DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
/*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include "webrtc/modules/remote_bitrate_estimator/remote_bitrate_estimator_unittest_helper.h"

#include <algorithm>
#include <utility>

namespace webrtc {

enum { kMtu = 1200 };

namespace testing {

void TestBitrateObserver::OnReceiveBitrateChanged(
    const std::vector<unsigned int>& ssrcs,
    unsigned int bitrate) {
  latest_bitrate_ = bitrate;
  updated_ = true;
}

RtpStream::RtpStream(int fps,
                     int bitrate_bps,
                     unsigned int ssrc,
                     unsigned int frequency,
                     uint32_t timestamp_offset,
                     int64_t rtcp_receive_time)
    : fps_(fps),
      bitrate_bps_(bitrate_bps),
      ssrc_(ssrc),
      frequency_(frequency),
      next_rtp_time_(0),
      next_rtcp_time_(rtcp_receive_time),
      rtp_timestamp_offset_(timestamp_offset),
      kNtpFracPerMs(4.294967296E6) {
  assert(fps_ > 0);
}

void RtpStream::set_rtp_timestamp_offset(uint32_t offset) {
  rtp_timestamp_offset_ = offset;
}

// Generates a new frame for this stream. If called too soon after the
// previous frame, no frame will be generated. The frame is split into
// packets.
int64_t RtpStream::GenerateFrame(int64_t time_now_us, PacketList* packets) {
  if (time_now_us < next_rtp_time_) {
    return next_rtp_time_;
  }
  assert(packets != NULL);
  int bits_per_frame = (bitrate_bps_ + fps_ / 2) / fps_;
  int n_packets = std::max((bits_per_frame + 4 * kMtu) / (8 * kMtu), 1);
  int packet_size = (bits_per_frame + 4 * n_packets) / (8 * n_packets);
  assert(n_packets >= 0);
  for (int i = 0; i < n_packets; ++i) {
    RtpPacket* packet = new RtpPacket;
    packet->send_time = time_now_us + kSendSideOffsetUs;
    packet->size = packet_size;
    packet->rtp_timestamp = rtp_timestamp_offset_ + static_cast<uint32_t>(
        ((frequency_ / 1000) * packet->send_time + 500) / 1000);
    packet->ssrc = ssrc_;
    packets->push_back(packet);
  }
  next_rtp_time_ = time_now_us + (1000000 + fps_ / 2) / fps_;
  return next_rtp_time_;
}

// The send-side time when the next frame can be generated.
double RtpStream::next_rtp_time() const {
  return next_rtp_time_;
}

// Generates an RTCP packet.
RtpStream::RtcpPacket* RtpStream::Rtcp(int64_t time_now_us) {
  if (time_now_us < next_rtcp_time_) {
    return NULL;
  }
  RtcpPacket* rtcp = new RtcpPacket;
  int64_t send_time_us = time_now_us + kSendSideOffsetUs;
  rtcp->timestamp = rtp_timestamp_offset_ + static_cast<uint32_t>(
      ((frequency_ / 1000) * send_time_us + 500) / 1000);
  rtcp->ntp_secs = send_time_us / 1000000;
  rtcp->ntp_frac = static_cast<int64_t>((send_time_us % 1000000) *
      kNtpFracPerMs);
  rtcp->ssrc = ssrc_;
  next_rtcp_time_ = time_now_us + kRtcpIntervalUs;
  return rtcp;
}

void RtpStream::set_bitrate_bps(int bitrate_bps) {
  ASSERT_GE(bitrate_bps, 0);
  bitrate_bps_ = bitrate_bps;
}

int RtpStream::bitrate_bps() const {
  return bitrate_bps_;
}

unsigned int RtpStream::ssrc() const {
  return ssrc_;
}

bool RtpStream::Compare(const std::pair<unsigned int, RtpStream*>& left,
                        const std::pair<unsigned int, RtpStream*>& right) {
  return left.second->next_rtp_time_ < right.second->next_rtp_time_;
}

StreamGenerator::StreamGenerator(int capacity, double time_now)
    : capacity_(capacity),
      prev_arrival_time_us_(time_now) {}

StreamGenerator::~StreamGenerator() {
  for (StreamMap::iterator it = streams_.begin(); it != streams_.end();
      ++it) {
    delete it->second;
  }
  streams_.clear();
}

// Add a new stream.
void StreamGenerator::AddStream(RtpStream* stream) {
  streams_[stream->ssrc()] = stream;
}

// Set the link capacity.
void StreamGenerator::set_capacity_bps(int capacity_bps) {
  ASSERT_GT(capacity_bps, 0);
  capacity_ = capacity_bps;
}

// Divides |bitrate_bps| among all streams. The allocated bitrate per stream
// is decided by the current allocation ratios.
void StreamGenerator::SetBitrateBps(int bitrate_bps) {
  ASSERT_GE(streams_.size(), 0u);
  int total_bitrate_before = 0;
  for (StreamMap::iterator it = streams_.begin(); it != streams_.end(); ++it) {
    total_bitrate_before += it->second->bitrate_bps();
  }
  int64_t bitrate_before = 0;
  int total_bitrate_after = 0;
  for (StreamMap::iterator it = streams_.begin(); it != streams_.end(); ++it) {
    bitrate_before += it->second->bitrate_bps();
    int64_t bitrate_after = (bitrate_before * bitrate_bps +
        total_bitrate_before / 2) / total_bitrate_before;
    it->second->set_bitrate_bps(bitrate_after - total_bitrate_after);
    total_bitrate_after += it->second->bitrate_bps();
  }
  ASSERT_EQ(bitrate_before, total_bitrate_before);
  EXPECT_EQ(total_bitrate_after, bitrate_bps);
}

// Set the RTP timestamp offset for the stream identified by |ssrc|.
void StreamGenerator::set_rtp_timestamp_offset(unsigned int ssrc,
                                               uint32_t offset) {
  streams_[ssrc]->set_rtp_timestamp_offset(offset);
}

// TODO(holmer): Break out the channel simulation part from this class to make
// it possible to simulate different types of channels.
int64_t StreamGenerator::GenerateFrame(RtpStream::PacketList* packets,
                                       int64_t time_now_us) {
  assert(packets != NULL);
  assert(packets->empty());
  assert(capacity_ > 0);
  StreamMap::iterator it = std::min_element(streams_.begin(), streams_.end(),
                                            RtpStream::Compare);
  (*it).second->GenerateFrame(time_now_us, packets);
  int i = 0;
  for (RtpStream::PacketList::iterator packet_it = packets->begin();
      packet_it != packets->end(); ++packet_it) {
    int capacity_bpus = capacity_ / 1000;
    int64_t required_network_time_us =
        (8 * 1000 * (*packet_it)->size + capacity_bpus / 2) / capacity_bpus;
    prev_arrival_time_us_ = std::max(time_now_us + required_network_time_us,
        prev_arrival_time_us_ + required_network_time_us);
    (*packet_it)->arrival_time = prev_arrival_time_us_;
    ++i;
  }
  it = std::min_element(streams_.begin(), streams_.end(), RtpStream::Compare);
  return (*it).second->next_rtp_time();
}
}  // namespace testing

RemoteBitrateEstimatorTest::RemoteBitrateEstimatorTest()
    : clock_(0),
      bitrate_observer_(new testing::TestBitrateObserver),
      stream_generator_(new testing::StreamGenerator(
          1e6,  // Capacity.
          clock_.TimeInMicroseconds())) {}

RemoteBitrateEstimatorTest::~RemoteBitrateEstimatorTest() {}

void RemoteBitrateEstimatorTest::AddDefaultStream() {
  stream_generator_->AddStream(new testing::RtpStream(
    30,          // Frames per second.
    3e5,         // Bitrate.
    1,           // SSRC.
    90000,       // RTP frequency.
    0xFFFFF000,  // Timestamp offset.
    0));         // RTCP receive time.
}

uint32_t RemoteBitrateEstimatorTest::AbsSendTime(int64_t t, int64_t denom) {
  return (((t << 18) + (denom >> 1)) / denom) & 0x00fffffful;
}

uint32_t RemoteBitrateEstimatorTest::AddAbsSendTime(uint32_t t1, uint32_t t2) {
  return (t1 + t2) & 0x00fffffful;
}

const unsigned int RemoteBitrateEstimatorTest::kDefaultSsrc = 1;

void RemoteBitrateEstimatorTest::IncomingPacket(uint32_t ssrc,
                                                uint32_t payload_size,
                                                int64_t arrival_time,
                                                uint32_t rtp_timestamp,
                                                uint32_t absolute_send_time) {
  RTPHeader header;
  memset(&header, 0, sizeof(header));
  header.ssrc = ssrc;
  header.timestamp = rtp_timestamp;
  header.extension.absoluteSendTime = absolute_send_time;
  bitrate_estimator_->IncomingPacket(arrival_time, payload_size, header);
}

// Generates a frame of packets belonging to a stream at a given bitrate and
// with a given ssrc. The stream is pushed through a very simple simulated
// network, and is then given to the receive-side bandwidth estimator.
// Returns true if an over-use was seen, false otherwise.
// The StreamGenerator::updated() should be used to check for any changes in
// target bitrate after the call to this function.
bool RemoteBitrateEstimatorTest::GenerateAndProcessFrame(unsigned int ssrc,
    unsigned int bitrate_bps) {
  stream_generator_->SetBitrateBps(bitrate_bps);
  testing::RtpStream::PacketList packets;
  int64_t next_time_us = stream_generator_->GenerateFrame(
      &packets, clock_.TimeInMicroseconds());
  bool overuse = false;
  while (!packets.empty()) {
    testing::RtpStream::RtpPacket* packet = packets.front();
    bitrate_observer_->Reset();
    IncomingPacket(packet->ssrc,
                   packet->size,
                   (packet->arrival_time + 500) / 1000,
                   packet->rtp_timestamp,
                   AbsSendTime(packet->send_time, 1000000));
    if (bitrate_observer_->updated()) {
      // Verify that new estimates only are triggered by an overuse and a
      // rate decrease.
      overuse = true;
      EXPECT_LE(bitrate_observer_->latest_bitrate(), bitrate_bps);
    }
    clock_.AdvanceTimeMicroseconds(packet->arrival_time -
                                   clock_.TimeInMicroseconds());
    delete packet;
    packets.pop_front();
  }
  bitrate_estimator_->Process();
  clock_.AdvanceTimeMicroseconds(next_time_us - clock_.TimeInMicroseconds());
  return overuse;
}

// Run the bandwidth estimator with a stream of |number_of_frames| frames, or
// until it reaches |target_bitrate|.
// Can for instance be used to run the estimator for some time to get it
// into a steady state.
unsigned int RemoteBitrateEstimatorTest::SteadyStateRun(
    unsigned int ssrc,
    int max_number_of_frames,
    unsigned int start_bitrate,
    unsigned int min_bitrate,
    unsigned int max_bitrate,
    unsigned int target_bitrate) {
  unsigned int bitrate_bps = start_bitrate;
  bool bitrate_update_seen = false;
  // Produce |number_of_frames| frames and give them to the estimator.
  for (int i = 0; i < max_number_of_frames; ++i) {
    bool overuse = GenerateAndProcessFrame(ssrc, bitrate_bps);
    if (overuse) {
      EXPECT_LT(bitrate_observer_->latest_bitrate(), max_bitrate);
      EXPECT_GT(bitrate_observer_->latest_bitrate(), min_bitrate);
      bitrate_bps = bitrate_observer_->latest_bitrate();
      bitrate_update_seen = true;
    } else if (bitrate_observer_->updated()) {
      bitrate_bps = bitrate_observer_->latest_bitrate();
      bitrate_observer_->Reset();
    }
    if (bitrate_update_seen && bitrate_bps > target_bitrate) {
      break;
    }
  }
  EXPECT_TRUE(bitrate_update_seen);
  return bitrate_bps;
}

void RemoteBitrateEstimatorTest::InitialBehaviorTestHelper(
    unsigned int expected_converge_bitrate) {
  const int kFramerate = 50;  // 50 fps to avoid rounding errors.
  const int kFrameIntervalMs = 1000 / kFramerate;
  const uint32_t kFrameIntervalAbsSendTime = AbsSendTime(1, kFramerate);
  unsigned int bitrate_bps = 0;
  uint32_t timestamp = 0;
  uint32_t absolute_send_time = 0;
  std::vector<unsigned int> ssrcs;
  EXPECT_FALSE(bitrate_estimator_->LatestEstimate(&ssrcs, &bitrate_bps));
  EXPECT_EQ(0u, ssrcs.size());
  clock_.AdvanceTimeMilliseconds(1000);
  bitrate_estimator_->Process();
  EXPECT_FALSE(bitrate_estimator_->LatestEstimate(&ssrcs, &bitrate_bps));
  EXPECT_FALSE(bitrate_observer_->updated());
  bitrate_observer_->Reset();
  clock_.AdvanceTimeMilliseconds(1000);
  // Inserting a packet. Still no valid estimate. We need to wait 1 second.
  IncomingPacket(kDefaultSsrc, kMtu, clock_.TimeInMilliseconds(), timestamp,
                 absolute_send_time);
  bitrate_estimator_->Process();
  EXPECT_FALSE(bitrate_estimator_->LatestEstimate(&ssrcs, &bitrate_bps));
  EXPECT_EQ(0u, ssrcs.size());
  EXPECT_FALSE(bitrate_observer_->updated());
  bitrate_observer_->Reset();
  // Inserting packets for one second to get a valid estimate.
  for (int i = 0; i < kFramerate; ++i) {
    IncomingPacket(kDefaultSsrc, kMtu, clock_.TimeInMilliseconds(), timestamp,
                   absolute_send_time);
    clock_.AdvanceTimeMilliseconds(1000 / kFramerate);
    timestamp += 90 * kFrameIntervalMs;
    absolute_send_time = AddAbsSendTime(absolute_send_time,
                                        kFrameIntervalAbsSendTime);
  }
  bitrate_estimator_->Process();
  EXPECT_TRUE(bitrate_estimator_->LatestEstimate(&ssrcs, &bitrate_bps));
  ASSERT_EQ(1u, ssrcs.size());
  EXPECT_EQ(kDefaultSsrc, ssrcs.front());
  EXPECT_EQ(expected_converge_bitrate, bitrate_bps);
  EXPECT_TRUE(bitrate_observer_->updated());
  bitrate_observer_->Reset();
  EXPECT_EQ(bitrate_observer_->latest_bitrate(), bitrate_bps);
}

void RemoteBitrateEstimatorTest::RateIncreaseReorderingTestHelper() {
  const int kFramerate = 50;  // 50 fps to avoid rounding errors.
  const int kFrameIntervalMs = 1000 / kFramerate;
  const uint32_t kFrameIntervalAbsSendTime = AbsSendTime(1, kFramerate);
  uint32_t timestamp = 0;
  uint32_t absolute_send_time = 0;
  IncomingPacket(kDefaultSsrc, 1000, clock_.TimeInMilliseconds(), timestamp,
                 absolute_send_time);
  bitrate_estimator_->Process();
  EXPECT_FALSE(bitrate_observer_->updated());  // No valid estimate.
  // Inserting packets for one second to get a valid estimate.
  for (int i = 0; i < kFramerate; ++i) {
    IncomingPacket(kDefaultSsrc, kMtu, clock_.TimeInMilliseconds(), timestamp,
                   absolute_send_time);
    clock_.AdvanceTimeMilliseconds(kFrameIntervalMs);
    timestamp += 90 * kFrameIntervalMs;
    absolute_send_time = AddAbsSendTime(absolute_send_time,
                                        kFrameIntervalAbsSendTime);
  }
  bitrate_estimator_->Process();
  EXPECT_TRUE(bitrate_observer_->updated());
  EXPECT_EQ(498136u, bitrate_observer_->latest_bitrate());
  for (int i = 0; i < 10; ++i) {
    clock_.AdvanceTimeMilliseconds(2 * kFrameIntervalMs);
    timestamp += 2 * 90 * kFrameIntervalMs;
    absolute_send_time = AddAbsSendTime(absolute_send_time,
                                        2 * kFrameIntervalAbsSendTime);
    IncomingPacket(kDefaultSsrc, 1000, clock_.TimeInMilliseconds(), timestamp,
                   absolute_send_time);
    IncomingPacket(kDefaultSsrc, 1000, clock_.TimeInMilliseconds(),
                   timestamp - 90 * kFrameIntervalMs,
                   AddAbsSendTime(absolute_send_time,
                                  -int(kFrameIntervalAbsSendTime)));
  }
  bitrate_estimator_->Process();
  EXPECT_TRUE(bitrate_observer_->updated());
  EXPECT_EQ(498136u, bitrate_observer_->latest_bitrate());
}

// Make sure we initially increase the bitrate as expected.
void RemoteBitrateEstimatorTest::RateIncreaseRtpTimestampsTestHelper() {
  // This threshold corresponds approximately to increasing linearly with
  // bitrate(i) = 1.04 * bitrate(i-1) + 1000
  // until bitrate(i) > 500000, with bitrate(1) ~= 30000.
  const int kExpectedIterations = 1621;
  unsigned int bitrate_bps = 30000;
  int iterations = 0;
  AddDefaultStream();
  // Feed the estimator with a stream of packets and verify that it reaches
  // 500 kbps at the expected time.
  while (bitrate_bps < 5e5) {
    bool overuse = GenerateAndProcessFrame(kDefaultSsrc, bitrate_bps);
    if (overuse) {
      EXPECT_GT(bitrate_observer_->latest_bitrate(), bitrate_bps);
      bitrate_bps = bitrate_observer_->latest_bitrate();
      bitrate_observer_->Reset();
    } else if (bitrate_observer_->updated()) {
      bitrate_bps = bitrate_observer_->latest_bitrate();
      bitrate_observer_->Reset();
    }
    ++iterations;
    ASSERT_LE(iterations, kExpectedIterations);
  }
  ASSERT_EQ(kExpectedIterations, iterations);
}

void RemoteBitrateEstimatorTest::CapacityDropTestHelper(
    int number_of_streams,
    bool wrap_time_stamp,
    unsigned int expected_converge_bitrate,
    unsigned int expected_bitrate_drop_delta) {
  const int kFramerate = 30;
  const int kStartBitrate = 900e3;
  const int kMinExpectedBitrate = 800e3;
  const int kMaxExpectedBitrate = 1100e3;
  const unsigned int kInitialCapacityBps = 1000e3;
  const unsigned int kReducedCapacityBps = 500e3;

  int steady_state_time = 0;
  int expected_overuse_start_time = 0;
  if (number_of_streams <= 1) {
    steady_state_time = 10;
    expected_overuse_start_time = 10000;
    AddDefaultStream();
  } else {
    steady_state_time = 8 * number_of_streams;
    expected_overuse_start_time = 8000;
    int bitrate_sum = 0;
    int kBitrateDenom = number_of_streams * (number_of_streams - 1);
    for (int i = 0; i < number_of_streams; i++) {
      // First stream gets half available bitrate, while the rest share the
      // remaining half i.e.: 1/2 = Sum[n/(N*(N-1))] for n=1..N-1 (rounded up)
      int bitrate = kStartBitrate / 2;
      if (i > 0) {
        bitrate = (kStartBitrate * i + kBitrateDenom / 2) / kBitrateDenom;
      }
      stream_generator_->AddStream(new testing::RtpStream(
          kFramerate,                     // Frames per second.
          bitrate,                        // Bitrate.
          kDefaultSsrc + i,               // SSRC.
          90000,                          // RTP frequency.
          0xFFFFF000 ^ (~0 << (32 - i)),  // Timestamp offset.
          0));                            // RTCP receive time.
      bitrate_sum += bitrate;
    }
    ASSERT_EQ(bitrate_sum, kStartBitrate);
  }
  if (wrap_time_stamp) {
    stream_generator_->set_rtp_timestamp_offset(kDefaultSsrc,
        std::numeric_limits<uint32_t>::max() - steady_state_time * 90000);
  }

  // Run in steady state to make the estimator converge.
  stream_generator_->set_capacity_bps(kInitialCapacityBps);
  unsigned int bitrate_bps = SteadyStateRun(kDefaultSsrc,
                                            steady_state_time * kFramerate,
                                            kStartBitrate,
                                            kMinExpectedBitrate,
                                            kMaxExpectedBitrate,
                                            kInitialCapacityBps);
  EXPECT_EQ(expected_converge_bitrate, bitrate_bps);
  bitrate_observer_->Reset();

  // Reduce the capacity and verify the decrease time.
  stream_generator_->set_capacity_bps(kReducedCapacityBps);
  int64_t overuse_start_time = clock_.TimeInMilliseconds();
  EXPECT_EQ(expected_overuse_start_time, overuse_start_time);
  int64_t bitrate_drop_time = -1;
  for (int i = 0; i < 100 * number_of_streams; ++i) {
    GenerateAndProcessFrame(kDefaultSsrc, bitrate_bps);
    // Check for either increase or decrease.
    if (bitrate_observer_->updated()) {
      if (bitrate_drop_time == -1 &&
          bitrate_observer_->latest_bitrate() <= kReducedCapacityBps) {
        bitrate_drop_time = clock_.TimeInMilliseconds();
      }
      bitrate_bps = bitrate_observer_->latest_bitrate();
      bitrate_observer_->Reset();
    }
  }

  EXPECT_EQ(expected_bitrate_drop_delta,
            bitrate_drop_time - overuse_start_time);
}
}  // namespace webrtc