DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (777e60ca8853)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef jit_BaselineJIT_h
#define jit_BaselineJIT_h

#ifdef JS_ION

#include "mozilla/MemoryReporting.h"

#include "jscntxt.h"
#include "jscompartment.h"

#include "ds/LifoAlloc.h"
#include "jit/Bailouts.h"
#include "jit/IonCode.h"
#include "jit/IonMacroAssembler.h"

namespace js {
namespace jit {

class StackValue;
class ICEntry;
class ICStub;

class PCMappingSlotInfo
{
    uint8_t slotInfo_;

  public:
    // SlotInfo encoding:
    //  Bits 0 & 1: number of slots at top of stack which are unsynced.
    //  Bits 2 & 3: SlotLocation of top slot value (only relevant if numUnsynced > 0).
    //  Bits 3 & 4: SlotLocation of next slot value (only relevant if numUnsynced > 1).
    enum SlotLocation { SlotInR0 = 0, SlotInR1 = 1, SlotIgnore = 3 };

    PCMappingSlotInfo()
      : slotInfo_(0)
    { }

    explicit PCMappingSlotInfo(uint8_t slotInfo)
      : slotInfo_(slotInfo)
    { }

    static inline bool ValidSlotLocation(SlotLocation loc) {
        return (loc == SlotInR0) || (loc == SlotInR1) || (loc == SlotIgnore);
    }

    static SlotLocation ToSlotLocation(const StackValue* stackVal);

    inline static PCMappingSlotInfo MakeSlotInfo() { return PCMappingSlotInfo(0); }

    inline static PCMappingSlotInfo MakeSlotInfo(SlotLocation topSlotLoc) {
        JS_ASSERT(ValidSlotLocation(topSlotLoc));
        return PCMappingSlotInfo(1 | (topSlotLoc << 2));
    }

    inline static PCMappingSlotInfo MakeSlotInfo(SlotLocation topSlotLoc, SlotLocation nextSlotLoc) {
        JS_ASSERT(ValidSlotLocation(topSlotLoc));
        JS_ASSERT(ValidSlotLocation(nextSlotLoc));
        return PCMappingSlotInfo(2 | (topSlotLoc << 2) | (nextSlotLoc) << 4);
    }

    inline unsigned numUnsynced() const {
        return slotInfo_ & 0x3;
    }
    inline SlotLocation topSlotLocation() const {
        return static_cast<SlotLocation>((slotInfo_ >> 2) & 0x3);
    }
    inline SlotLocation nextSlotLocation() const {
        return static_cast<SlotLocation>((slotInfo_ >> 4) & 0x3);
    }
    inline uint8_t toByte() const {
        return slotInfo_;
    }
};

// A CompactBuffer is used to store native code offsets (relative to the
// previous pc) and PCMappingSlotInfo bytes. To allow binary search into this
// table, we maintain a second table of "index" entries. Every X ops, the
// compiler will add an index entry, so that from the index entry to the
// actual native code offset, we have to iterate at most X times.
struct PCMappingIndexEntry
{
    // jsbytecode offset.
    uint32_t pcOffset;

    // Native code offset.
    uint32_t nativeOffset;

    // Offset in the CompactBuffer where data for pcOffset starts.
    uint32_t bufferOffset;
};

struct BaselineScript
{
  public:
    static const uint32_t MAX_JSSCRIPT_LENGTH = 0x0fffffffu;

    // Limit the locals on a given script so that stack check on baseline frames
    // doesn't overflow a uint32_t value.
    // (MAX_JSSCRIPT_SLOTS * sizeof(Value)) must fit within a uint32_t.
    static const uint32_t MAX_JSSCRIPT_SLOTS = 0xffffu;

  private:
    // Code pointer containing the actual method.
    HeapPtr<JitCode> method_;

    // For heavyweight scripts, template objects to use for the call object and
    // decl env object (linked via the call object's enclosing scope).
    HeapPtrObject templateScope_;

    // Allocated space for fallback stubs.
    FallbackICStubSpace fallbackStubSpace_;

    // Native code offset right before the scope chain is initialized.
    uint32_t prologueOffset_;

    // Native code offset right before the frame is popped and the method
    // returned from.
    uint32_t epilogueOffset_;

    // The offsets for the toggledJump instructions for SPS update ICs.
#ifdef DEBUG
    mozilla::DebugOnly<bool> spsOn_;
#endif
    uint32_t spsPushToggleOffset_;

    // Native code offsets right after the debug prologue VM call returns, or
    // would have returned. This offset is recorded even when debug mode is
    // off to aid on-stack debug mode recompilation.
    //
    // We don't need one for the debug epilogue because that always happens
    // right before the epilogue, so we just use the epilogue offset.
    uint32_t postDebugPrologueOffset_;

  public:
    enum Flag {
        // Flag set by JSScript::argumentsOptimizationFailed. Similar to
        // JSScript::needsArgsObj_, but can be read from JIT code.
        NEEDS_ARGS_OBJ = 1 << 0,

        // Flag set when discarding JIT code, to indicate this script is
        // on the stack and should not be discarded.
        ACTIVE = 1 << 1,

        // Flag set when the script contains any writes to its on-stack
        // (rather than call object stored) arguments.
        MODIFIES_ARGUMENTS = 1 << 2,

        // Flag set when compiled for use for debug mode. Handles various
        // Debugger hooks and compiles toggled calls for traps.
        DEBUG_MODE = 1 << 3
    };

  private:
    uint32_t flags_;

  private:
    void trace(JSTracer* trc);

    uint32_t icEntriesOffset_;
    uint32_t icEntries_;

    uint32_t pcMappingIndexOffset_;
    uint32_t pcMappingIndexEntries_;

    uint32_t pcMappingOffset_;
    uint32_t pcMappingSize_;

    // List mapping indexes of bytecode type sets to the offset of the opcode
    // they correspond to, for use by TypeScript::BytecodeTypes.
    uint32_t bytecodeTypeMapOffset_;

  public:
    // Do not call directly, use BaselineScript::New. This is public for cx->new_.
    BaselineScript(uint32_t prologueOffset, uint32_t epilogueOffset,
                   uint32_t spsPushToggleOffset, uint32_t postDebugPrologueOffset);

    static BaselineScript* New(JSContext* cx, uint32_t prologueOffset,
                               uint32_t epilogueOffset, uint32_t postDebugPrologueOffset,
                               uint32_t spsPushToggleOffset, size_t icEntries,
                               size_t pcMappingIndexEntries, size_t pcMappingSize,
                               size_t bytecodeTypeMapEntries);
    static void Trace(JSTracer* trc, BaselineScript* script);
    static void Destroy(FreeOp* fop, BaselineScript* script);

    void purgeOptimizedStubs(Zone* zone);

    static inline size_t offsetOfMethod() {
        return offsetof(BaselineScript, method_);
    }

    void addSizeOfIncludingThis(mozilla::MallocSizeOf mallocSizeOf, size_t* data,
                                size_t* fallbackStubs) const {
        *data += mallocSizeOf(this);

        // |data| already includes the ICStubSpace itself, so use
        // sizeOfExcludingThis.
        *fallbackStubs += fallbackStubSpace_.sizeOfExcludingThis(mallocSizeOf);
    }

    bool active() const {
        return flags_ & ACTIVE;
    }
    void setActive() {
        flags_ |= ACTIVE;
    }
    void resetActive() {
        flags_ &= ~ACTIVE;
    }

    void setNeedsArgsObj() {
        flags_ |= NEEDS_ARGS_OBJ;
    }

    void setModifiesArguments() {
        flags_ |= MODIFIES_ARGUMENTS;
    }
    bool modifiesArguments() {
        return flags_ & MODIFIES_ARGUMENTS;
    }

    void setDebugMode() {
        flags_ |= DEBUG_MODE;
    }
    bool debugMode() const {
        return flags_ & DEBUG_MODE;
    }

    uint32_t prologueOffset() const {
        return prologueOffset_;
    }
    uint8_t* prologueEntryAddr() const {
        return method_->raw() + prologueOffset_;
    }

    uint32_t epilogueOffset() const {
        return epilogueOffset_;
    }
    uint8_t* epilogueEntryAddr() const {
        return method_->raw() + epilogueOffset_;
    }

    uint32_t postDebugPrologueOffset() const {
        return postDebugPrologueOffset_;
    }
    uint8_t* postDebugPrologueAddr() const {
        return method_->raw() + postDebugPrologueOffset_;
    }

    ICEntry* icEntryList() {
        return (ICEntry*)(reinterpret_cast<uint8_t*>(this) + icEntriesOffset_);
    }
    PCMappingIndexEntry* pcMappingIndexEntryList() {
        return (PCMappingIndexEntry*)(reinterpret_cast<uint8_t*>(this) + pcMappingIndexOffset_);
    }
    uint8_t* pcMappingData() {
        return reinterpret_cast<uint8_t*>(this) + pcMappingOffset_;
    }
    FallbackICStubSpace* fallbackStubSpace() {
        return &fallbackStubSpace_;
    }

    JitCode* method() const {
        return method_;
    }
    void setMethod(JitCode* code) {
        JS_ASSERT(!method_);
        method_ = code;
    }

    JSObject* templateScope() const {
        return templateScope_;
    }
    void setTemplateScope(JSObject* templateScope) {
        JS_ASSERT(!templateScope_);
        templateScope_ = templateScope;
    }

    void toggleBarriers(bool enabled) {
        method()->togglePreBarriers(enabled);
    }

    bool containsCodeAddress(uint8_t* addr) const {
        return method()->raw() <= addr && addr <= method()->raw() + method()->instructionsSize();
    }

    ICEntry& icEntry(size_t index);
    ICEntry* maybeICEntryFromReturnOffset(CodeOffsetLabel returnOffset);
    ICEntry& icEntryFromReturnOffset(CodeOffsetLabel returnOffset);
    ICEntry& icEntryFromPCOffset(uint32_t pcOffset);
    ICEntry& icEntryForDebugModeRecompileFromPCOffset(uint32_t pcOffset);
    ICEntry& icEntryFromPCOffset(uint32_t pcOffset, ICEntry* prevLookedUpEntry);
    ICEntry* maybeICEntryFromReturnAddress(uint8_t* returnAddr);
    ICEntry& icEntryFromReturnAddress(uint8_t* returnAddr);
    uint8_t* returnAddressForIC(const ICEntry& ent);

    size_t numICEntries() const {
        return icEntries_;
    }

    void copyICEntries(JSScript* script, const ICEntry* entries, MacroAssembler& masm);
    void adoptFallbackStubs(FallbackICStubSpace* stubSpace);

    PCMappingIndexEntry& pcMappingIndexEntry(size_t index);
    CompactBufferReader pcMappingReader(size_t indexEntry);

    size_t numPCMappingIndexEntries() const {
        return pcMappingIndexEntries_;
    }

    void copyPCMappingIndexEntries(const PCMappingIndexEntry* entries);

    void copyPCMappingEntries(const CompactBufferWriter& entries);
    uint8_t* nativeCodeForPC(JSScript* script, jsbytecode* pc, PCMappingSlotInfo* slotInfo = nullptr);
    jsbytecode* pcForReturnOffset(JSScript* script, uint32_t nativeOffset);
    jsbytecode* pcForReturnAddress(JSScript* script, uint8_t* nativeAddress);

    // Toggle debug traps (used for breakpoints and step mode) in the script.
    // If |pc| is nullptr, toggle traps for all ops in the script. Else, only
    // toggle traps at |pc|.
    void toggleDebugTraps(JSScript* script, jsbytecode* pc);

    void toggleSPS(bool enable);

    void noteAccessedGetter(uint32_t pcOffset);
    void noteArrayWriteHole(uint32_t pcOffset);

    static size_t offsetOfFlags() {
        return offsetof(BaselineScript, flags_);
    }

    static void writeBarrierPre(Zone* zone, BaselineScript* script);

    uint32_t* bytecodeTypeMap() {
        JS_ASSERT(bytecodeTypeMapOffset_);
        return reinterpret_cast<uint32_t*>(reinterpret_cast<uint8_t*>(this) + bytecodeTypeMapOffset_);
    }
};

inline bool
IsBaselineEnabled(JSContext* cx)
{
    return cx->runtime()->options().baseline();
}

MethodStatus
CanEnterBaselineMethod(JSContext* cx, RunState& state);

MethodStatus
CanEnterBaselineAtBranch(JSContext* cx, InterpreterFrame* fp, bool newType);

IonExecStatus
EnterBaselineMethod(JSContext* cx, RunState& state);

IonExecStatus
EnterBaselineAtBranch(JSContext* cx, InterpreterFrame* fp, jsbytecode* pc);

void
FinishDiscardBaselineScript(FreeOp* fop, JSScript* script);

void
AddSizeOfBaselineData(JSScript* script, mozilla::MallocSizeOf mallocSizeOf, size_t* data,
                      size_t* fallbackStubs);

void
ToggleBaselineSPS(JSRuntime* runtime, bool enable);

struct BaselineBailoutInfo
{
    // Pointer into the current C stack, where overwriting will start.
    uint8_t* incomingStack;

    // The top and bottom heapspace addresses of the reconstructed stack
    // which will be copied to the bottom.
    uint8_t* copyStackTop;
    uint8_t* copyStackBottom;

    // Fields to store the top-of-stack baseline values that are held
    // in registers.  The setR0 and setR1 fields are flags indicating
    // whether each one is initialized.
    uint32_t setR0;
    Value valueR0;
    uint32_t setR1;
    Value valueR1;

    // The value of the frame pointer register on resume.
    void* resumeFramePtr;

    // The native code address to resume into.
    void* resumeAddr;

    // If resuming into a TypeMonitor IC chain, this field holds the
    // address of the first stub in that chain.  If this field is
    // set, then the actual jitcode resumed into is the jitcode for
    // the first stub, not the resumeAddr above.  The resumeAddr
    // above, in this case, is pushed onto the stack so that the
    // TypeMonitor chain can tail-return into the main jitcode when done.
    ICStub* monitorStub;

    // Number of baseline frames to push on the stack.
    uint32_t numFrames;

    // The bailout kind.
    BailoutKind bailoutKind;
};

uint32_t
BailoutIonToBaseline(JSContext* cx, JitActivation* activation, IonBailoutIterator& iter,
                     bool invalidate, BaselineBailoutInfo** bailoutInfo,
                     const ExceptionBailoutInfo* exceptionInfo = nullptr);

// Mark baseline scripts on the stack as active, so that they are not discarded
// during GC.
void
MarkActiveBaselineScripts(Zone* zone);

MethodStatus
BaselineCompile(JSContext* cx, JSScript* script);

} // namespace jit
} // namespace js

#endif // JS_ION

#endif /* jit_BaselineJIT_h */