = LUse::VREG_MASK;

class LGeneralReg : public LAllocation
{
  public:
    explicit LGeneralReg(Register reg)
      : LAllocation(GPR, reg.code())
    { }

    Register reg() const {
        return Register::FromCode(data());
    }
};

class LFloatReg : public LAllocation
{
  public:
    explicit LFloatReg(FloatRegister reg)
      : LAllocation(FPU, reg.code())
    { }

    FloatRegister reg() const {
        return FloatRegister::FromCode(data());
    }
};

// Arbitrary constant index.
class LConstantIndex : public LAllocation
{
    explicit LConstantIndex(uint32_t index)
      : LAllocation(CONSTANT_INDEX, index)
    { }

  public:
    // Used as a placeholder for inputs that can be ignored.
    static LConstantIndex Bogus() {
        return LConstantIndex(0);
    }

    static LConstantIndex FromIndex(uint32_t index) {
        return LConstantIndex(index);
    }

    uint32_t index() const {
        return data();
    }
};

// Stack slots are indices into the stack. The indices are byte indices.
class LStackSlot : public LAllocation
{
  public:
    explicit LStackSlot(uint32_t slot)
      : LAllocation(STACK_SLOT, slot)
    { }

    uint32_t slot() const {
        return data();
    }
};

// Arguments are reverse indices into the stack. The indices are byte indices.
class LArgument : public LAllocation
{
  public:
    explicit LArgument(int32_t index)
      : LAllocation(ARGUMENT_SLOT, index)
    { }

    int32_t index() const {
        return data();
    }
};

// Represents storage for a definition.
class LDefinition
{
    // Bits containing policy, type, and virtual register.
    uint32_t bits_;

    // Before register allocation, this optionally contains a fixed policy.
    // Register allocation assigns this field to a physical policy if none is
    // preset.
    //
    // Right now, pre-allocated outputs are limited to the following:
    //   * Physical argument stack slots.
    //   * Physical registers.
    LAllocation output_;

    static const uint32_t TYPE_BITS = 3;
    static const uint32_t TYPE_SHIFT = 0;
    static const uint32_t TYPE_MASK = (1 << TYPE_BITS) - 1;
    static const uint32_t POLICY_BITS = 2;
    static const uint32_t POLICY_SHIFT = TYPE_SHIFT + TYPE_BITS;
    static const uint32_t POLICY_MASK = (1 << POLICY_BITS) - 1;

    static const uint32_t VREG_BITS = (sizeof(uint32_t) * 8) - (POLICY_BITS + TYPE_BITS);
    static const uint32_t VREG_SHIFT = POLICY_SHIFT + POLICY_BITS;
    static const uint32_t VREG_MASK = (1 << VREG_BITS) - 1;

  public:
    // Note that definitions, by default, are always allocated a register,
    // unless the policy specifies that an input can be re-used and that input
    // is a stack slot.
    enum Policy {
        // A random register of an appropriate class will be assigned.
        DEFAULT,

        // The policy is predetermined by the LAllocation attached to this
        // definition. The allocation may be:
        //   * A register, which may not appear as any fixed temporary.
        //   * A stack slot or argument.
        //
        // Register allocation will not modify a preset allocation.
        PRESET,

        // One definition per instruction must re-use the first input
        // allocation, which (for now) must be a register.
        MUST_REUSE_INPUT,

        // This definition's virtual register is the same as another; this is
        // for instructions which consume a register and silently define it as
        // the same register. It is not legal to use this if doing so would
        // change the type of the virtual register.
        PASSTHROUGH
    };

    enum Type {
        GENERAL,    // Generic, integer or pointer-width data (GPR).
        INT32,      // int32 data (GPR).
        OBJECT,     // Pointer that may be collected as garbage (GPR).
        SLOTS,      // Slots/elements pointer that may be moved by minor GCs (GPR).
        FLOAT32,    // 32-bit floating-point value (FPU).
        DOUBLE,     // 64-bit floating-point value (FPU).
#ifdef JS_NUNBOX32
        // A type virtual register must be followed by a payload virtual
        // register, as both will be tracked as a single gcthing.
        TYPE,
        PAYLOAD
#else
        BOX         // Joined box, for punbox systems. (GPR, gcthing)
#endif
    };

    void set(uint32_t index, Type type, Policy policy) {
        JS_STATIC_ASSERT(MAX_VIRTUAL_REGISTERS <= VREG_MASK);
        bits_ = (index << VREG_SHIFT) | (policy << POLICY_SHIFT) | (type << TYPE_SHIFT);
    }

  public:
    LDefinition(uint32_t index, Type type, Policy policy = DEFAULT) {
        set(index, type, policy);
    }

    LDefinition(Type type, Policy policy = DEFAULT) {
        set(0, type, policy);
    }

    LDefinition(Type type, const LAllocation& a)
      : output_(a)
    {
        set(0, type, PRESET);
    }

    LDefinition(uint32_t index, Type type, const LAllocation& a)
      : output_(a)
    {
        set(index, type, PRESET);
    }

    LDefinition() : bits_(0)
    { }

    static LDefinition BogusTemp() {
        return LDefinition(GENERAL, LConstantIndex::Bogus());
    }

    Policy policy() const {
        return (Policy)((bits_ >> POLICY_SHIFT) & POLICY_MASK);
    }
    Type type() const {
        return (Type)((bits_ >> TYPE_SHIFT) & TYPE_MASK);
    }
    bool isFloatReg() const {
        return type() == FLOAT32 || type() == DOUBLE;
    }
    uint32_t virtualRegister() const {
        return (bits_ >> VREG_SHIFT) & VREG_MASK;
    }
    LAllocation* output() {
        return &output_;
    }
    const LAllocation* output() const {
        return &output_;
    }
    bool isPreset() const {
        return policy() == PRESET;
    }
    bool isBogusTemp() const {
        return isPreset() && output()->isConstantIndex();
    }
    void setVirtualRegister(uint32_t index) {
        JS_ASSERT(index < VREG_MASK);
        bits_ &= ~(VREG_MASK << VREG_SHIFT);
        bits_ |= index << VREG_SHIFT;
    }
    void setOutput(const LAllocation& a) {
        output_ = a;
        if (!a.isUse()) {
            bits_ &= ~(POLICY_MASK << POLICY_SHIFT);
            bits_ |= PRESET << POLICY_SHIFT;
        }
    }
    void setReusedInput(uint32_t operand) {
        output_ = LConstantIndex::FromIndex(operand);
    }
    uint32_t getReusedInput() const {
        JS_ASSERT(policy() == LDefinition::MUST_REUSE_INPUT);
        return output_.toConstantIndex()->index();
    }

    static inline Type TypeFrom(MIRType type) {
        switch (type) {
          case MIRType_Boolean:
          case MIRType_Int32:
            // The stack slot allocator doesn't currently support allocating
            // 1-byte slots, so for now we lower MIRType_Boolean into INT32.
            static_assert(sizeof(bool) <= sizeof(int32_t), "bool doesn't fit in an int32 slot");
            return LDefinition::INT32;
          case MIRType_String:
          case MIRType_Object:
            return LDefinition::OBJECT;
          case MIRType_Double:
            return LDefinition::DOUBLE;
          case MIRType_Float32:
            return LDefinition::FLOAT32;
#if defined(JS_PUNBOX64)
          case MIRType_Value:
            return LDefinition::BOX;
#endif
          case MIRType_Slots:
          case MIRType_Elements:
            return LDefinition::SLOTS;
          case MIRType_Pointer:
            return LDefinition::GENERAL;
          case MIRType_ForkJoinContext:
            return LDefinition::GENERAL;
          default:
            MOZ_ASSUME_UNREACHABLE("unexpected type");
        }
    }
};

// Forward declarations of LIR types.
#define LIROP(op) class L##op;
    LIR_OPCODE_LIST(LIROP)
#undef LIROP

class LSnapshot;
class LSafepoint;
class LInstructionVisitor;

class LInstruction
  : public TempObject,
    public InlineListNode<LInstruction>
{
    uint32_t id_;

    // This snapshot could be set after a ResumePoint.  It is used to restart
    // from the resume point pc.
    LSnapshot* snapshot_;

    // Structure capturing the set of stack slots and registers which are known
    // to hold either gcthings or Values.
    LSafepoint* safepoint_;

  protected:
    MDefinition* mir_;

    LInstruction()
      : id_(0),
        snapshot_(nullptr),
        safepoint_(nullptr),
        mir_(nullptr)
    { }

  public:
    class InputIterator;
    enum Opcode {
#   define LIROP(name) LOp_##name,
        LIR_OPCODE_LIST(LIROP)
#   undef LIROP
        LOp_Invalid
    };

    const char* opName() {
        switch (op()) {
#   define LIR_NAME_INS(name)                   \
            case LOp_##name: return #name;
            LIR_OPCODE_LIST(LIR_NAME_INS)
#   undef LIR_NAME_INS
          default:
            return "Invalid";
        }
    }

    // Hook for opcodes to add extra high level detail about what code will be
    // emitted for the op.
    virtual const char* extraName() const {
        return nullptr;
    }

  public:
    virtual Opcode op() const = 0;

    // Returns the number of outputs of this instruction. If an output is
    // unallocated, it is an LDefinition, defining a virtual register.
    virtual size_t numDefs() const = 0;
    virtual LDefinition* getDef(size_t index) = 0;
    virtual void setDef(size_t index, const LDefinition& def) = 0;

    // Returns information about operands.
    virtual size_t numOperands() const = 0;
    virtual LAllocation* getOperand(size_t index) = 0;
    virtual void setOperand(size_t index, const LAllocation& a) = 0;

    // Returns information about temporary registers needed. Each temporary
    // register is an LUse with a TEMPORARY policy, or a fixed register.
    virtual size_t numTemps() const = 0;
    virtual LDefinition* getTemp(size_t index) = 0;
    virtual void setTemp(size_t index, const LDefinition& a) = 0;

    // Returns the number of successors of this instruction, if it is a control
    // transfer instruction, or zero otherwise.
    virtual size_t numSuccessors() const = 0;
    virtual MBasicBlock* getSuccessor(size_t i) const = 0;
    virtual void setSuccessor(size_t i, MBasicBlock* successor) = 0;

    virtual bool isCall() const {
        return false;
    }
    uint32_t id() const {
        return id_;
    }
    void setId(uint32_t id) {
        JS_ASSERT(!id_);
        JS_ASSERT(id);
        id_ = id;
    }
    LSnapshot* snapshot() const {
        return snapshot_;
    }
    LSafepoint* safepoint() const {
        return safepoint_;
    }
    void setMir(MDefinition* mir) {
        mir_ = mir;
    }
    MDefinition* mirRaw() const {
        /* Untyped MIR for this op. Prefer mir() methods in subclasses. */
        return mir_;
    }
    void assignSnapshot(LSnapshot* snapshot);
    void initSafepoint(TempAllocator& alloc);

    // For an instruction which has a MUST_REUSE_INPUT output, whether that
    // output register will be restored to its original value when bailing out.
    virtual bool recoversInput() const {
        return false;
    }

    virtual void dump(FILE* fp);
    void dump();
    static void printName(FILE* fp, Opcode op);
    virtual void printName(FILE* fp);
    virtual void printOperands(FILE* fp);
    virtual void printInfo(FILE* fp) { }

  public:
    // Opcode testing and casts.
#   define LIROP(name)                                                      \
    bool is##name() const {                                                 \
        return op() == LOp_##name;                                          \
    }                                                                       \
    inline L##name* to##name();
    LIR_OPCODE_LIST(LIROP)
#   undef LIROP

    virtual bool accept(LInstructionVisitor* visitor) = 0;
};

class LInstructionVisitor
{
    LInstruction* ins_;

  protected:
    jsbytecode* lastPC_;

    LInstruction* instruction() {
        return ins_;
    }

  public:
    void setInstruction(LInstruction* ins) {
        ins_ = ins;
        if (ins->mirRaw())
            lastPC_ = ins->mirRaw()->trackedPc();
    }

    LInstructionVisitor()
      : ins_(nullptr),
        lastPC_(nullptr)
    {}

  public:
#define VISIT_INS(op) virtual bool visit##op(L##op*) { MOZ_ASSUME_UNREACHABLE("NYI: " #op); }
    LIR_OPCODE_LIST(VISIT_INS)
#undef VISIT_INS
};

typedef InlineList<LInstruction>::iterator LInstructionIterator;
typedef InlineList<LInstruction>::reverse_iterator LInstructionReverseIterator;

class LPhi;
class LMoveGroup;
class LBlock : public TempObject
{
    MBasicBlock* block_;
    Vector<LPhi*, 4, IonAllocPolicy> phis_;
    InlineList<LInstruction> instructions_;
    LMoveGroup* entryMoveGroup_;
    LMoveGroup* exitMoveGroup_;
    Label label_;

    LBlock(TempAllocator& alloc, MBasicBlock* block)
      : block_(block),
        phis_(alloc),
        entryMoveGroup_(nullptr),
        exitMoveGroup_(nullptr)
    { }

  public:
    static LBlock* New(TempAllocator& alloc, MBasicBlock* from) {
        return new(alloc) LBlock(alloc, from);
    }
    void add(LInstruction* ins) {
        instructions_.pushBack(ins);
    }
    bool addPhi(LPhi* phi) {
        return phis_.append(phi);
    }
    size_t numPhis() const {
        return phis_.length();
    }
    LPhi* getPhi(size_t index) const {
        return phis_[index];
    }
    void removePhi(size_t index) {
        phis_.erase(&phis_[index]);
    }
    void clearPhis() {
        phis_.clear();
    }
    MBasicBlock* mir() const {
        return block_;
    }
    LInstructionIterator begin() {
        return instructions_.begin();
    }
    LInstructionIterator begin(LInstruction* at) {
        return instructions_.begin(at);
    }
    LInstructionIterator end() {
        return instructions_.end();
    }
    LInstructionReverseIterator rbegin() {
        return instructions_.rbegin();
    }
    LInstructionReverseIterator rbegin(LInstruction* at) {
        return instructions_.rbegin(at);
    }
    LInstructionReverseIterator rend() {
        return instructions_.rend();
    }
    InlineList<LInstruction>& instructions() {
        return instructions_;
    }
    void insertAfter(LInstruction* at, LInstruction* ins) {
        instructions_.insertAfter(at, ins);
    }
    void insertBefore(LInstruction* at, LInstruction* ins) {
        JS_ASSERT(!at->isLabel());
        instructions_.insertBefore(at, ins);
    }
    uint32_t firstId();
    uint32_t lastId();
    Label* label() {
        return &label_;
    }
    LMoveGroup* getEntryMoveGroup(TempAllocator& alloc);
    LMoveGroup* getExitMoveGroup(TempAllocator& alloc);
};

template <size_t Defs, size_t Operands, size_t Temps>
class LInstructionHelper : public LInstruction
{
    mozilla::Array<LDefinition, Defs> defs_;
    mozilla::Array<LAllocation, Operands> operands_;
    mozilla::Array<LDefinition, Temps> temps_;

  public:
    size_t numDefs() const MOZ_FINAL MOZ_OVERRIDE {
        return Defs;
    }
    LDefinition* getDef(size_t index) MOZ_FINAL MOZ_OVERRIDE {
        return &defs_[index];
    }
    size_t numOperands() const MOZ_FINAL MOZ_OVERRIDE {
        return Operands;
    }
    LAllocation* getOperand(size_t index) MOZ_FINAL MOZ_OVERRIDE {
        return &operands_[index];
    }
    size_t numTemps() const MOZ_FINAL MOZ_OVERRIDE {
        return Temps;
    }
    LDefinition* getTemp(size_t index) MOZ_FINAL MOZ_OVERRIDE {
        return &temps_[index];
    }

    void setDef(size_t index, const LDefinition& def) MOZ_FINAL MOZ_OVERRIDE {
        defs_[index] = def;
    }
    void setOperand(size_t index, const LAllocation& a) MOZ_FINAL MOZ_OVERRIDE {
        operands_[index] = a;
    }
    void setTemp(size_t index, const LDefinition& a) MOZ_FINAL MOZ_OVERRIDE {
        temps_[index] = a;
    }

    size_t numSuccessors() const {
        return 0;
    }
    MBasicBlock* getSuccessor(size_t i) const {
        JS_ASSERT(false);
        return nullptr;
    }
    void setSuccessor(size_t i, MBasicBlock* successor) {
        JS_ASSERT(false);
    }

    // Default accessors, assuming a single input and output, respectively.
    const LAllocation* input() {
        JS_ASSERT(numOperands() == 1);
        return getOperand(0);
    }
    const LDefinition* output() {
        JS_ASSERT(numDefs() == 1);
        return getDef(0);
    }

    virtual void printInfo(FILE* fp) {
        printOperands(fp);
    }
};

template <size_t Defs, size_t Operands, size_t Temps>
class LCallInstructionHelper : public LInstructionHelper<Defs, Operands, Temps>
{
  public:
    virtual bool isCall() const {
        return true;
    }
};

class LRecoverInfo : public TempObject
{
  public:
    typedef Vector<MResumePoint*, 2, IonAllocPolicy> Instructions;

  private:
    // List of instructions needed to recover the stack frames.
    // Outer frames are stored before inner frames.
    Instructions instructions_;

    // Cached offset where this resume point is encoded.
    RecoverOffset recoverOffset_;

    LRecoverInfo(TempAllocator& alloc);
    bool init(MResumePoint* mir);

  public:
    static LRecoverInfo* New(MIRGenerator* gen, MResumePoint* mir);

    // Resume point of the inner most function.
    MResumePoint* mir() const {
        return instructions_.back();
    }
    RecoverOffset recoverOffset() const {
        return recoverOffset_;
    }
    void setRecoverOffset(RecoverOffset offset) {
        JS_ASSERT(recoverOffset_ == INVALID_RECOVER_OFFSET);
        recoverOffset_ = offset;
    }

    MResumePoint** begin() {
        return instructions_.begin();
    }
    MResumePoint** end() {
        return instructions_.end();
    }
};

// An LSnapshot is the reflection of an MResumePoint in LIR. Unlike MResumePoints,
// they cannot be shared, as they are filled in by the register allocator in
// order to capture the precise low-level stack state in between an
// instruction's input and output. During code generation, LSnapshots are
// compressed and saved in the compiled script.
class LSnapshot : public TempObject
{
  private:
    uint32_t numSlots_;
    LAllocation* slots_;
    LRecoverInfo* recoverInfo_;
    SnapshotOffset snapshotOffset_;
    BailoutId bailoutId_;
    BailoutKind bailoutKind_;

    LSnapshot(LRecoverInfo* recover, BailoutKind kind);
    bool init(MIRGenerator* gen);

  public:
    static LSnapshot* New(MIRGenerator* gen, LRecoverInfo* recover, BailoutKind kind);

    size_t numEntries() const {
        return numSlots_;
    }
    size_t numSlots() const {
        return numSlots_ / BOX_PIECES;
    }
    LAllocation* payloadOfSlot(size_t i) {
        JS_ASSERT(i < numSlots());
        size_t entryIndex = (i * BOX_PIECES) + (BOX_PIECES - 1);
        return getEntry(entryIndex);
    }
#ifdef JS_NUNBOX32
    LAllocation* typeOfSlot(size_t i) {
        JS_ASSERT(i < numSlots());
        size_t entryIndex = (i * BOX_PIECES) + (BOX_PIECES - 2);
        return getEntry(entryIndex);
    }
#endif
    LAllocation* getEntry(size_t i) {
        JS_ASSERT(i < numSlots_);
        return &slots_[i];
    }
    void setEntry(size_t i, const LAllocation& alloc) {
        JS_ASSERT(i < numSlots_);
        slots_[i] = alloc;
    }
    LRecoverInfo* recoverInfo() const {
        return recoverInfo_;
    }
    MResumePoint* mir() const {
        return recoverInfo()->mir();
    }
    SnapshotOffset snapshotOffset() const {
        return snapshotOffset_;
    }
    BailoutId bailoutId() const {
        return bailoutId_;
    }
    void setSnapshotOffset(SnapshotOffset offset) {
        JS_ASSERT(snapshotOffset_ == INVALID_SNAPSHOT_OFFSET);
        snapshotOffset_ = offset;
    }
    void setBailoutId(BailoutId id) {
        JS_ASSERT(bailoutId_ == INVALID_BAILOUT_ID);
        bailoutId_ = id;
    }
    BailoutKind bailoutKind() const {
        return bailoutKind_;
    }
    void setBailoutKind(BailoutKind kind) {
        bailoutKind_ = kind;
    }
    void rewriteRecoveredInput(LUse input);
};

struct SafepointNunboxEntry {
    LAllocation type;
    LAllocation payload;

    SafepointNunboxEntry() { }
    SafepointNunboxEntry(LAllocation type, LAllocation payload)
      : type(type), payload(payload)
    { }
};

class LSafepoint : public TempObject
{
    typedef SafepointNunboxEntry NunboxEntry;

  public:
    typedef Vector<uint32_t, 0, IonAllocPolicy> SlotList;
    typedef Vector<NunboxEntry, 0, IonAllocPolicy> NunboxList;

  private:
    // The information in a safepoint describes the registers and gc related
    // values that are live at the start of the associated instruction.

    // The set of registers which are live at an OOL call made within the
    // instruction. This includes any registers for inputs which are not
    // use-at-start, any registers for temps, and any registers live after the
    // call except outputs of the instruction.
    //
    // For call instructions, the live regs are empty. Call instructions may
    // have register inputs or temporaries, which will *not* be in the live
    // registers: if passed to the call, the values passed will be marked via
    // MarkJitExitFrame, and no registers can be live after the instruction
    // except its outputs.
    RegisterSet liveRegs_;

    // The subset of liveRegs which contains gcthing pointers.
    GeneralRegisterSet gcRegs_;

#ifdef CHECK_OSIPOINT_REGISTERS
    // Clobbered regs of the current instruction. This set is never written to
    // the safepoint; it's only used by assertions during compilation.
    RegisterSet clobberedRegs_;
#endif

    // Offset to a position in the safepoint stream, or
    // INVALID_SAFEPOINT_OFFSET.
    uint32_t safepointOffset_;

    // Assembler buffer displacement to OSI point's call location.
    uint32_t osiCallPointOffset_;

    // List of stack slots which have gcthing pointers.
    SlotList gcSlots_;

    // List of stack slots which have Values.
    SlotList valueSlots_;

#ifdef JS_NUNBOX32
    // List of registers (in liveRegs) and stack slots which contain pieces of Values.
    NunboxList nunboxParts_;

    // Number of nunboxParts which are not completely filled in.
    uint32_t partialNunboxes_;
#elif JS_PUNBOX64
    // The subset of liveRegs which have Values.
    GeneralRegisterSet valueRegs_;
#endif

    // The subset of liveRegs which contains pointers to slots/elements.
    GeneralRegisterSet slotsOrElementsRegs_;

    // List of stack slots which have slots/elements pointers.
    SlotList slotsOrElementsSlots_;

  public:
    void assertInvariants() {
        // Every register in valueRegs and gcRegs should also be in liveRegs.
#ifndef JS_NUNBOX32
        JS_ASSERT((valueRegs().bits() & ~liveRegs().gprs().bits()) == 0);
#endif
        JS_ASSERT((gcRegs().bits() & ~liveRegs().gprs().bits()) == 0);
    }

    LSafepoint(TempAllocator& alloc)
      : safepointOffset_(INVALID_SAFEPOINT_OFFSET)
      , osiCallPointOffset_(0)
      , gcSlots_(alloc)
      , valueSlots_(alloc)
#ifdef JS_NUNBOX32
      , nunboxParts_(alloc)
      , partialNunboxes_(0)
#endif
      , slotsOrElementsSlots_(alloc)
    {
      assertInvariants();
    }
    void addLiveRegister(AnyRegister reg) {
        liveRegs_.addUnchecked(reg);
        assertInvariants();
    }
    const RegisterSet& liveRegs() const {
        return liveRegs_;
    }
#ifdef CHECK_OSIPOINT_REGISTERS
    void addClobberedRegister(AnyRegister reg) {
        clobberedRegs_.addUnchecked(reg);
        assertInvariants();
    }
    const RegisterSet& clobberedRegs() const {
        return clobberedRegs_;
    }
#endif
    void addGcRegister(Register reg) {
        gcRegs_.addUnchecked(reg);
        assertInvariants();
    }
    GeneralRegisterSet gcRegs() const {
        return gcRegs_;
    }
    bool addGcSlot(uint32_t slot) {
        bool result = gcSlots_.append(slot);
        if (result)
            assertInvariants();
        return result;
    }
    SlotList& gcSlots() {
        return gcSlots_;
    }

    SlotList& slotsOrElementsSlots() {
        return slotsOrElementsSlots_;
    }
    GeneralRegisterSet slotsOrElementsRegs() const {
        return slotsOrElementsRegs_;
    }
    void addSlotsOrElementsRegister(Register reg) {
        slotsOrElementsRegs_.addUnchecked(reg);
        assertInvariants();
    }
    bool addSlotsOrElementsSlot(uint32_t slot) {
        bool result = slotsOrElementsSlots_.append(slot);
        if (result)
            assertInvariants();
        return result;
    }
    bool addSlotsOrElementsPointer(LAllocation alloc) {
        if (alloc.isStackSlot())
            return addSlotsOrElementsSlot(alloc.toStackSlot()->slot());
        JS_ASSERT(alloc.isRegister());
        addSlotsOrElementsRegister(alloc.toRegister().gpr());
        assertInvariants();
        return true;
    }
    bool hasSlotsOrElementsPointer(LAllocation alloc) const {
        if (alloc.isRegister())
            return slotsOrElementsRegs().has(alloc.toRegister().gpr());
        if (alloc.isStackSlot()) {
            for (size_t i = 0; i < slotsOrElementsSlots_.length(); i++) {
                if (slotsOrElementsSlots_[i] == alloc.toStackSlot()->slot())
                    return true;
            }
            return false;
        }
        return false;
    }

    bool addGcPointer(LAllocation alloc) {
        if (alloc.isStackSlot())
            return addGcSlot(alloc.toStackSlot()->slot());
        if (alloc.isRegister())
            addGcRegister(alloc.toRegister().gpr());
        assertInvariants();
        return true;
    }

    bool hasGcPointer(LAllocation alloc) const {
        if (alloc.isRegister())
            return gcRegs().has(alloc.toRegister().gpr());
        if (alloc.isStackSlot()) {
            for (size_t i = 0; i < gcSlots_.length(); i++) {
                if (gcSlots_[i] == alloc.toStackSlot()->slot())
                    return true;
            }
            return false;
        }
        JS_ASSERT(alloc.isArgument());
        return true;
    }

    bool addValueSlot(uint32_t slot) {
        bool result = valueSlots_.append(slot);
        if (result)
            assertInvariants();
        return result;
    }
    SlotList& valueSlots() {
        return valueSlots_;
    }

    bool hasValueSlot(uint32_t slot) const {
        for (size_t i = 0; i < valueSlots_.length(); i++) {
            if (valueSlots_[i] == slot)
                return true;
        }
        return false;
    }

#ifdef JS_NUNBOX32

    bool addNunboxParts(LAllocation type, LAllocation payload) {
        bool result = nunboxParts_.append(NunboxEntry(type, payload));
        if (result)
            assertInvariants();
        return result;
    }

    bool addNunboxType(uint32_t typeVreg, LAllocation type) {
        for (size_t i = 0; i < nunboxParts_.length(); i++) {
            if (nunboxParts_[i].type == type)
                return true;
            if (nunboxParts_[i].type == LUse(typeVreg, LUse::ANY)) {
                nunboxParts_[i].type = type;
                partialNunboxes_--;
                return true;
            }
        }
        partialNunboxes_++;

        // vregs for nunbox pairs are adjacent, with the type coming first.
        uint32_t payloadVreg = typeVreg + 1;
        bool result = nunboxParts_.append(NunboxEntry(type, LUse(payloadVreg, LUse::ANY)));
        if (result)
            assertInvariants();
        return result;
    }

    bool hasNunboxType(LAllocation type) const {
        if (type.isArgument())
            return true;
        if (type.isStackSlot() && hasValueSlot(type.toStackSlot()->slot() + 1))
            return true;
        for (size_t i = 0; i < nunboxParts_.length(); i++) {
            if (nunboxParts_[i].type == type)
                return true;
        }
        return false;
    }

    bool addNunboxPayload(uint32_t payloadVreg, LAllocation payload) {
        for (size_t i = 0; i < nunboxParts_.length(); i++) {
            if (nunboxParts_[i].payload == payload)
                return true;
            if (nunboxParts_[i].payload == LUse(payloadVreg, LUse::ANY)) {
                partialNunboxes_--;
                nunboxParts_[i].payload = payload;
                return true;
            }
        }
        partialNunboxes_++;

        // vregs for nunbox pairs are adjacent, with the type coming first.
        uint32_t typeVreg = payloadVreg - 1;
        bool result = nunboxParts_.append(NunboxEntry(LUse(typeVreg, LUse::ANY), payload));
        if (result)
            assertInvariants();
        return result;
    }

    bool hasNunboxPayload(LAllocation payload) const {
        if (payload.isArgument())
            return true;
        if (payload.isStackSlot() && hasValueSlot(payload.toStackSlot()->slot()))
            return true;
        for (size_t i = 0; i < nunboxParts_.length(); i++) {
            if (nunboxParts_[i].payload == payload)
                return true;
        }
        return false;
    }

    NunboxList& nunboxParts() {
        return nunboxParts_;
    }

    uint32_t partialNunboxes() {
        return partialNunboxes_;
    }

#elif JS_PUNBOX64

    void addValueRegister(Register reg) {
        valueRegs_.add(reg);
        assertInvariants();
    }
    GeneralRegisterSet valueRegs() const {
        return valueRegs_;
    }

    bool addBoxedValue(LAllocation alloc) {
        if (alloc.isRegister()) {
            Register reg = alloc.toRegister().gpr();
            if (!valueRegs().has(reg))
                addValueRegister(reg);
            return true;
        }
        if (alloc.isStackSlot()) {
            uint32_t slot = alloc.toStackSlot()->slot();
            for (size_t i = 0; i < valueSlots().length(); i++) {
                if (valueSlots()[i] == slot)
                    return true;
            }
            return addValueSlot(slot);
        }
        JS_ASSERT(alloc.isArgument());
        return true;
    }

    bool hasBoxedValue(LAllocation alloc) const {
        if (alloc.isRegister())
            return valueRegs().has(alloc.toRegister().gpr());
        if (alloc.isStackSlot())
            return hasValueSlot(alloc.toStackSlot()->slot());
        JS_ASSERT(alloc.isArgument());
        return true;
    }

#endif // JS_PUNBOX64

    bool encoded() const {
        return safepointOffset_ != INVALID_SAFEPOINT_OFFSET;
    }
    uint32_t offset() const {
        JS_ASSERT(encoded());
        return safepointOffset_;
    }
    void setOffset(uint32_t offset) {
        safepointOffset_ = offset;
    }
    uint32_t osiReturnPointOffset() const {
        // In general, pointer arithmetic on code is bad, but in this case,
        // getting the return address from a call instruction, stepping over pools
        // would be wrong.
        return osiCallPointOffset_ + Assembler::patchWrite_NearCallSize();
    }
    uint32_t osiCallPointOffset() const {
        return osiCallPointOffset_;
    }
    void setOsiCallPointOffset(uint32_t osiCallPointOffset) {
        JS_ASSERT(!osiCallPointOffset_);
        osiCallPointOffset_ = osiCallPointOffset;
    }
    void fixupOffset(MacroAssembler* masm) {
        osiCallPointOffset_ = masm->actualOffset(osiCallPointOffset_);
    }
};

class LInstruction::InputIterator
{
  private:
    LInstruction& ins_;
    size_t idx_;
    bool snapshot_;

    void handleOperandsEnd() {
        // Iterate on the snapshot when iteration over all operands is done.
        if (!snapshot_ && idx_ == ins_.numOperands() && ins_.snapshot()) {
            idx_ = 0;
            snapshot_ = true;
        }
    }

public:
    InputIterator(LInstruction& ins) :
      ins_(ins),
      idx_(0),
      snapshot_(false)
    {
        handleOperandsEnd();
    }

    bool more() const {
        if (snapshot_)
            return idx_ < ins_.snapshot()->numEntries();
        if (idx_ < ins_.numOperands())
            return true;
        if (ins_.snapshot() && ins_.snapshot()->numEntries())
            return true;
        return false;
    }

    bool isSnapshotInput() const {
        return snapshot_;
    }

    void next() {
        JS_ASSERT(more());
        idx_++;
        handleOperandsEnd();
    }

    void replace(const LAllocation& alloc) {
        if (snapshot_)
            ins_.snapshot()->setEntry(idx_, alloc);
        else
            ins_.setOperand(idx_, alloc);
    }

    LAllocation* operator*() const {
        if (snapshot_)
            return ins_.snapshot()->getEntry(idx_);
        return ins_.getOperand(idx_);
    }

    LAllocation* operator ->() const {
        return **this;
    }
};

class LIRGraph
{
    struct ValueHasher
    {
        typedef Value Lookup;
        static HashNumber hash(const Value& v) {
            return HashNumber(v.asRawBits());
        }
        static bool match(const Value& lhs, const Value& rhs) {
            return lhs == rhs;
        }

#ifdef DEBUG
        bool canOptimizeOutIfUnused();
#endif
    };


    Vector<LBlock*, 16, IonAllocPolicy> blocks_;
    Vector<Value, 0, IonAllocPolicy> constantPool_;
    typedef HashMap<Value, uint32_t, ValueHasher, IonAllocPolicy> ConstantPoolMap;
    ConstantPoolMap constantPoolMap_;
    Vector<LInstruction*, 0, IonAllocPolicy> safepoints_;
    Vector<LInstruction*, 0, IonAllocPolicy> nonCallSafepoints_;
    uint32_t numVirtualRegisters_;
    uint32_t numInstructions_;

    // Number of stack slots needed for local spills.
    uint32_t localSlotCount_;
    // Number of stack slots needed for argument construction for calls.
    uint32_t argumentSlotCount_;

    // Snapshot taken before any LIR has been lowered.
    LSnapshot* entrySnapshot_;

    // LBlock containing LOsrEntry, or nullptr.
    LBlock* osrBlock_;

    MIRGraph& mir_;

  public:
    LIRGraph(MIRGraph* mir);

    bool init() {
        return constantPoolMap_.init();
    }
    MIRGraph& mir() const {
        return mir_;
    }
    size_t numBlocks() const {
        return blocks_.length();
    }
    LBlock* getBlock(size_t i) const {
        return blocks_[i];
    }
    uint32_t numBlockIds() const {
        return mir_.numBlockIds();
    }
    bool addBlock(LBlock* block) {
        return blocks_.append(block);
    }
    uint32_t getVirtualRegister() {
        numVirtualRegisters_ += VREG_INCREMENT;
        return numVirtualRegisters_;
    }
    uint32_t numVirtualRegisters() const {
        // Virtual registers are 1-based, not 0-based, so add one as a
        // convenience for 0-based arrays.
        return numVirtualRegisters_ + 1;
    }
    uint32_t getInstructionId() {
        return numInstructions_++;
    }
    uint32_t numInstructions() const {
        return numInstructions_;
    }
    void setLocalSlotCount(uint32_t localSlotCount) {
        localSlotCount_ = localSlotCount;
    }
    uint32_t localSlotCount() const {
        return localSlotCount_;
    }
    // Return the localSlotCount() value rounded up so that it satisfies the
    // platform stack alignment requirement, and so that it's a multiple of
    // the number of slots per Value.
    uint32_t paddedLocalSlotCount() const {
        // Round to StackAlignment, but also round to at least sizeof(Value) in
        // case that's greater, because StackOffsetOfPassedArg rounds argument
        // slots to 8-byte boundaries.
        size_t Alignment = Max(sizeof(StackAlignment), sizeof(Value));
        return AlignBytes(localSlotCount(), Alignment);
    }
    size_t paddedLocalSlotsSize() const {
        return paddedLocalSlotCount();
    }
    void setArgumentSlotCount(uint32_t argumentSlotCount) {
        argumentSlotCount_ = argumentSlotCount;
    }
    uint32_t argumentSlotCount() const {
        return argumentSlotCount_;
    }
    size_t argumentsSize() const {
        return argumentSlotCount() * sizeof(Value);
    }
    uint32_t totalSlotCount() const {
        return paddedLocalSlotCount() + argumentsSize();
    }
    bool addConstantToPool(const Value& v, uint32_t* index);
    size_t numConstants() const {
        return constantPool_.length();
    }
    Value* constantPool() {
        return &constantPool_[0];
    }
    void setEntrySnapshot(LSnapshot* snapshot) {
        JS_ASSERT(!entrySnapshot_);
        JS_ASSERT(snapshot->bailoutKind() == Bailout_Normal);
        snapshot->setBailoutKind(Bailout_ArgumentCheck);
        entrySnapshot_ = snapshot;
    }
    LSnapshot* entrySnapshot() const {
        JS_ASSERT(entrySnapshot_);
        return entrySnapshot_;
    }
    void setOsrBlock(LBlock* block) {
        JS_ASSERT(!osrBlock_);
        osrBlock_ = block;
    }
    LBlock* osrBlock() const {
        return osrBlock_;
    }
    bool noteNeedsSafepoint(LInstruction* ins);
    size_t numNonCallSafepoints() const {
        return nonCallSafepoints_.length();
    }
    LInstruction* getNonCallSafepoint(size_t i) const {
        return nonCallSafepoints_[i];
    }
    size_t numSafepoints() const {
        return safepoints_.length();
    }
    LInstruction* getSafepoint(size_t i) const {
        return safepoints_[i];
    }
    void removeBlock(size_t i);
};

LAllocation::LAllocation(const AnyRegister& reg)
{
    if (reg.isFloat())
        *this = LFloatReg(reg.fpu());
    else
        *this = LGeneralReg(reg.gpr());
}

AnyRegister
LAllocation::toRegister() const
{
    JS_ASSERT(isRegister());
    if (isFloatReg())
        return AnyRegister(toFloatReg()->reg());
    return AnyRegister(toGeneralReg()->reg());
}

} // namespace jit
} // namespace js

#define LIR_HEADER(opcode)                                                  \
    Opcode op() const {                                                     \
        return LInstruction::LOp_##opcode;                                  \
    }                                                                       \
    bool accept(LInstructionVisitor* visitor) {                             \
        visitor->setInstruction(this);                                      \
        return visitor->visit##opcode(this);                                \
    }

#include "jit/LIR-Common.h"
#if defined(JS_CODEGEN_X86) || defined(JS_CODEGEN_X64)
# if defined(JS_CODEGEN_X86)
#  include "jit/x86/LIR-x86.h"
# elif defined(JS_CODEGEN_X64)
#  include "jit/x64/LIR-x64.h"
# endif
# include "jit/shared/LIR-x86-shared.h"
#elif defined(JS_CODEGEN_ARM)
# include "jit/arm/LIR-arm.h"
#elif defined(JS_CODEGEN_MIPS)
# include "jit/mips/LIR-mips.h"
#else
# error "Unknown architecture!"
#endif

#undef LIR_HEADER

namespace js {
namespace jit {

#define LIROP(name)                                                         \
    L##name* LInstruction::to##name()                                       \
    {                                                                       \
        JS_ASSERT(is##name());                                              \
        return static_cast<L##name*>(this);                                \
    }
    LIR_OPCODE_LIST(LIROP)
#undef LIROP

#define LALLOC_CAST(type)                                                   \
    L##type* LAllocation::to##type() {                                      \
        JS_ASSERT(is##type());                                              \
        return static_cast<L##type*>(this);                                \
    }
#define LALLOC_CONST_CAST(type)                                             \
    const L##type* LAllocation::to##type() const {                          \
        JS_ASSERT(is##type());                                              \
        return static_cast<const L##type*>(this);                          \
    }

LALLOC_CAST(Use)
LALLOC_CONST_CAST(Use)
LALLOC_CONST_CAST(GeneralReg)
LALLOC_CONST_CAST(FloatReg)
LALLOC_CONST_CAST(StackSlot)
LALLOC_CONST_CAST(Argument)
LALLOC_CONST_CAST(ConstantIndex)

#undef LALLOC_CAST

#ifdef JS_NUNBOX32
static inline signed
OffsetToOtherHalfOfNunbox(LDefinition::Type type)
{
    JS_ASSERT(type == LDefinition::TYPE || type == LDefinition::PAYLOAD);
    signed offset = (type == LDefinition::TYPE)
                    ? PAYLOAD_INDEX - TYPE_INDEX
                    : TYPE_INDEX - PAYLOAD_INDEX;
    return offset;
}

static inline void
AssertTypesFormANunbox(LDefinition::Type type1, LDefinition::Type type2)
{
    JS_ASSERT((type1 == LDefinition::TYPE && type2 == LDefinition::PAYLOAD) ||
              (type2 == LDefinition::TYPE && type1 == LDefinition::PAYLOAD));
}

static inline unsigned
OffsetOfNunboxSlot(LDefinition::Type type)
{
    if (type == LDefinition::PAYLOAD)
        return NUNBOX32_PAYLOAD_OFFSET;
    return NUNBOX32_TYPE_OFFSET;
}

// Note that stack indexes for LStackSlot are modelled backwards, so a
// double-sized slot starting at 2 has its next word at 1, *not* 3.
static inline unsigned
BaseOfNunboxSlot(LDefinition::Type type, unsigned slot)
{
    if (type == LDefinition::PAYLOAD)
        return slot + NUNBOX32_PAYLOAD_OFFSET;
    return slot + NUNBOX32_TYPE_OFFSET;
}
#endif

} // namespace jit
} // namespace js

#endif /* jit_LIR_h */