DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (777e60ca8853)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "jit/AliasAnalysis.h"

#include <stdio.h>

#include "jit/Ion.h"
#include "jit/IonBuilder.h"
#include "jit/IonSpewer.h"
#include "jit/MIR.h"
#include "jit/MIRGraph.h"

using namespace js;
using namespace js::jit;

using mozilla::Array;

namespace js {
namespace jit {

class LoopAliasInfo : public TempObject
{
  private:
    LoopAliasInfo* outer_;
    MBasicBlock* loopHeader_;
    MDefinitionVector invariantLoads_;

  public:
    LoopAliasInfo(TempAllocator& alloc, LoopAliasInfo* outer, MBasicBlock* loopHeader)
      : outer_(outer), loopHeader_(loopHeader), invariantLoads_(alloc)
    { }

    MBasicBlock* loopHeader() const {
        return loopHeader_;
    }
    LoopAliasInfo* outer() const {
        return outer_;
    }
    bool addInvariantLoad(MDefinition* ins) {
        return invariantLoads_.append(ins);
    }
    const MDefinitionVector& invariantLoads() const {
        return invariantLoads_;
    }
    MDefinition* firstInstruction() const {
        return *loopHeader_->begin();
    }
};

} // namespace jit
} // namespace js

namespace {

// Iterates over the flags in an AliasSet.
class AliasSetIterator
{
  private:
    uint32_t flags;
    unsigned pos;

  public:
    AliasSetIterator(AliasSet set)
      : flags(set.flags()), pos(0)
    {
        while (flags && (flags & 1) == 0) {
            flags >>= 1;
            pos++;
        }
    }
    AliasSetIterator& operator ++(int) {
        do {
            flags >>= 1;
            pos++;
        } while (flags && (flags & 1) == 0);
        return *this;
    }
    operator bool() const {
        return !!flags;
    }
    unsigned operator*() const {
        JS_ASSERT(pos < AliasSet::NumCategories);
        return pos;
    }
};

} /* anonymous namespace */

AliasAnalysis::AliasAnalysis(MIRGenerator* mir, MIRGraph& graph)
  : mir(mir),
    graph_(graph),
    loop_(nullptr)
{
}

// Whether there might be a path from src to dest, excluding loop backedges. This is
// approximate and really ought to depend on precomputed reachability information.
static inline bool
BlockMightReach(MBasicBlock* src, MBasicBlock* dest)
{
    while (src->id() <= dest->id()) {
        if (src == dest)
            return true;
        switch (src->numSuccessors()) {
          case 0:
            return false;
          case 1: {
            MBasicBlock* successor = src->getSuccessor(0);
            if (successor->id() <= src->id())
                return true; // Don't iloop.
            src = successor;
            break;
          }
          default:
            return true;
        }
    }
    return false;
}

static void
IonSpewDependency(MDefinition* load, MDefinition* store, const char* verb, const char* reason)
{
    if (!IonSpewEnabled(IonSpew_Alias))
        return;

    fprintf(IonSpewFile, "Load ");
    load->printName(IonSpewFile);
    fprintf(IonSpewFile, " %s on store ", verb);
    store->printName(IonSpewFile);
    fprintf(IonSpewFile, " (%s)\n", reason);
}

static void
IonSpewAliasInfo(const char* pre, MDefinition* ins, const char* post)
{
    if (!IonSpewEnabled(IonSpew_Alias))
        return;

    fprintf(IonSpewFile, "%s ", pre);
    ins->printName(IonSpewFile);
    fprintf(IonSpewFile, " %s\n", post);
}

// This pass annotates every load instruction with the last store instruction
// on which it depends. The algorithm is optimistic in that it ignores explicit
// dependencies and only considers loads and stores.
//
// Loads inside loops only have an implicit dependency on a store before the
// loop header if no instruction inside the loop body aliases it. To calculate
// this efficiently, we maintain a list of maybe-invariant loads and the combined
// alias set for all stores inside the loop. When we see the loop's backedge, this
// information is used to mark every load we wrongly assumed to be loop invaraint as
// having an implicit dependency on the last instruction of the loop header, so that
// it's never moved before the loop header.
//
// The algorithm depends on the invariant that both control instructions and effectful
// instructions (stores) are never hoisted.
bool
AliasAnalysis::analyze()
{
    Vector<MDefinitionVector, AliasSet::NumCategories, IonAllocPolicy> stores(alloc());

    // Initialize to the first instruction.
    MDefinition* firstIns = *graph_.begin()->begin();
    for (unsigned i = 0; i < AliasSet::NumCategories; i++) {
        MDefinitionVector defs(alloc());
        if (!defs.append(firstIns))
            return false;
        if (!stores.append(Move(defs)))
            return false;
    }

    // Type analysis may have inserted new instructions. Since this pass depends
    // on the instruction number ordering, all instructions are renumbered.
    // We start with 1 because some passes use 0 to denote failure.
    uint32_t newId = 1;

    for (ReversePostorderIterator block(graph_.rpoBegin()); block != graph_.rpoEnd(); block++) {
        if (mir->shouldCancel("Alias Analysis (main loop)"))
            return false;

        if (block->isLoopHeader()) {
            IonSpew(IonSpew_Alias, "Processing loop header %d", block->id());
            loop_ = new(alloc()) LoopAliasInfo(alloc(), loop_, *block);
        }

        for (MDefinitionIterator def(*block); def; def++) {
            def->setId(newId++);

            AliasSet set = def->getAliasSet();
            if (set.isNone())
                continue;

            if (set.isStore()) {
                for (AliasSetIterator iter(set); iter; iter++) {
                    if (!stores[*iter].append(*def))
                        return false;
                }

                if (IonSpewEnabled(IonSpew_Alias)) {
                    fprintf(IonSpewFile, "Processing store ");
                    def->printName(IonSpewFile);
                    fprintf(IonSpewFile, " (flags %x)\n", set.flags());
                }
            } else {
                // Find the most recent store on which this instruction depends.
                MDefinition* lastStore = firstIns;

                for (AliasSetIterator iter(set); iter; iter++) {
                    MDefinitionVector& aliasedStores = stores[*iter];
                    for (int i = aliasedStores.length() - 1; i >= 0; i--) {
                        MDefinition* store = aliasedStores[i];
                        if (def->mightAlias(store) && BlockMightReach(store->block(), *block)) {
                            if (lastStore->id() < store->id())
                                lastStore = store;
                            break;
                        }
                    }
                }

                def->setDependency(lastStore);
                IonSpewDependency(*def, lastStore, "depends", "");

                // If the last store was before the current loop, we assume this load
                // is loop invariant. If a later instruction writes to the same location,
                // we will fix this at the end of the loop.
                if (loop_ && lastStore->id() < loop_->firstInstruction()->id()) {
                    if (!loop_->addInvariantLoad(*def))
                        return false;
                }
            }
        }

        // Renumber the last instruction, as the analysis depends on this and the order.
        block->lastIns()->setId(newId++);

        if (block->isLoopBackedge()) {
            JS_ASSERT(loop_->loopHeader() == block->loopHeaderOfBackedge());
            IonSpew(IonSpew_Alias, "Processing loop backedge %d (header %d)", block->id(),
                    loop_->loopHeader()->id());
            LoopAliasInfo* outerLoop = loop_->outer();
            MInstruction* firstLoopIns = *loop_->loopHeader()->begin();

            const MDefinitionVector& invariant = loop_->invariantLoads();

            for (unsigned i = 0; i < invariant.length(); i++) {
                MDefinition* ins = invariant[i];
                AliasSet set = ins->getAliasSet();
                JS_ASSERT(set.isLoad());

                bool hasAlias = false;
                for (AliasSetIterator iter(set); iter; iter++) {
                    MDefinitionVector& aliasedStores = stores[*iter];
                    for (int i = aliasedStores.length() - 1;; i--) {
                        MDefinition* store = aliasedStores[i];
                        if (store->id() < firstLoopIns->id())
                            break;
                        if (ins->mightAlias(store)) {
                            hasAlias = true;
                            IonSpewDependency(ins, store, "aliases", "store in loop body");
                            break;
                        }
                    }
                    if (hasAlias)
                        break;
                }

                if (hasAlias) {
                    // This instruction depends on stores inside the loop body. Mark it as having a
                    // dependency on the last instruction of the loop header. The last instruction is a
                    // control instruction and these are never hoisted.
                    MControlInstruction* controlIns = loop_->loopHeader()->lastIns();
                    IonSpewDependency(ins, controlIns, "depends", "due to stores in loop body");
                    ins->setDependency(controlIns);
                } else {
                    IonSpewAliasInfo("Load", ins, "does not depend on any stores in this loop");

                    if (outerLoop && ins->dependency()->id() < outerLoop->firstInstruction()->id()) {
                        IonSpewAliasInfo("Load", ins, "may be invariant in outer loop");
                        if (!outerLoop->addInvariantLoad(ins))
                            return false;
                    }
                }
            }
            loop_ = loop_->outer();
        }
    }

    JS_ASSERT(loop_ == nullptr);
    return true;
}